a hockey player has an acceleration of -3.1m/s2 how long does it take him come to a complete stop from a speed of 13m/s

Answers

Answer 1
Since his acceleration is not changing AND the acceleration is negative, we know that the hockey player is slowing down at a regular rate (i.e losing 3.1m/s, every second).

It's simple to then see that you just need to work out how many times 3.1 goes in to the starting velocity of 13m/s.

13 / 3.1 = 4.19 seconds

Related Questions

How are stars important to the Milky Way

Answers

Stars are a source of light and heat. They recycle all the matter, gas, and dust and process them into new material. They were created as a major driving force of evolution of the universe. 
stars are the light and heat of the milky way the stars work with the milky way like the sun works with the earth the stars keep the milky way lit up and semi  warm like how the sun (which is a star of the milky way )  keeps the earth warm. Just remember that stars r just very big balls of gas burning in the sky :)

People watching their team lose important games often make faces, yell at the screen, and demonstrate general agitation. Although they aren't playing the game themselves, they may be able to experience the frustration felt by the players because of ________________ activity in the brain

Answers

The premotor cortex of the brain is responsible for this type of behavior.  Mirror neurons are activated during these times. The mirror neuron situated in the premotor cortex copies the behaviors or feelings observed, therefore, people watching exhibit the same behavior and feelings as the player itself when they lose a game.

Which is brighter in our sky, a star with apparent magnitude 5 or a star with apparent magnitude 10 ?

Answers

the answer to that would be a magnitude of 5

The brighter object has the lower magnitude number.

The dimmest stars that can be seen with naked normal eyes are about magnitude 6, but the apparent magnitude of the sun in a clear sky is negative 27 !

Which is the best example of translational motion?

A. a soccer ball passed between two players.

B.a powered up rocket on the launch pad.

C.an ice skater spinning in place.

D.water molecules in a glass of water.

Answers

The correct answer would be A. a soccer ball passed between two players. Hope I helped God bless you and your family

The best example of translation motion is a soccer ball passed between two players.

What is translation motion?

Motion in which a moving body's points travel uniformly in one direction. We can observe that there is no change in the object's orientation if it is moving in a translatory manner. Motion that is translated is sometimes referred to as translational motion.

A body is considered to be in linear motion when it moves in a straight line (or rectilinear motion). A body is considered to be in translational motion when all of its points move the same distance in the same period of time.

Given that in question that to find best example of translational motion which is basically the change in the position of the body under observation.

The best example of the translational motion is a soccer ball passed between two players.

To learn more about translational motion refer to the link:

brainly.com/question/12995374

 

#SPJ5

which of the following would decrease current flow in a circuit made of originally from 1.5 volt battery a loop of wire and a switch

Answers

There are no "following" to choose from.

The current in the circuit will decrease if you make the battery voltage less than 1.5v, or make the wire in the loop longer, or open the switch.

A car accelerates from rest at a constant rate of 2 m/s^2 for 5 s. what is the speed of the car at the end of that time? g

Answers

Hope this helps you! This is my step-by-step work. Lemme know if you have any questions!

Explain why it takes more energy to remove the second electron from a lithium atom than it does to remove the fourth electron from a carbon atom.

Answers

The energy required to remove second electron from lithium is more as compared to removing fourth electron from carbon

EXPLANATION:

The amount of energy required to remove an electron from an isolated atom is called as ionization energy of the electron.

The second ionization energy of lithium atom is more as compared to fourth ionization energy of carbon atom. It is so because the second electron which is to be emitted from the K-shell of lithium atom, is tightly bound by the nucleus as the orbit is very closer to the nucleus.

In case of carbon, the fourth electron is present in the valence shell.The radius of valence shell is not so close as compared to lithium.The screening effect is also more for carbon as compared to lithium.

Hence, the energy required to remove a second electron from lithium is more that the energy required to remove fourth electron from carbon.



It is easier to take out 4th electron from carbon than 2nd electron from lithium because 2nd electron of lithium is closer to the nucleus.

The electronic configuration for,

[tex]\rm \bold{ Li_3 - 1s^2 2s^2}\\\\\rm \bold{ C_6- 1s^2 2s^2 2p^2}[/tex]

We can see here the 2nd electron of Lithium is present in first cell. The electron is more strongly bounded with nucleus. Whereas in Carbon 4th electron present in valence shell. Hence, the electron will be loosely bounded with nucleus.

Therefore, we can conclude that the it is easier to take out 4th electron from carbon than 2nd electron from lithium.

To know more about electronic configuration, refer to the link:

https://brainly.com/question/21940070?referrer=searchResults

List three reasons why knowing how to graph movement can help you on a practical level.

Answers

Final answer:

Knowing how to graph motion helps in understanding kinematics properties by deriving motion characteristics from the graph, visualizing equations in a comprehendible form, and revealing underlying relationships between physical quantities.

