A 12.8 g sample of ethanol (C2H5OH) is burned in a bomb calorimeter with a heat capacity of 5.65 kJ/°C. Using the information below, determine the final temperature of the calorimeter if the initial temperature is 25.0°C. The molar mass of ethanol is 46.07 g/mol.

delta H rxn = -1235

C2H5OH + 3O2 -> 2CO2 +3H2O

Answers

Answer 1

The final temperature of the calorimeter is 85.71 degree C.

Heat of the reaction is -1235 kJ/mol

Heat discharged at the time of reaction is 1235 kJ/mol

The moles of ethanol are calculated by using the formula mass of ethanol / molar mass of ethanol

= 12.8 g / 46 g/mol = 0.278 moles

Thus, the no. of moles of ethanol is 0.278 moles

The heat released when ethanol is combusted is:

0.278 moles × 1235 kJ/mol = 343 kJ

The final temperature is determined as,

343 kJ = (heat capacity) (temperature difference)

343 kJ = 5.65 (T - 25)

T-25 = 343 / 5.65

T-25 = 60.71

T = 85.71 degree C

Thus, the final temperature is 85.71 degree C.

Answer 2

The final temperature of the system is 85.8°C.

We have the following information from the question;

Mass of ethanol = 12.8 g

Molar mass of ethanol= 46.07 g/mol

Heat of reaction= -1235 KJ/mol

Number of moles = 12.8 g/46.07 g/mol = 0.278 moles

Heat absorbed by calorimeter = number of moles × Heat of reaction =

0.278 moles × -1235 KJ/mol = -343.33 KJ

Given that;

Energy absorbed by the calorimeter = heat capacity × temperature rise

343.33 =  5.65 × (T2 - 25)

343.33 = 5.65T2 - 141.25

343.33 + 141.25 = 5.65T2

T2 = 343.33 + 141.25/5.65

T2 = 85.8°C

Learn more: https://brainly.com/question/11969651


Related Questions

Ionic compounds are normally in which physical state at room temperature?
a. solid
b. liquid
c, gas
d. plasma

Answers

Ionic compounds are normally in which physical state at room temperature in solid. The answer is A. 

Ionic Compounds Are Balanced. Table salt is an example of an ionic compound. Sodium and chlorineions come together to form sodium chloride, or NaCl. The sodium atom in this compound loses an electron to become Na+, while the chlorine atom gains an electron to become Cl-.

Answer: Option (a) is the correct answer.

Explanation:

Ionic compounds have atoms bonded through ionic bonds.

An ionic bond is formed when there is transfer of electrons from one atom to another. Also, ionic compounds have opposite charge on their atoms hence, they are attracted by strong intermolecular forces.

Thus, compound whose atoms are holded by strong intermolecular forces of attraction are solid.

Therefore, we can conclude that ionic compounds are normally in solid physical state at room temperature.

What is the energy of an electromagnetic wave with a frequency of 8•10^12 Hz?

Answers

Hello!

Find the Energy of the Photon by Planck's Equation, given:

E (photon energy) =? (in Joule)

h (Planck's constant) = [tex] 6.626*10^{-34}\:J * s [/tex]

f (radiation frequency) = [tex] 8*10^{12}\:Hz [/tex]

Therefore, we have:

[tex] E = h*f [/tex]

[tex] E = 6.626*10^{-34}*8*10^{12} [/tex]

[tex] E = 53.008*10^{-34+12} [/tex]

[tex] E = 53.008*10^{-22} [/tex]

[tex] \boxed{\boxed{E = 5.3008*10^{-21}\:Joule}}\end{array}}\qquad\checkmark [/tex]

I Hope this helps, greetings ... DexteR! =)

Final answer:

The energy of an electromagnetic wave with a frequency of 8 × 1012 Hz is calculated using the formula E = hf. Using Planck's constant, 6.626 × 10-34 J·s, the energy is found to be 5.3008 × 10-21 Joules.

Explanation:

To find the energy of an electromagnetic wave with a given frequency, we use the formula E = hf, where E is the energy, h is Planck's constant, and f is the frequency of the wave. Planck's constant (h) is approximately 6.626 × 10-34 J·s. Therefore, for an electromagnetic wave with a frequency of 8 × 1012 Hz, the energy can be calculated as follows:

The energy of an electromagnetic wave with a frequency of 8•1012 Hz can be calculated using Planck's equation: E = hf, where E is the energy, h is Planck's constant (6.626 x 10-34 J•s), and f is the frequency in Hz.

E = hf = (6.626 × 10-34 J·s) × (8 × 1012 Hz)

Now multiply the two numbers:

E = 5.3008 × 10-21 J

Plugging in the values, we get:

E = (6.626 x 10-34 J•s) × (8•1012 Hz)

Simplifying, the energy is approximately 5.3 x 10-21 J.

