A mixture of pure agcl and pure agbr is found to contain 60.94% ag by mass. what are the mass percents of cl and br in the mixture?

Answers

Answer 1

Final answer:

To calculate the mass percentages of Cl and Br in a mixture of AgCl and AgBr with 60.94% Ag by mass, we need additional data to determine the individual masses of Cl and Br. Without it, we cannot provide precise percentages.

Explanation:

The question is about calculating the mass percents of chlorine (Cl) and bromine (Br) in a mixture of silver chloride (AgCl) and silver bromide (AgBr) that contains 60.94% silver (Ag) by mass. The molar mass of silver (Ag) is 107.87 g/mol, for AgCl it is 143.32 g/mol (107.87 g/mol + 35.45 g/mol for Cl), and for AgBr it is 187.77 g/mol (107.87 g/mol + 79.90 g/mol for Br).

To find the mass percentages of Cl and Br in the mixture, we will first assume we have 100 grams of the mixture. Given the percent of silver, we can calculate the mass of silver in the mixture, which should be 60.94 grams. The remaining mass will be the combined mass of Cl and Br. However, without additional information such as the mass or molar ratios of AgCl to AgBr, we cannot precisely divide the remaining mass between Cl and Br. If such data were available, the mass percentages of Cl and Br could be found by calculating their individual masses and dividing by the total mass of the mixture, then multiplying by 100.


Related Questions

A substance has a volume of 10.0 cm3 and a mass of 89 grams. What is its density?

Answers

8.9 g/cm3 since density equals mass/volume or m/v you just divide 89 by 10 to get 8.9

Answer:

Density of the substance = 8.9 g/cm³

Explanation:

The volume of the substance = 10 cm³  

Mass = 89 gm

Density = mass / volume = 89 gm / 10 cm³ = 8.9 g/cm³

 

What reactions are responsible for the glow and heat from the sun? nuclear fission nuclear fusion chemical reactions atomic disintegration?

Answers

Nuclear Fusion is the answer to the question who posted.

Nuclear Fusion is the answer to your question 

You are given a clear solution of KNO3. Using 3 – 4 sentences (in your own words) explain how you would determine if the solution is unsaturated, saturated or supersaturated.

Answers

Given a clear solution of KNO3, I would say that the solution is unsaturated. This type of solution has a solute concentration that is lower than the equilibrium solubility of the solute in the solvent. It is characterized by having a homogeneous solution, there would be no solid particles in the solution. Solubility is the measure of how much of a solute can be dissolved in the solution without forming any precipitate or solid particles. Any concentration above it would cause for the solute to precipitate out from the solution. To test whether the solution is unsaturated or saturated, you can add more of the KNO3 solute, if the resulting solution would still be clear then it is an unsaturated solution. However, if precipitate would appear then the original solution is saturated.

4 NH3 + 6 NO → 5 N2 + 6 H2O. How many moles of NO are required to completely react with 2.45 mol NH3? Show all of your work as well as the answer with the proper units.

Answers

6 mol NO - 4 mol NH₃
x mol NO - 2.45 mol NH₃

x=2.45*6/4=3.675≈3.68 mol

Mole is equal to the Avogadro's constant. The 3.675 moles of NO is required to completely react with 2.45 mole of Ammonia.    

Mole:

One mole is the unit of measurement of small particles like ions, atoms , and molecules. It is equal to the Avogadro's constant.

Given reaction,

[tex]\bold{4 NH_3 + 6 NO \rightarrow5 N_2 + 6 H_2O}[/tex]

Means 4 moles of Ammonia react with 6 moles of NO in reaction. the molar ratio of ammonia and NO is 4:6.

Hence,

Moles of NO required

[tex]\Rightarrow\bold{\frac{6}{4} \times 2.45 = 3.675 mole}[/tex]          

Hence, we can conclude that the 3.675 moles of NO is required to completely react with 2.45 mole of Ammonia.    

To know more about mole, you can refer to the link:

https://brainly.com/question/20486415

What net ionic equation can be derived from this complete ionic equation? 2fe3+(aq) + 6cl– (aq) + 6na+(aq) + 3co32– (aq) → fe2(co3)3(s) + 6cl– (aq) + 6na+(aq)?

Answers

So, in order to get the net ionic equation, we consider only the ions that reacted in the total ionic equation. We use these ions to get the net ionic equation.

Examining the total ionic equation provided, we will find that the only ions that reacted are the 2fe3+(aq) and the 3co32– (aq) ions which reacted together forming fe2(co3)3(s).

Based on this, the net ionic equation will be:
2Fe3+ (aq) + 3CO32- (aq) -----> Fe2(CO3)3 (s) 

What is the molar concentration of potassium ions in a 0.250 m k2so4 solution?

Answers

Answer : The molar concentration of [tex]K^+[/tex] ion is, 0.5 M

Explanation :

The dissociation reaction of [tex]K_2SO_4[/tex] is,

[tex]K_2SO_4(aq)\rightarrow 2K^+(aq)+SO_4^{2-}(aq)[/tex]

By the stoichiometry we can say that, 1 mole of [tex]K_2SO_4[/tex] dissociates into 2 mole of [tex]K^+[/tex] ions and 1 mole of [tex]SO_4^{2-}[/tex] ions.

As we  are given the concentration of [tex]K_2SO_4[/tex] is, 0.250 M.