Explanation:

Knowing how to graph movement can be practically beneficial for several reasons, these include:

Deriving motion characteristics: By graphing displacement versus time, velocity versus time, and acceleration versus time, you can derive specific and general characteristics of kinematics. For example, the slope of a displacement versus time graph is velocity whereas the slope of a velocity versus time graph represents acceleration. Visualizing Equations: Graphs are an excellent tool to visualize and understand equations. Rather than dealing with complex mathematical expressions, you can express the same information visually through graphs and get a better comprehension of the phenomena. Understanding Underlying Relationships: Graphs do not only present numerical information but also reveal the relationship between different quantities. Hence, they offer a way to interpret and understand the physics underlying the motion.

Learn more about Graphing Motion here:

https://brainly.com/question/26231576

#SPJ3

For questions 1-10, match the term with the correct phrase it corresponds to, by filling in the blank with the letter of the correct phase

A - Hormone that helps the body control the level of glucose in yhe blood.

B - The main cause of Type 2 Diabetes

C - Condition that makes it hard for the body to control the level of glucose in the blood

D - Damage to the pancreas caused by ones own antibodies

E - The elevation of glucose levels in the blood

F - Found to help with treatment of clinical depression

G - Organ where insulin is produced

H - "Good" cholesterol

I - 90% to 95% of the case of diabetes in America

J - Hardening of the arteries caused by a build up of fatty materials

1 - diabetes
2 - Atherosclerosis
3 - Hyperglycemia
4 - HDL
5 - Obesity
6 - Type 1
7 - Insulin
8 - Type 2
9 - Pancreas
10 - Regular aerobic exercise

Answers

A. 7
B. 5
C. 1
D. 6
E. 3
F. 10
G. 9
H. 4
I. 8
J. 2

These are your answers:

A is Insulin (7)

B is Obesity (5)

C is Diabetes (1)

D is Type 1 (6)

E is Hyperglycemia (3)

F is Regular aerobic exercise (10)

G is Pancreas (9)

H is HDL (4)

I is Type 2 (8)

J is atherosclerosis(2)

Here is why:

A. Hormone that helps the body control the level of glucose in the blood.

Insulin is a hormone. It helps regulate the levels of glucose in the blood by turning glucose into energy. This is why it plays an important role in metabolism. This hormone is produced by the pancreas.

B. Main cause of Type 2 Diabetes

Obesity is the main cause of Type 2 diabetes. Unhealthy eating and lack of exercise are often listed as causes of Diabetes 2, and this kind of lifestyle collectively leads to obesity.

C. Condition that makes it hard for the body to control the level of glucose in the blood.

Diabetes is a condition where the levels of glucose in the blood is high. This happens because the body cannot produce enough insulin, which is the hormone that controls glucose levels.

D. Damage to the pancreas caused by ones own antibodies.

In Diabetes Type 1, the immune system attacks the panceatic beta cells, which produce insulin. Unlike Type 2, Type 1 Diabetes is unavoidable and hereditary. So if you have it, you have it.

E. The elevation of glucose levels in the blood.

Hyperglycemia - Hyper means high or elevated. Gly means glucose or sugar. -cemia means blood. Put together, elevated glucose in the blood.  

F. Found to help with treatment of clinical depression

Studies have shown that aerobic exercise can help with clinical depression. It helps elevate moods and lessen tension. This helps relieve stress.

G. Organ where insulin is produced

Like mentioned above, insulin is produced by the pancreas.

H. "Good" Cholesterol

HDL is High-density Lipoprotein. HDL is considered as good cholesterol because it actually assists in removing other forms of cholesterol from the blood.

I. 90% to 95% of the case of diabetes in America

Studies have shown that in America Diabetes 2 is the most common case. Like mentioned above, cause of Diabetes type 2 is eating habits and lack of exercise and many foods today are full of processed sugars and are consumed in great amounts because of convenience.

J. Hardening of the arteries caused by a build up of fatty materials.

Fatty materials create plaque and they accumulate in the blood vessels. This leads to constriction and hardening in arteries specifically. This constriction makes the vessel more narrow and it can limit the flow of oxygen to the other organs of the body.

What is the voltage drop across a 3 kω resistor connected to a 9v power source?

Answers

We connect a 3 [tex]k\Omega[/tex] resistor in series to a power source. With the series connection one end of the resistor is connected to the positive terminal of the power source while the other the other end of the resistor is connected to the negative terminal of the power source. Hence the current through the resistor is given bythe Ohm's law
[tex]I=U/R[/tex] and the voltage drop on the resistor is given equal to the power source voltage. 
[tex]U=9 V[/tex]

The voltage drop across a 3 kΩ resistor connected to a 9V power source is 9V, as calculated using Ohm's law.

To calculate the voltage drop across a resistor, we use Ohm's law, which states that V = IR, where V is the voltage, I is the current, and R is the resistance. Since we know the resistance (R = 3 kΩ) and the power source voltage (V = 9V), we first need to calculate the current (I) using the formula I = V/R.