So, the energy of an electromagnetic wave with a frequency of 8 × 1012 Hz is 5.3008 × 10-21 Joules. This formula is critical in understanding the relationship between the frequency of electromagnetic radiation and its energy, and is a cornerstone of quantum mechanics.

Towards what are the alpha particles being directed?

Answers

to what what ever is atracting an atom like gold foil or sumthing

In order for a solute to dissolve in a solvent, what must be true?

A. The attractive forces in a solute need to be broken.
B. The attractive forces in a solute must be increased.
C. The attractive forces in a solute must be greater than the attractive forces in the solvent.
D. The attractive forces in a solvent must be increased.

Answers

In order for a solute to dissolve in a solvent, the attractive forces in a solute need to be broken. So, the best option is A.

Answer: Option (A) is the correct answer.

Explanation:

When a solute is dissolved in a solvent then in order to dissolve the solute it is necessary that attractive forces between the solute must be broken such that solute molecules can combine with solvent molecules.

By increasing temperature, pressure, surface area etc of a solution we can break the attractive forces between the solute.

Thus, we can conclude that in order for a solute to dissolve in a solvent it is true that the attractive forces in a solute need to be broken.

Melinda's science techer gave her an unknown substance to identify based on its properties. After a few tests, Melinda listed her observations in a chart.
Chart Reflects light very well Warms up my hand Flattens out when hit with a hammer Conducts electricity. What kind of substance does Melinda have? A. nonmetal B. metal C. metalloid Is the answer b?

Answers

The answer would be B. They are malleable, shiny and good conductors of heat and electricity. 

The answer is: B. metal.

Metals conduct an electric current in liquid and solid state, because they have mobile electrons.

Metallic bond is formed between electrons and positively charged metal ions.

Metallic bond increace electrical and thermal conductivity.

For example, thermal conductivity of sodium is 140 W/(m·K).

Nonmetals have low electrical and thermal conductivity.

The reaction h2co3 h2o<-> h3o hco3– takes place in water. what happens to the equilibrium when the pressure is increased? (1 point)it favors formation of reactants.it favors formation of products.it does not change.it is conserved.

Answers

Answer: It does not change.

Explanation:

[tex]H_2CO_3(aq) +H_2O\rightarrow H_3O^+(aq)+HCO_3^-(aq)[/tex]

According to Le Chatelier's principle, if an equilibrium reaction is subjected to a change, the reaction adjusts itself in a way to undo the change imposed.

The effect of pressure affects the equilibrium only when the reactants or products are in gaseous phase.

As none of the reactants or products is in gaseous state, there is no effect of pressure on equilibrium.

The equilibrium of the reaction H₂CO₃ + H₂O <-> H₃O⁺ + HCO₃⁻ is not affected by changes in pressure because it does not involve gases. This is in contrast to reactions involving gases, where increasing pressure favors the side with fewer moles of gas.

The reaction H₂CO₃ + H₂O <-> H₃O⁺ + HCO₃⁻ takes place in water and has reached equilibrium. When the pressure is increased, the equilibrium will shift according to Le Chatelier's principle. Since there are no gases on either side of the equilibrium, pressure changes will not affect the position of the equilibrium. However, this differs from the equilibrium of a reaction involving gases, such as C(s) + H₂O(g) = CO(g) + H₂(g), where increasing pressure would favor the side with fewer moles of gas, shifting the equilibrium to the left.

Explain what it means for a reaction to be endothermic and what would happen to the temperature recorded by a thermometer in an endothermic reaction. ...?

Answers

An endothermic reaction needs energy to proceed, such energy is usually taken from the environment surrounding the reaction. In the typical case this energy is expressed as  heat. Heat is an state of atomic activity, that energy is transferred to an ENDOthermic reaction so the initial threshold of reaction is overcome and the final reaction can occur.

Answer: 1. For a endothermic reaction , energy is absorbed

2. The temperature recorded by a thermometer in an endothermic reaction would be reduced.

Explanation:

Endothermic reactions are defined as the reactions in which energy of the product is greater than the energy of the reactants. The total energy is absorbed in the form of heat and [tex]\Delta H[/tex] which is difference between energy of products and energy of reactants come out to be positive.  The temperature of the surroundings will decrease.

Exothermic reactions are defined as the reactions in which energy of the product is lesser than the energy of the reactants. The total energy is released in the form of heat and [tex]\Delta H[/tex] which is difference between energy of products and energy of reactants comes out to be negative.The temperature of the surroundings will increase.