Convert kiloohms to ohms: 3 kΩ = 3000 Ω.Calculate the current: I = V/R = 9V / 3000 Ω = 0.003 A (3 mA).Now, since the resistor is directly connected across the power source, the voltage drop across the resistor is equal to the voltage of the power source.

Therefore, the voltage drop across the 3 kΩ resistor connected to a 9V power source is 9V.

A small smooth object slides from rest down a smooth inclined plane inclined at 30 degrees to the horizontal. What is (i) the acceleration

Answers

I believe it would be F*sin(30)/m

A 10.0-g bullet is fired into a 200-g block of wood at rest on a horizontal surface. after impact, the block slides 8.00 m before coming to rest. if the coefficient of friction between the block and the surface is 0.400, what is the speed of the bullet before impact? (a) 106 m/s (b) 166 m/s (c) 226 m/s (d) 286 m/s (e) none of those answers is correct

Answers

Step 1 -- determine the acceleration of the 200-g block after bullet hits it a = (coeff of friction) * g g = acceleration due to gravity = 9.8 m/sec^2 (constant) a = 0.400*9.8 a = 3.92 m/sec^2 Step 2 -- determine the speed of the block after the bullet hits it Vf^2 - Vb^2 = 2(a)(s) where Vf = final velocity = 0 (since it will stop) Vb = velocity of block after bullet hits it a = -3.92 m/sec^2 s = stopping distance = 8 m (given) Substituting values, 0 - Vb^2 = 2(-3.92)(8) Vb^2 = 62.72 Vb = 7.92 m/sec. M1V1 + M2V2 = (M1 + M2)Vb where M1 = mass of the bullet = 10 g (given) = 0.010 kg. V1 = velocity of bullet before impact M2 = mass of block = 200 g (given) = 0.2 kg. V2 = initial velocity of block = 0 Vb = 7.92 m/sec Substituting values, 0.010(V1) + 0.2(0) = (0.010 + 0.2)(7.92) Solving for V1, V1 = 166.32 m/sec. Therefore the answer is (B) 166 m/s!
Final answer:

The speed of the bullet before impact is 0 m/s.

Explanation:

To determine the velocity of the bullet before impact, we can use the principle of conservation of momentum. The momentum before the impact is equal to the momentum after the impact. The momentum of the bullet is given by its mass times its velocity, and the momentum of the block is given by its mass times its final velocity. Since the block comes to a stop after sliding, its final velocity is 0 m/s. The equation for conservation of momentum becomes:

(m_bullet * v_bullet) = (m_block * 0)

Simplifying the equation gives: v_bullet = 0 m/s

Therefore, the speed of the bullet before impact is 0 m/s. None of the given answers (a) 106 m/s, (b) 166 m/s, (c) 226 m/s, (d) 286 m/s are correct.

Learn more about momentum conservation here:

https://brainly.com/question/33316833

#SPJ11

If the magnitude of the electric field at a distance of 7.8 cm from the center is 30500 n/c , what is the magnitude of the electric field at 22.3 cm from the center? answer in units of n/c.

Answers

3730 N/C The intensity of the electric field follows the inverse square law. Since everything except the distance is remaining constant, then the force will vary with the inverse square of the ratio of the change. So first, lets calculate the ratio of the change in distance. 22.3 / 7.8 = 2.858974359 And since we actually want the square of the distance... 2.858974359^2 = 8.173734385 And since the distance increased, that means the force will decrease. So we get 30500 / 8.173734385 = 3731.464538 Rounding to 3 significant figures gives 3730 N/C.

To find the electric field at [tex]22.3 cm[/tex]  from the center, use the given electric field at [tex]7.8 cm[/tex]  to first calculate the charge, then reapply the electric field formula at the new distance. The result is approximately [tex]3684.2 N/C[/tex].

The problem involves calculating the electric field at a different distance from a point charge. We can use the formula for the electric field due to a point charge, which is given by:

[tex]E = \frac{k \cdot |q|}{r^2}[/tex]

Here,

E is the electric field, k is Coulomb's constant ([tex]8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2[/tex]), q is the charge, r is the distance from the charge.

The magnitude of the electric field at [tex]7.8 cm (0.078 m)\\ \\[/tex] is [tex]30500 N/C[/tex] . First, we calculate the charge q.

Rearrange the formula to find [tex]q: \quad q = \frac{E \cdot r^2}{k}[/tex]

Substitute the known values:[tex]q = 30500 \, \text{N/C} \times (0.078 \, \text{m})^2 / (8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2)[/tex]

Simplify:[tex]q \approx 2.04 \times 10^{-11} \, \text{C}[/tex]

Now, we use this charge to find the electric field at [tex]22.3 cm (0.223 m)[/tex]:

Substitute the values back into the electric field formula:[tex]E = \frac{k \cdot q}{r^2}[/tex]

[tex]E = \frac{(8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2) \times (2.04 \times 10^{-11} \, \text{C})}{(0.223 \, \text{m})^2}[/tex]

Calculate the electric field: [tex]E \approx 3684.2 \, \text{N/C}[/tex]

Therefore, the magnitude of the electric field at [tex]22.3 cm[/tex]  from the center is [tex]3684.2 N/C[/tex].

A flowerpot falls off a balcony 85m above the street how long does it take to hit the ground

Answers

The distance a falling object falls in some amount of time is

        D = 1/2  a  T²

If this flowerpot falls off a balcony on Earth, then 'a' is the
acceleration of gravity on Earth, and we can write

      85 m  =  1/2 (9.8 m/s²) T²

Divide each side by  4.9 m/s² :

      85/4.9  s²  =  T²

Square root each side:

      T  =  √(85/4.9)  seconds

          =      4.165 seconds .

It will take 4.12 s for the flowerpot to fall to the ground.

From the question given above, the following data were obtained:

Height (h) = 85 m

Time (t) =?

NOTE: Acceleration due to gravity (g) = 10 m/s²

The time taken for the flowerpot to fall to the ground can be obtained as follow:

H = ½gt²

85 = ½ × 10 × t²

85 = 5 × t²

Divide both side by 5

[tex]t^{2} = \frac{85}{5}\\\\t^{2} = 17[/tex]

Take the square root of both side

[tex]t = \sqrt{17}[/tex]

t = 4.12 s

Therefore, it will take 4.12 s for the flowerpot to fall to the ground.

Learn more: https://brainly.com/question/627043

What is the frequency of radiation whose wavelength is 2.40 x 10-5 cm?

Answers

To begin, the formula for finding frequency when wavelength is known is "f = c / w" when c is the constant velocity (3 * 10^8 m/s). To convert the wavelength into a common form (m/s), it will have to be multiplied by 10^-2. This leaves the equation as "f = 3.0 * 10^8 / (2.4 * 10^-5 * 10^-2), or 2.4 * 10^-7. This gives 1.25 * 10^15 m/s as the frequency.

A baseball m=.34kg is spun vertically on a massless string of length l=.52m. the string can only support a tension of tmax=9.9n before it will break. what is the max possible speed of the ball at the top of the loop in m/s?

Answers

The maximum possible speed of the ball at the top of the loop is 4.50 m/s

Further explanation

Acceleration is rate of change of velocity.

[tex]\large {\boxed {a = \frac{v - u}{t} } }[/tex]

[tex]\large {\boxed {d = \frac{v + u}{2}~t } }[/tex]

a = acceleration (m / s²)

v = final velocity (m / s)

u = initial velocity (m / s)

t = time taken (s)

d = distance (m)

Centripetal Acceleration of circular motion could be calculated using following formula:

[tex]\large {\boxed {a_s = v^2 / R} }[/tex]

a = centripetal acceleration ( m/s² )

v = velocity ( m/s )

R = radius of circle ( m )

Let us now tackle the problem!

Given:

mass = m = 0.34 kg

length of string = R = 0.52 m

maximum tension = Tmax = 9.9 N

Unknown:

v = ?

Solution:

[tex]mg + T = ma[/tex]

[tex]mg + T = m\frac{v^2}{R}[/tex]

[tex]0.34 \times 9.8 + 9.9 = 0.34 \times \frac{v^2}{0.52}[/tex]

[tex]13.232 = \frac{0.34}{0.52} \times v^2[/tex]

[tex]v^2 = 20.2372[/tex]

[tex]\large {\boxed {v \approx 4.50 ~ m/s} }[/tex]

Learn moreVelocity of Runner : https://brainly.com/question/3813437Kinetic Energy : https://brainly.com/question/692781Acceleration : https://brainly.com/question/2283922The Speed of Car : https://brainly.com/question/568302Uniform Circular Motion : https://brainly.com/question/2562955Trajectory Motion : https://brainly.com/question/8656387

Answer details

Grade: High School

Subject: Physics

Chapter: Circular Motion

Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle , Speed , Time , Rate , Circular , Ball , Centripetal

Final answer:

The maximum possible speed of the baseball at the top of the loop is approximately 3.17 m/s. This is calculated by using the maximum tension the string can support, and the gravitational force acting on the baseball.

Explanation:

To find the maximum possible speed of the baseball at the top of the loop without breaking the string, we need to consider the forces acting on the baseball. Two key forces are at play here: the gravitational force pulling the ball downward and the tension in the string that counteracts this pull. At the top of the loop, for minimum speed, the tension in the string can be zero because the gravitational force provides the necessary centripetal force. However, the question states that the string can only support a maximum tension (Tmax) before breaking which means we must find the speed where the tension does not exceed Tmax.

The maximum tension is the sum of the centripetal force needed to keep the ball moving in a circular path and the force due to gravity. Mathematically, this is expressed as Tmax = m * v^2 / l + m * g, where v is the velocity, m is the mass of the baseball, l is the length of the string, and g is the acceleration due to gravity (9.8 m/s^2).