Which of the following distinctions are used to identify sedimentary rock? Select all that apply.

conditions it was formed under
when it was formed
where is was formed
how many layers it consists of
what it is composed of

Answers

the correct answers are

conditions
where it was formed
what it is composed of

Answer: Conditions it was formed under, where it was formed, and what it is composed of.

Explanation:

Manganese has a total of 25 electrons, but the following orbital notation for manganese is incorrect. Explain the error in terms of the rules for electron arrangements. Manganese: 1s is filled. 2s is filled. 2p is filled. 3s is filled. 3p is filled. 3d is shown with five orbitals. The first two orbital have two electrons. Orbitals three through five in the 3d sublevel have one electron each.

Answers

The Orbital configuration for Manganese is as follows:

1s2 2s2 2p6 3s2 3p6 4s2 3d5

It says 3d is shown with five orbitals- this is correct

Then it says the first two orbitals have two electrons-this is incorrect. 

When filling in the orbitals for any element, you first need to distribute to ALL orbitals then extras go from there.

The orbital d can have up to 10 electrons so you need to distribute at least one electron to all ten. Since you only have 5 then only 5 orbitals would have electrons in them. In order for ANY of the orbitals to have two electrons, there would need to be AT LEAST 11 electrons to distribute. 

What is the correct mathematical relationship between the number of moles, the volume, and the standard molar volume of a substance?

Answers

Answer:

[tex]V_{m} = \frac{V}{n}[/tex]

Explanation:

Molar volume is the volume occupied by 1 mole of a substance.

For gases, based on the ideal gas law we have:

[tex]PV = nRT[/tex]

where, P = pressure, V= volume, n = moles, R = gas constant, T = temperature

[tex]\frac{V}{n} = \frac{RT}{P}[/tex]

Here, the molar volume is given as:

[tex]V_{m} = \frac{V}{n}[/tex]

Under standard temperature and pressure conditions, the molar volume of an ideal gas is 22.4 L/mol

Given the data in the accompanying table, what is the reaction order for B?
A) zero
B) first
C) second
D) third

Answers

Answer: The order with respect to B is

Explanation: Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.

[tex]Rate=k[A]^x[B]^y[/tex]

k= rate constant

x = order with respect to A

y = order with respect to B

n = x+y = Total order

a) From trial 1: [tex]20=k[0.20]^x[0.10]^y[/tex]    (1)

From trial 2: [tex]40=k[0.20]^x[0.20]^y[/tex]    (2)

Dividing 2 by 1 :[tex]\frac{40}{20}=\frac{k[0.20]^x[0.20]^y}{k[0.20]^x[0.10]^y}[/tex]

[tex]2=2^y,2^1=2^y[/tex] therefore y=1.

Thus order with respect to B is 1.

Given the data in the accompanying table, the reaction order for B is 1st order. The correct option is B.

We may study how the initial rate of the reaction varies when the initial concentration of B is changed to establish the reaction order for B.

We can detect the link between the rate and the concentration of B by comparing the start rate of the reaction at different initial concentrations of B.

Based on the information provided:

Initial concentration of B: [B] (mol/L)

Initial rate: mol/Ls

When [B] is 0.20 mol/L, the initial rate is 20 mol/Ls.

When [B] is 0.40 mol/L, the initial rate is 160 mol/Ls.

As we can see, increasing the initial concentration of B (from 0.20 mol/L to 0.40 mol/L) doubles the initial rate (from 20 mol/Ls to 160 mol/Ls). This suggests that the starting rate and the concentration of B have a direct proportional connection.

Here, one can conclude that the reaction order for B is 1st order. Therefore, the correct answer is B) first.

For more details regarding reaction order, visit:

https://brainly.com/question/33426359

#SPJ6

Which of the following units of volume would be the best to measure the amount of water in your swimming pool?
Liter,
Milliliter,
Nanometer,
Kilo Liter

Answers

D.) Kilo Liter

'cause Swimming pool is a Mega Structure, largest unit would express it more efficiently.

Hope this helps!
Kilo Liter, becasue a swimming pool is really big, with the other units it may take a long time!

what is the maximum number of moles of h2o that can be produced when 2.0 moles of nh3 are completly reacted. Formula: 4NH3+5O2-->4NO+6H2O

Answers

When 2.0 moles of NH₃ are completely reacted according to the balanced chemical equation 4NH₃ + 5O₂ -> 4NO + 6H₂O, 3 moles of H₂O are produced using the mole ratio from the equation.

The question asks about a chemical reaction between ammonia (NH₃) and oxygen (O₂) to produce nitrogen oxide (NO) and water (H₂O). The balanced chemical equation for this reaction is 4NH₃(g) + 5O₂(g)
ightarrow 4NO(g) + 6H₂O(l). To find the maximum number of moles of H₂O produced when 2.0 moles of NH₃ are completely reacted, we use the mole ratio from the balanced equation.

According to the balanced equation, 4 moles of NH₃ produce 6 moles of H₂O. Therefore, we set up the following proportion: (6 moles H₂O) / (4 moles NH₃) = x moles H₂O / (2 moles NH₃). By cross-multiplying and solving for x, we find that 3 moles of H₂O will be produced.

Maximum 3 moles of H₂O can be produced from 2.0 moles of NH₃.

To determine the maximum number of moles of H₂O that can be produced when 2.0 moles of NH₃ are completely reacted, we can use the balanced chemical equation provided:

4NH₃ + 5O₂ → 4NO + 6H₂O

From the balanced equation, we can see that for every 4 moles of NH₃ that react, 6 moles of H₂O are produced.

Therefore, if we have 2.0 moles of NH₃, we can calculate the maximum number of moles of H₂O produced by cross-multiplying and dividing:(2.0 moles NH₃) x (6 moles H₂O / 4 moles NH₃) = 3 moles H₂O

Therefore, the maximum number of moles of H₂O that can be produced when 2.0 moles of NH₃ are completely reacted is 3 moles.

CHEM
Calculate the molarity (M) ov the following solutions
a. 2.0 moles of glucose in 4.0L of solution
b. 4.0 g of KOH in 2.0 L of solution
c. 5.85 g NaCl in 400. mL of solution ...?

Answers

Molarity =moles of solute /volume of solution. A.) Molarity of glucose =moles of glucose /volume of solution =2/4 = 0.5 M B.) No of moles of KOH= weight of KOH / molecular weight of KOH = 4/ 56.10 =0.07 moles. Therefore, Molarity of KOH =moles of KOH /volume of solution = 0.07/2 = 0.035M. C.) No of moles of NaCl = weight of NaCl/ molecular weight of NaCl = 5.85/58.5 = 0.1moles. Therefore, Molarity of NaCl = moles of NaCl /volume of solution = 0.1/ 400 x 10^-3 = 0.25M

The molarity of the solutions are found by dividing the number of moles of solute by the volume of solution in liters. For glucose, the molarity is 0.5 M; for KOH, it is approximately 0.03565 M; and for NaCl, it is approximately 0.25025 M.

The question asks for the calculation of the molarity of different solutions. Molarity is defined as the number of moles of solute divided by the volume of solution in liters.

Calculations:

a. For 2.0 moles of glucose in 4.0L of solution, the molarity (M) is calculated as follows:
M \\= moles of solute / volume of solution in liters
M \\= 2.0 moles / 4.0 L
M \\= 0.5 M

b. For 4.0 g of KOH in 2.0 L of solution, we first need to calculate the number of moles of KOH, which involves finding the molar mass (KOH has a molar mass of approximately 56.11 g/mol):
Moles of KOH \\= mass (g) / molar mass (g/mol)
Moles of KOH \\= 4.0 g / 56.11 g/mol
Moles of KOH \\= ~0.0713 moles
Thus, the molarity of KOH is:
M \\= 0.0713 moles / 2.0 L
M \\= 0.03565 M

c. For 5.85 g of NaCl in 400 mL (or 0.400 L) of solution, firstly convert the mass of NaCl into moles (NaCl has a molar mass of approximately 58.44 g/mol):
Moles of NaCl \\= mass (g) / molar mass (g/mol)
Moles of NaCl \\= 5.85 g / 58.44 g/mol
Moles of NaCl \\= ~0.1001 moles
The molarity of NaCl is:
M \\= 0.1001 moles / 0.400 L
M \\= 0.25025 M

In summary, the molarity of the given solutions are:

0.5 M of glucose

0.03565 M of KOH

0.25025 M of NaCl

density is found by dividing

Answers

mass over volume. D= M/V
density is found by dividing mass into volume. 

D(density) = m(mass) / v(volume).

hopefully this helps



The chemical formula for vinegar is C2H4O2 what is the percent composition for each of the elements in vinegar?

Answers

Molar mass of acid = 60g
You have 0.002M, therefore you have 0.002*60 = 0.12g in 1000 ml vinegar. In 100 ml vinegar you have 0.012g which is 0.012%
Final answer:

The percent composition of each element in vinegar, also known as acetic acid, is as follows: Carbon - 39.9%, Hydrogen - 6.7%, and Oxygen - 53.4%, calculated using their respective atomic masses and the molar mass of acetic acid.

Explanation:

The chemical formula for vinegar, which is also known as acetic acid, is C2H4O2. Each molecule of vinegar contains two atoms of Carbon (C), four atoms of Hydrogen (H), and two atoms of Oxygen (O). The percent composition of each element in vinegar can be calculated using their atomic masses and the overall molar mass of vinegar.