Rearranging the formula to solve for v gives us v = sqrt((Tmax - m * g) * l / m). Plugging in the values Tmax = 9.9 N, m = 0.34 kg, l = 0.52 m, we get:

v = sqrt((9.9 N - (0.34 kg * 9.8 m/s^2) * 0.52 m) / 0.34 kg)

Calculating the above expression, we find the maximum velocity:

v = sqrt((9.9 - 3.332) * 0.52 / 0.34)

v = sqrt(6.568 * 0.52 / 0.34)

v = sqrt(3.4152 / 0.34)

v = sqrt(10.0447)

v ≈ 3.17 m/s

Learn more about Maximum speed of baseball on string here:

https://brainly.com/question/29112246

#SPJ3

Which characteristic does an object with a constant acceleration always have?

Answers

it always has changing velocity

Explanation:

By definition, the word acceleration is equal to the rate of change of velocity. Mathematically, it is given by :

[tex]a=\dfrac{dv}{dt}[/tex]

[tex]dv=a.dt[/tex]

[tex]v=\int\limits^t_0 {a.dt}[/tex]

Since, it is given that acceleration is constant

[tex]v=at+v_o[/tex]

v₀ is the constant of integration and it corresponds to initial velocity

From above equation, it is clear that when acceleration is constant the speed varies linearly. Hence, when an object move with constant acceleration, it always changes its velocity.

What is the sequence of energy transformations when electricity is generated from fossil fuels?
A. Electrical energy a thermal energy a mechanical energy a chemical energy
B. Chemical energy a thermal energy a mechanical energy a electrical energy
C. Chemical energy a mechanical energy a thermal energy a electrical energy
D. Chemical energy a mechanical energy a thermal energy a electrical energy

Answers

B. Chemical energy stored in the fuel, thermal energy when it is burned, mechanical energy as a sort of intermediate to turn it into electrical energy.

B) Chemical energy thermal energy mechanical energy electrical energy.

What is the energy sequence?

Electricity sequence is an intelligence web platform that allows quit customers to recognize electricity-saving measures and achieve greater electricity performance with a price and time this is an 80% decrease over manual strategies and other tracking structures.

(i) Electrical energy into sound energy. (ii) Heat energy into kinetic energy (or mechanical energy). (iii) Chemical energy into kinetic energy (or mechanical energy). (iv) Chemical energy into heat energy.

Learn more about the transformation of energy here: https://brainly.com/question/961052

#SPJ2

A 1000-kg car traveling at 70 m/s takes 3 m to stop under full braking. the same car under similar road conditions, traveling at 140 m/s, takes ______________ m to stop under full braking.

Answers

We assume [tex]a=const[/tex] (acceleration is constant. We apply the equation
[tex]v^2=v0^2+2as[/tex] where s is the distance to stop [tex]v=0(m/s)[/tex]. We find the acceleration from this equation
[tex]a=-v0^2/(2s)=-70^2/(2*3) =-816.7 (m/s^2) [/tex]
We know the acceleration, thus we find the distance necesssary to stop when initial speed is [tex]v=140 (m/s)[/tex]
[tex]s=-v0^2/(2a) =140^2/(2*816.7)=12 (m)[/tex]

Final answer:

This physics problem involves the principle of kinetic energy and work-energy. Given the situation presented, the increase in the car's kinetic energy due to a doubling of initial speed means that the braking stopping distance quadruples from 3 meters to 12 meters.

Explanation:

This Physics problem concerns the relationship between velocity, mass, and stopping distance under braking conditions. It's dealing with the principle of kinetic energy (1/2*m*v²) and the work-energy principle, which states that the work done on an object is equal to the change in its kinetic energy.

If the initial speed is doubled, as it is in this case from 70 m/s to 140 m/s, the kinetic energy (and thus the work needing to be done to stop the vehicle) quadruples, assuming the mass stays constant. This means, due to the direct relationship between work done and distance when force is held constant, the stopping distance will also quadruple from the original 3 meters.

Therefore, the 1000-kilogram car, when moving at 140 m/s, will take 12 meters to stop under full braking in similar conditions.

Learn more about Kinetic Energy and Stopping Distance here:

https://brainly.com/question/13135781

#SPJ11

Compare the energy consumption of two commonly used items in the household. calculate the energy used by a 1.20 kw toaster oven, wtoaster, which is used for 6.20 minutes and then calculate the amount of energy an 11.0 w compact fluorescent light (cfl), wlight, bulb uses when left on for 8.50 hours.