The molar mass of acetic acid is 60.06 g/mol. Using this information and the atomic masses of carbon (12.01 g/mol), hydrogen (1.01 g/mol), and oxygen (16.00 g/mol), we can calculate the percent composition by volume of each element in vinegar as follows: Carbon constitutes 39.9%, Hydrogen constitutes 6.7%, and Oxygen constitutes 53.4% of the total composition.

Learn more about Percent Composition here:

https://brainly.com/question/34955205

#SPJ12

What is cohesion-tension theory?

Answers

The cohesion-tension theory is a theory of intermolecular attraction that explains the process of water flow upwards (against the force of gravity) through the xylem of plants.

Final answer:

The cohesion-tension theory explains how water ascends in plants via the xylem, driven by water molecule cohesion and tension from evaporation in the leaves, creating a negative water potential gradient.

Explanation:

The cohesion-tension theory is a scientific model that explains the process of water movement within plants. According to this theory, water is able to move upwards from the roots to the leaves via the xylem due to the cohesive properties of water molecules and the tension created by water evaporation. Cohesion refers to the tendency of similar molecules to stick together, which is particularly strong among water molecules due to hydrogen bonding. As water evaporates from the mesophyll cells in the leaves, it creates a negative water potential gradient, effectively pulling more water up through the plant's xylem vessels, akin to a continuous water column. This tension is further aided by the adhesive forces between the water molecules and the walls of the xylem cells.

List the four groups attached to the central carbon of an amino acid.

Answers

The four groups attached to the central carbon of an amino acid are an amino group ([tex]\rm -NH_2[/tex]), a carboxyl group ([tex]\rm -COOH[/tex]), a hydrogen atom ([tex]\rm -H[/tex]), and a side chain group (also called an R group).

Amino acid is an organic compound which is defined as the amine substituted carboxylic acid.

-The amino group (-NH2) and carboxyl group (-COOH) are both functional groups that are involved in the formation of peptide bonds between amino acids during protein synthesis.

-The hydrogen atom (-H) is simply a single proton that is attached to the central carbon atom of the amino acid.

-The side chain group (R group) is a variable group that differs between different amino acids. The R group can be a simple alkyl group, a complex aromatic group, or a charged group, among others.

Therefore, an amino group ([tex]\rm -NH_2[/tex]), a carboxyl group ([tex]\rm -COOH[/tex]), a hydrogen atom ([tex]\rm -H[/tex]), and a side chain group (also called an R group) are the four groups attached to the central carbon of an amino acid.

Learn more about Amino acid here:

https://brainly.com/question/30586602

#SPJ4

Final answer:

Amino acids have four distinct groups attached to a central alpha carbon: an alpha-amine group, an alpha-carboxyl group, a hydrogen atom, and a variable R-group unique to each amino acid.

Explanation:

Every amino acid consists of four groups covalently attached to a central alpha carbon, also known as the α-carbon. These include:

An amino group (–NH2), also referred to as an alpha-amine groupA carboxylic acid group (–COOH), often called an alpha-carboxyl groupA single hydrogen atom (–H)The distinct R-group, sometimes called a side chain, which varies with each amino acid and determines its unique properties

This structure is essential in biology for protein synthesis, as amino acids are the building blocks of proteins. Each amino acid's specific R-group influences the protein's structure and function.

15. Using the information below, calculate ΔHf° for PbO(s)

PbO(s) + CO(g) → Pb(s) + CO2(g) ΔH° = –131.4 kJ
ΔHf° for CO2(g) = –393.5 kJ/mol
ΔHf° for CO(g) = –110.5 kJ/mol

A) –151.6 kJ/mol
B) –283.0 kJ/mol
C) +283.0 kJ/mol
D) –372.6 kJ/mol
E) +252.1 kJ/mol

Answers

ΔH(reaction) = ΔH(formation of products) - ΔH(formation of reactants) 
ΔH(reaction) = ( 1*ΔH(Pb(s)) + 1*ΔH(CO2(g)) ) - ( 1*ΔH(PbO(s)) + 1*ΔH(CO(g)) ) 
ΔH(reaction) = ( 0 + -393.5 ) - ( ΔH(PbO(s)) + -110.5 ) 
ΔH(reaction) = -283 - ΔH(PbO(s)) 
-131.4 = -283 -ΔH(PbO(s)) 
ΔH(PbO(s)) = -151.6 kJ

So, the best answer is A.

Answer: The correct answer is Option A.

Explanation:

Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as [tex]\Delta H^o[/tex]

The equation used to calculate enthalpy change is of a reaction is:  

[tex]\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f(product)]-\sum [n\times \Delta H^o_f(reactant)][/tex]

For the given chemical reaction:

[tex]PbO(s)+CO(g)\rightarrow Pb(s)+CO_2(g);\Delta H^o=-131.4kJ[/tex]

The equation for the enthalpy change of the above reaction is:

[tex]\Delta H^o_{rxn}=[(1\times \Delta H^o_f_{(Pb(s))})+(1\times \Delta H^o_f_{(CO_2(g))})]-[(1\times \Delta H^o_f_{(PbO(s))})+(1\times \Delta H^o_f_{(CO(g))})][/tex]

We are given:

[tex]\Delta H^o_f_{(CO_2(g))}=-393.5kJ/mol\\\Delta H^o_f_{(CO(g))}=-110.5kJ/mol\\\Delta H^o_f_{(Pb(s))}=0kJ/mol\\\Delta H^o_{rxn}=-131.4kJ[/tex]

Putting values in above equation, we get:

[tex]-131.4=[(1\times \Delta H^o_f_{(0)})+(1\times (-393.5))]-[(1\times \Delta H^o_f_{(PbO(s))})+(1\times (-110.5))]\\\\\Delta H^o_f_{(PbO(s))}=-151.6kJ/mol[/tex]

Hence, the correct answer is Option A.



How many identified elements does the periodic table show?
4
92
118

Answers

Periodic table shows 118 identified elements

So, option C is your answer.

Hope this helps!

Answer: C. 118

Explanation:

Depending on what version you are using, most periodic tables have more than 92 elements on a periodic table.

1. For which of these elements would the first ionization energy of the atom be higher than that of the diatomic molecule?
a. boron b. helium c. oxygen d. lithium

Answers

Answer: Option (b) is the correct answer.

Explanation:

The energy necessary to remove an electron from a gaseous atom or ion is known as ionization energy.

This means that smaller is the size of an atom more amount of energy has to be supplied to it in order to remove the valence electron. This is because in small atom or element there will be strong force of attraction between the nucleus and electrons.

So, high amount of energy has to be supplied to remove the valence electrons.

As electronic configuration of helium is [tex]1s^{2}[/tex]. So, due to completely filled valence shell it is more stable in nature.

As a result, we need to provide very high amount of energy to remove an electron from a helium atom.

Thus, we can conclude that out of the given options helium element would the first ionization energy of the atom be higher than that of the diatomic molecule.

Final answer:

The element for which the first ionization energy of the atom would be higher than that of the diatomic molecule is boron.

Explanation:

The element for which the first ionization energy of the atom would be higher than that of the diatomic molecule is boron (option a).

Ionization energy is the energy required to remove an electron from an atom or molecule. In the case of boron, removing an electron from the filled 1s² subshell requires much more energy compared to the diatomic molecule. The first ionization energy values for boron, beryllium, and carbon are given as follows: B: 25,026 kJ/mol, Be: 6223 kJ/mol, C: 7475 kJ/mol. As you can see, boron has a much higher first ionization energy.

24 POINTS!!!!!!!!!!!!!!!!!!!!!!!!!!!
Which graph BEST represents the motion of an airplane flying with equal amounts of thrust and air resistance?
A
B
C
D

Answers

I'd say b, but i'm not 100 percent sure.
I would say D, because it did not say you are just starting the flight. If it did, then it would be B, because you need to speed up and you are going upwards. It said you are going in the same amount of speed, and of course, if you are going in the same speed, you can't make time pass faster or slower. So, if it was me, I would choose D as an answer.

Which scientist is correctly matched with his contribution to atomic theory? Rutherford inferred the existence of a dense, positively charged nucleus based on results of a scattering experiment. Bohr confirmed the existence of protons in the nucleus. Einstein carried out the photoelectric effect experiment to show that light has particle-like properties. Schrödinger proposed a planetary model of the atom to explain the emission spectrum of hydrogen.

Answers

Answer

Rutherford inferred the existence of a dense, positively charged nucleus based on results of a scattering experiment.

Explanation

Bohr proposed a planetary model of the atom to explain the emission spectrum of hydrogen. Hence option B is incorrect.

Einstein explained the observation of the photoelectric effect experiment by stating that light has particle-like properties. Hence option C is incorrect.

Schrödinger proposed that electrons have wave like nature.  Hence option D is incorrect.

Final answer:

Ernest Rutherford is correctly matched with his inference of a dense, positively charged nucleus based on a scattering experiment. He developed the nuclear model, which described the atom like a mini solar system. Niels Bohr used this model to explain the atomic spectrum of hydrogen.