Answers

Toaster oven:

Power: [tex]P=1.20 kW[/tex]

Time: [tex]t=6.20 min \cdot \frac{1}{60 min/h}=0.103 h[/tex]

So, the energy consumed by the oven is

[tex]E=Pt=(1.20 kW)(0.103 h)=0.124 kWh[/tex]


Fluorescent light:

Power: [tex]P=11.0 W=0.011 kW[/tex]

Time: [tex]t=8.50 h[/tex]

So, the energy consumed by the light is

[tex]E=Pt=(0.011 kW)(8.50 h)=0.094 kWh[/tex]


So, the toaster oven has consumed more energy than the fluorescent light.

Answer: clock radio, toaster, hair dryer, tv, lamp, fridge

Explanation:

Just did it

A fan that can provide air speeds up to 55 m/s is to be used in a low-speed wind tunnel with atmospheric air at 23ºc. if one wishes to use the wind tunnel to study flatplate boundary layer behavior up to reynolds numbers of rex= 108, what is the minimum plate length that should be used? at what distance from the leading edge would transition occur if the critical reynolds number were rex,c= 5 à 105?

Answers

b is the correct answer

What is tarzan's speed vf just before he reaches jane? express your answer in meters per second to two significant figures?

Answers

Before swinging, T has only potential energy, (no speed)
Ui = mgh
Where h is the vertical displacement of T
From the laws of geometry,
cos45 = (L-h)/L
cos45 = 1-h/L
h/L = 1-cos45
h = L(1-cos45)

Therefore
Ui = mgL(1-cos45)

Proceeding the same way,
Twill raise to aheight of h' due to swing
h' = L(1-cos30)
The PE of T after swing is
Uf = mgh'
Uf = mgL(1-cos30)

Along with the PE , T has some kinetic energy results due to the moment.
Tf = 0.5*mv^2

According to the law of conservation of energy,
Ui = Uf+Tf
mgL(1-cos45) = mgL(1-cos30) + 0.5*mv^2
gL(co30-cos45) = 0.5*v^2
9.8*20*(co30-cos45) = 0.5*V^2
v = 7.89 m/s

The speed f T after swing is 7.89 m/s

The voltage across the terminals of a 9.0 v battery is 8.5 v when the battery is connected to a 60 ω load. part a what is the battery's internal resistance?

Answers

Final answer:

The internal resistance of the 9.0 V battery is 3.54 Ω.

Explanation:

The internal resistance of the battery can be calculated using Ohm's Law. Ohm's Law states that the voltage (V) across a resistor is equal to the current (I) through the resistor multiplied by the resistance (R). In this case, the voltage across the battery terminals is 8.5 V and the resistance of the load is 60 Ω.

Using Ohm's Law, we can set up the following equation:

8.5 V = I * 60 Ω

Solving for I gives us:

I = 8.5 V / 60 Ω = 0.1417 A

The internal resistance of the battery can then be calculated using the formula:

Internal Resistance = (Emf - Terminal Voltage) / Current

Substituting the given values:

Internal Resistance = (9.0 V - 8.5 V) / 0.1417 A = 3.54 Ω

What is the speed of a 0.145kg baseball if it’s kinetic energy is 109 j

Answers

Explanation:
The relationship for Kinetic Energy
K
is:
K
=
1
2
m
v
2

so:
109
=
1
2
(
0.145
)
v
2

so:
v
=

2

109
0.145
=
38.7

39
m
s

Does a person standing motionless in the aisle of a moving bus have kinetic energy

Answers

I believe so, yes.
 (i am just writing this so that it will allow me to post the answer
 
NO it would NOT  have kinetic energy  because he is not moving he is motionless :)

hope i helped :) 

In which of the Earth's layers are diamonds formed?

Answers

In which of the Earth's layers are diamonds formed? -
Diamonds form in the Earth's mantle, a thick layer between the thin crust and Earth's  metal core.

How many times larger is the elephant's momentum than the momentum of a 0.033-kg tranquilizer dart fired at a speed of 350 m/s?

Answers

Elephants Momentum Sp= EM Sp=(5400 kg (Average weight of an Asian Elephant))(4.5 m/s ( Average walking speed) ) = 24300 kg m/s Momentum of Dart: D=MD MD=(0.033 kg)(350 m/s) = 11.55 kg m/s Elephant has more momentum

Twenty students were surveyed to find out how many hours of tv they watch during a school week

Answers

Based on the survey of twenty students, the average number of hours watched during a school week is four.

Step 1: Gather Data

- Let's assume we have the following data from the survey:

| Student | Hours of TV watched (per week) |

|---------|--------------------------------|

| 1       | 3                              |

| 2       | 2                              |

| 3       | 4                              |

| ...     | ...                            |

| 20      | 5                              |

Step 2: Calculate the Total Hours of TV Watched

- Add up all the hours reported by each student.

Total Hours = 3 + 2 + 4 + ... + 5

Step 3: Calculate the Average Hours

- Divide the total hours by the number of students surveyed.

Average Hours = Total Hours / Number of Students

Now, let's perform the calculations.