Explanation:

Contribution to Atomic Theory

The scientist correctly matched with his contribution to atomic theory in the given options is Ernest Rutherford. Rutherford inferred the existence of a dense, positively charged nucleus based on the results of his gold foil scattering experiment. This discovery was crucial to the development of the nuclear model of the atom. Rutherford's model described the atom as having a tiny, dense nucleus surrounded by lighter, negatively charged electrons, resembling a mini solar system, which later became known as the planetary model of the atom.

It was Niels Bohr who, convinced by the validity of Rutherford's model, based his theory on it. Bohr's theory explained the atomic spectrum of hydrogen and established new principles in quantum mechanics. The identification of the proton as a component of the nucleus was indeed suggested by Rutherford in 1920, and he coined the term proton for the positively charged particles found there. However, contrary to one of the statements from the quiz, it is not correct to attribute the confirmation of the existence of protons to Bohr. Additionally, Einstein's photoelectric effect experiment did establish the particle-like properties of light but wasn't directly related to the structure of the atom. The discovery of the neutron is credited to James Chadwick in 1932, a student of Rutherford, not to Rutherford himself.

What is the relationship between where the element is located within a "block" in the Periodic table and the superscripted value (like the exponent) appearing at the end of the electron configuration for an element ?

Answers

Answer:

The relationship between where elements is located in a block and super scripted value appearing at the end of the electronic configuration is that it gives information on the group the element exist in each block.

Explanation:

Blocks in the periodic table are divided as S, P, D AND F blocks.  Representing elements with a electronic configuration gives information on the block that the elements falls on . For example Sodium and fluorine configurations are as follows ;

Sodium → 1s²2s²2p∧6 3s∧1

flourine → 1s²2s²2p∧5

The outer shell that ends the configuration determines the block it belongs. In this case sodium belongs to the s block while fluorine belongs to the p blocks. Then the super scripted value which is 1 for sodium depict it belong to group 1 of the s blocks. The super scripted  value for fluorine which is 5 shows the element belongs to group 5 in the p blocks.

Final answer:

The block in which an element is located in the Periodic Table determines the type of subshell the last electron occupies. The superscript at the end of the electron configuration indicates the number of electrons in the corresponding subshell.

Explanation:

The location of an element within a block in the Periodic Table determines the type of subshell that the last electron occupies. The electron configuration details in what order the electrons fill up in different orbitals in an atom. In an electron configuration, the superscripted value - often referred to as the exponent - indicates the number of electrons in a particular subshell.

For instance, if an element is located in the 's block', the superscript value will represent the number of electrons in an 's' orbital. Similarly, if an element is located in the 'p block', the superscript value at the end of the electron configuration will denote the number of electrons in a 'p' orbital. In a d block, the d orbital's electron count is represented, and for the f block, the f orbital's.

This connection between electron configuration, blocks in the Periodic Table, and location of an element is a fundamental concept in the study of atomic structure and chemistry.

Learn more about Electron Configuration and Periodic Table here:

https://brainly.com/question/32364157

#SPJ6


In a mixture, the ingredients intermingle and
A. do not react with other or chemically bond to each other
B. form bonds between themselves
C. cannot ever be separated ...?

Answers

The best and most correct answer among the choices provided by your question is the first choice or letter A.

In a mixture, the ingredients intermingle and do not react with other or chemically bond to each other.


I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!

Letter A. do not react with other or chemically.

as the elements in group 18 are considered in order of increasing atomic number, the ionization energy of each successive element

1) decreases
2) increases
3) remains the same

Answers

Ionization energy is the quantity of energy that an isolated, gaseous atom in the ground electronic state must absorb to discharge an electron, resulting in a cation. For example : H(gas) ➡H+ + e- . As we go down the group 18, number of shells added increases, causing increase in atomic radii. As we down the group, van der waal force increases cuz size increases. This van der waal force is further classified into two : London dispersion (it is weak force) and dipole - dipole ( strong). These van der waal forces are weak forces. Hence as we move down the group 18, ionization energy decreases. :-D. Ping me if you have any questions. Good luck :-)

A 1.000 g sample of a metal chloride, MCl2, is dissolved in water and treated with excess aqueous silver nitrate. The silver chloride that formed weighed 1.286g. Calculate the atomic mass of M.

Answers

given 1 gm of MCl2 fors 1.286g of AgClmolar mass of AgCl is 143.5 g 1.286g of AgCl contains 1.286/143.5 mols of AgCl =0.0089616 molseach mol of MCl2 release two Cl- ionshence number of mols MCl2 given(1gm) is 0.0089616 /2=0.0044808 mols hnce one mol of MCl2 weighs 1/0.0044808= 223.17g

Help please!
Which of the following is true for compounds?

A.They can consist of no more than two types of elements.
B. They can be created by chemical reactions.
C. They all have the same properties regardless of their elemental composition.
D.They can be separated into their component elements through physical means.

Answers

The answer is B. They can be created by chemical reactions.

A compound is a substance composed of two or more different atoms chemically bonded to one another, for example, water (H₂O) consists of 2 atoms of hydrogen (H) and 1 atom of oxygen (O), so it is the compound. Water is created by chemical reaction:

2H₂ + O₂ → 2H₂O

Which of the following is least to produce potentially harmful products or byproducts?

A. Radioactive decay
B. Nuclear fusion
C. Uncontrolled nuclear fission
D. controlled nuclear fission

Answers

I believe it would be "controlled nuclear fission" but don't take my word for it. Try looking up what controlled and uncontrolled nuclear fission is.

A 230.0-mL sample of a 0.275 M solution is left on a hot plate overnight; the following morning the solution is 1.15 M. What volume of solvent has evaporated from the 0.275 M solution?

Answers

As

M1V1=M2V2

so (230)(.275) = (1.15)(x) x = 63.25/(1.15) x = 55 mL

Answer: The volume of solvent evaporated is 173.57 mL

Explanation:

[tex]\text{Molarity of the solution}=\frac{\text{Moles of solute}\times 1000}{\text{Volume of solution (in mL)}}[/tex]    .....(1)

Molarity of solution = 0.275 M

Volume of solution = 230.0 mL

Putting values in equation 1, we get:

[tex]0.275M=\frac{\text{Moles of solution}\times 1000}{230.0}\\\\\text{Moles of solution}=\frac{0.275\times 230}{1000}=0.0632mol[/tex]

As, the moles of solution remains the same.

When solvent gets evaporated, the volume of the solution is calculated by using equation 1:

Moles of solution = 0.0632 moles

Molarity of the solution = 1.15 M

Putting values in equation 1, we get:

[tex]1.15=\frac{0.0632\times 1000}{\text{Volume of solution}}\\\\\text{Volume of solution}=\frac{0.0632\times 1000}{1.15}=56.43mL[/tex]

Volume of solution evaporated = (230.0 - 56.43) mL = 173.57 mL

Hence, the volume of solvent evaporated is 173.57 mL

Other Questions
Which organism is most specialized? A.Bacteria B.Unicellular algae C.Cat D.Ant Which type of outline is organized using Roman numerals, letters, and numbers? Which short story element does Poe develop in the excerpt? characterization plot setting theme Before the French Revolution, the people of France were divided into three estates based mainly on their A. education level B. geographic region C. social class D. religious beliefs The caste system in India was characterized by Georgia Department of Transportation employees and projects are funded by A)state taxes. B)property taxes. C)private donations. D)international trade. What is the solution to this inequality?16 + x > 30A. x > 14B. x >-14C. x > -46S. x > 46 What is the length of a term of office for members of the u.s. house of representatives? Which statement is not true of grasses?They are resistant to extreme temperature.They are the most widely distributed flowering plant.They include grains.They are similar to succulents. which phrase best describes the income effect ?A. the effect of demand and supply on income earned by producersB. the impact of price on consumers' purchasing ability and decisions C. the increased income earned by suppliers because of high pricesD. the impact of consumers' income on the supply of a product Talia loves to jump rope. she jumps 879 times in 403 seconds. at what speed is she jumping. in which kind of government does a small group have a firm control over a country?A. representative democracyB. monarchyC. totalitarianD. oligarchy The factory act of 1833 a. made it illegal for children to work in factories. c. limited the hours a child could work. b. made it illegal for women to work underground in the mines. d. contained the "ten hours act." Gametes that are the same in size and shape is known as _____. Africa is one of the richest continents in terms of mineral and energy resources why is this wealth not resulted in economic prosperity for most African citizens Owners of a recreation area are filling a small pond with water. They are adding water at a rate of 25liters per minute. There are 600 liters in the pond to start.Let W represent the amount of water in the pond (in liters), and let T represent the number of minutes that water has been added. Write an equation relating W to T, and then graph your equation using the axes below Solve the system of equations below by graphing them with a pencil and paper. Enter your answer as an ordered pair. y = 2x - 3 y = -2x + 5 ...? anna writes the decimal 0.15 byran says he can write a decimal smaller that anna's using the digits 1 and 5. is he correct? Which of the following are Abrahamic faiths? Check all that apply. Hinduism Judaism Protestantism Sunni Islam In flies, long wings are a dominant trait, and short wings are a recessive trait. If a heterozygous long-winged fly is crossed with a short-winged fly, what is the LIKELIHOOD that the offspring will contain the recessive allele? Steam Workshop Downloader