Given:

Number of students surveyed (N) = 20

Hours of TV watched by each student:

Student 1: 3 hours

Student 2: 2 hours

Student 20: 5 hours

Step 2: Calculate the Total Hours

Total Hours = 3 + 2 + 4 + ... + 5

Total Hours = (3 + 2 + 4 + ... + 5) (20 times)

We can simplify this by realizing that we're adding the same number (the hours of TV watched by each student) 20 times:

Total Hours = (3 + 2 + 4 + ... + 5) (20 times)

           = (3 + 2 + 4 + ... + 5) * 20

Step 3: Calculate the Average Hours

Average Hours = Total Hours / Number of Students

             = (Total Hours) / 20

Now, let's find the sum of the hours:

Sum of hours = 3 + 2 + 4 + ... + 5

To find the sum, we can use the formula for the sum of an arithmetic series:

[tex]\[S = \frac{n}{2}(a_1 + a_n)\][/tex]

where:

- (S) is the sum of the series,

- (n) is the number of terms in the series,

- (a_1) is the first term in the series, and

- (a_n) is the last term in the series.

In our case:

(n = 20 (number of students surveyed),

a_1 = 3 (hours of TV watched by the first student), and

a_n = 5 (hours of TV watched by the last student).

[tex]\[S = \frac{20}{2}(3 + 5)\][/tex]

S = 10(8)

S = 80

Now, let's plug this sum into the formula for the average:

Average Hours = Total Hours / Number of Students

             = 80 / 20

             = 4

So, on average, the students surveyed watch 4 hours of TV during a school week.

complete question :

Twenty students were surveyed to determine the number of hours they watch TV during a school week. The data collected from the survey are as follows (in hours):

3, 5, 8, 2, 4, 6, 7, 5, 3, 9, 10, 1, 4, 7, 8, 6, 5, 2, 3, 7.

What is the change in velocity of the biker below as the travel from point b to point c ? What’s his acceleration from point B to C

Point b is 8 m/s.
t=1s. Point c is
8m/s.
t=2s

Answers

The biker's change in velocity from point B to point C is 0 m/s, indicating that there is no change in velocity. Consequently, the biker's acceleration between these points is also 0 m/s
to the power of 2; there is no acceleration.

The change in velocity of the biker as they travel from point B to point C is determined by subtracting the initial velocity at point B from the final velocity at point C. As given, the biker's velocity at point B is 8 m/s, and at point C, it remains 8 m/s. Therefore, the change in velocity (Δv) is:

Δv = final velocity - initial velocity

Δv = 8 m/s - 8 m/s

Δv = 0 m/s

Since the velocity does not change, the acceleration
a) from point B to point C is:

a = Δv/Δt

a = 0 m/s ÷ 1 s

a = 0 m/s²

Thus, there is no change in velocity and no acceleration as the biker moves from point B to point C.

What is the wavelength of a photon whose energy is twice that of a photon with a 600 nm wavelength?

Answers

Planck's equation states that
E = hf
where
E =  the energy,
h = Planck's constant
f =  the frequency

Because
c = fλ
where
c =  velocity of light,
λ = wavelength
therefore
E = h(c/λ)

Photon #1:
The wavelength is λ₁ = 60 nm.
The energy is
E₁ = (hc)/λ₁

Photon #2:
The energy is twice that of photon #1, therefore its energy is
E₂ = 2E₁ = (hc)/λ₂.

Therefore
[tex] \frac{E_{2}}{E_{1}}= \frac{(hc)/\lambda_{2}}{(hc)/60 \, nm} =2\\ \frac{60}{\lambda_{2}} =2 \\ \lambda_{2} = \frac{60}{2} =30 \, nm [/tex]

Answer:  30 nm

The wavelength of the photon having twice the energy as that of the photon of wavelength [tex]600\,{\text{nm}}[/tex] is [tex]\boxed{300\,{\text{nm}}}[/tex] .

Further Explanation:

The photons are the small packets of energy that move at the speed of light. The photons are considered to remain always in motion. The energy associated with a moving photon is given by:

[tex]E = \dfrac{{hc}}{\lambda }[/tex]

Here,  [tex]E[/tex]  is the energy associated with the photon, [tex]h[/tex] is the Planck’s constant, [tex]c[/tex] is the speed of light and [tex]\lambda[/tex] is the wavelength of the moving photon.

The value of the Planck’s constant is [tex]6.6 \times {10^{ - 34}}\,{\text{J}} \cdot {\text{s}}[/tex] .

The wavelength of the photon is [tex]600\,{\text{nm}}[/tex] .

The energy associated with the photon of wavelength [tex]600\,{\text{nm}}[/tex] is:

[tex]\begin{aligned}{E_1}&=\frac{{\left( {6.6 \times {{10}^{ - 34}}} \right) \times \left( {3 \times {{10}^8}} \right)}}{{600 \times {{10}^{ - 9}}}}\\&=\frac{{1.98 \times {{10}^{ - 25}}}}{{6 \times {{10}^{ - 7}}}}\\&= 3.3 \times {10^{ - 19}}\,{\text{J}}\\\end{aligned}[/tex]

The wavelength of photon having energy double of this:

[tex]\begin{aligned}E' &= 2{E_1}\\&= 2 \times\left( {3.3 \times {{10}^{ - 19}}} \right)\,{\text{J}}\\&{\text{ = 6}}{\text{.6}} \times {\text{1}}{{\text{0}}^{ - 19}}\,{\text{J}}\\\end{aligned}[/tex]

The new wavelength of the photon will be:

 [tex]\lambda ' = \dfrac{{hc}}{{E'}}[/tex]

Substitute [tex]6.6 \times {10^{ - 19}}\,{\text{J}}[/tex] for [tex]E'[/tex] in above expression.

[tex]\begin{aligned}\lambda ' &= \frac{{\left( {6.6 \times {{10}^{ - 34}}} \right) \times \left( {3 \times {{10}^8}} \right)}}{{6.6 \times {{10}^{ - 19}}}}\\&=\frac{{1.98 \times {{10}^{ - 25}}}}{{6.6 \times {{10}^{ - 19}}}}\,{\text{m}}\\&= 3.0 \times {10^{ - 7}}\,{\text{m}}\\&= 300\,{\text{nm}}\\\end{aligned}[/tex]

The wavelength of the photon having twice the energy as that of the photon of wavelength [tex]600\,{\text{nm}}[/tex] is [tex]\boxed{300\,{\text{nm}}}[/tex].

Learn More:

1.Which of the following statements about electromagnetic radiation are true https://brainly.com/question/1619496

2.To find the number of neutrons in an atom you would subtracthttps://brainly.com/question/1983390

3.What is the frequency of light for which the wavelength is 7.1*10^2 nmhttps://brainly.com/question/9559140

Answer Details:

Grade: Senior School

Subject: Physics

Chapter: Photon and Energy

Keywords:  Wavelength, photon, energy, E=hc/lamda, 600nm, twice the energy, Planck’s constant, small packets of energy, 300nm, speed of light.

Other Questions
if it is a square is it a quadrilateral Nosotros _____ mucho porque tenemos sueno Duermo Duermes Duerme Dormimos Dormis Duermen What were Columbus's main concerns in founding a colony on Hispaniola Scientists in different parts of the world repeat an experiment several times and get the same result. Which of these is the most likely reason why experiments are repeated to produce the same result? to make results non-testable to make results non-observable to make conclusions elaborate to make conclusions reliable the temperature dropped 12 degrees Fahrenheit in 8 hours. if the final temperature was -7 degrees Fahrenheit what was the starting temperature Which words or phrases in the passage above help you understand the meaning of remorse?kicked the teacher hardtried to make up for what he had doneat the beginning of the Cultural Revolution for the following years Seven-year-old hannah can arrange 10 buttons in order from smallest to largest. her understanding of _____ allows her to accomplish this. seriation conservation automatization abstract reasoning There are 48 chicken farms near an ohio town.if each farm has 9 barns, how many total barns are there? answers It can be argued that nonprofits have an advantage over for-profit companies in Hydrogen Bonds are weak, but they hold water molecules together and are difficult to break. Which one of the following images correctly shows hydrogen bonding between water molecules?A. Image 1B. Image 2C. Image 3D. Image 4 Two trains arrived at a station at 2:55 P.M., with one arriving on Track A, and the other arriving on Track B. Trains arrive on Track A every 16 minutes, and they arrive on Track B every 18 minutes. At what time will trains next arrive at the same time on both tracks? A)4:07 P.M. B)5:19 P.M. C)6:31 P.M. D)7:43 P.M. Do only human-interest matter morally, or is the natural world intrinsically valuable? in your view, is our treatment of animals, in particular, factory farming, morally legitimate? draw a transition state for the reaction between ethyl iodide and sodium acetate to originate means __________.A: to follow or pursueB. to copy or imitateC. to begin or start D. to trick or deceive There are a total of 84 green cars, 35 blue cars, and 42 red cars parked in the parking lot. How many cars are parked in the parking lot? the silk road was responsible for the movement of all of the following except 1. Buddhism2. The chariot 3. Democracy How many atp are made in the chemiosmosis part of cellular respiration? Could nanosilver in consumer products affect pond life background "I imagined it [the lost maze] inviolate and perfect at the secret crest of a mountain."In this excerpt, the word inviolate is used as a(n) _____.A. adjectiveB. adverbC. NounD. Verb As a result of habitat destruction, the size of the Florida panther population has been drastically reduced. It is estimated that there are only 100 to 160 Florida panthers in the wild. Which statement best explains why the Florida panther population may not continue to evolve? There is no longer a chance of mutations occurring in the population.There is a lack of competition for limited environmental resources.There is no longer a chance of a trait providing a reproductive advantage to the population.There is a lack of genetic variation for selection to act upon. Steam Workshop Downloader