So, the molar concentration of [tex]K^+[/tex] ion = [tex]2\times 0.250=0.5M[/tex]

The molar concentration of [tex]SO_4^{2-}[/tex] ion = 0.250 M

Therefore, the molar concentration of [tex]K^+[/tex] ion is, 0.5 M

What would be the volume in liters of an ideal gas, if a 0.425 mole sample of the gas had a temperature of 900 degrees celsius at a pressure of 3.00 atmospheres? (the ideal gas constant is 0.0821 l•atm/mol•k.)?

Answers

The ideal gas law relates the pressure (P), volume (V), number of moles (n), and temperature (T) of a given ideal gas through the equation,

                                 PV = nRT 

If we are to determine the volume of the gas, we derive the equation such that it takes the form of,
                                 V = nRT/P

Substituting,
             V = (0.425 mol)(0.0821 L.atm/mol.K)(900 + 273 K) / 3 atm

                            V = 13.64 L

Thus, the volume of the ideal gas is approximately 13.64 L. 

The ka value for acetic acid, ch3cooh(aq), is 1.8× 10–5. calculate the ph of a 1.60 m acetic acid solution.

Answers

Final answer:

To calculate the pH of a 1.60 M acetic acid solution, use the ionization constant (Ka) of acetic acid, set up an ICE table, and solve for x to find the concentration of the hydronium ion (H3O+). Then, calculate the pH using the equation pH = -log[H3O+]. The pH of the acetic acid solution is approximately 1.5873.

Explanation:

To calculate the pH of a 1.60 M acetic acid solution, we can use the ionization constant (Ka) of acetic acid and the relationship between the concentration of the acid, its conjugate base, and the pH. The Ka value for acetic acid is 1.8×10-5. Since acetic acid is a weak acid, we can assume that the concentration of the hydronium ion (H3O+) is equal to the concentration of the acid that has ionized.

Using the equation Ka = [H3O+][C2H3O2]/[HC2H3O2], we can set up an ICE table to calculate the concentration of the hydronium ion:

Initial concentration: [H3O+] = unknown, [C2H3O2] = 0, [HC2H3O2] = 1.60 MChange in concentration: [H3O+] = -x, [C2H3O2] = x, [HC2H3O2] = -xEquilibrium concentration: [H3O+] = 1.60 - x, [C2H3O2] = x, [HC2H3O2] = 1.60 - x

Substituting these values into the Ka expression, we get 1.8×10-5 = (1.60 - x)(x)/(1.60 - x). Solving for x gives us x ≈ 0.0127 M. Since [H3O+] = 1.60 - x, the pH of the solution is approximately 1.60 - 0.0127 = 1.5873.

Learn more about Calculating pH of acetic acid solution here:

https://brainly.com/question/33949075

#SPJ12

Final answer:

The pH of a 1.60 M acetic acid solution can be calculated using the equilibrium constant expression and initial concentration. The pH is equal to -log[H3O+]. The pH of this particular solution is 2.37.

Explanation:

The pH of a 1.60 M acetic acid solution can be calculated using the equation:

pH = -log[H3O+]

First, we need to find the concentration of the hydronium ion, [H3O+]. To do this, we use the equilibrium constant expression for acetic acid, which is Ka = [H3O+][CH3CO2-] / [CH3COOH]. With a given Ka value of 1.8 × 10-5 and a concentration of acetic acid of 1.60 M, we can plug in these values to find the concentration of [H3O+], which is then used to calculate the pH.

Therefore, the pH of a 1.60 M acetic acid solution is 2.37.

Learn more about pH of acetic acid solution here:

https://brainly.com/question/33949075

#SPJ11

Given an initial cyclopropane concentration of 0.00560 m, calculate the concentration of cyclopropane that remains after 1.50 hours.

Answers

We can solve this problem by assuming that the decay of cyclopropane follows a 1st order rate of reaction. So that the equation for decay follows the expression:

A = Ao e^(- k t) 

Where,

A = amount remaining at time t = unknown (what to solve for) 
Ao = amount at time zero = 0.00560 M 
k = rate constant
t = time = 1.50 hours or 5400 s 

The rate constant should be given in the problem which I think you forgot to include. For the sake of calculation, I will assume a rate constant which I found in other sources:

k = 5.29× 10^–4 s–1                     (plug in the correct k value)

Plugging in the values in the 1st equation:

A = 0.00560 M * e^(-5.29 × 10^–4 s–1 * 5400 s )

A = 3.218 × 10^–4 M           (simplify as necessary)

To calculate the concentration of cyclopropane that remains after 1.50 hours, we need to use the first-order integrated rate law equation. Without the rate constant, we cannot calculate the exact concentration, but we can determine that it will be less than 0.200 mol/L.

To calculate the concentration of cyclopropane that remains after 1.50 hours, we need to use the first-order integrated rate law. The rate constant for the reaction is not given, so we cannot calculate it. However, we can use the given information that at 10.0 minutes (0.1667 hours) the concentration of cyclopropane is 0.200 mol/L and find the concentration at 1.50 hours using the integrated rate law equation:

[tex][C] = [C]0 * e^(-kt)[/tex]

where [C] is the concentration at time t, [C]0 is the initial concentration, k is the rate constant, and t is the time.

Given [C]0 = 0.200 mol/L, t = 1.50 hours, and [C] = ?

Let's solve the integrated rate law equation:

Plug in the known values:

[tex][C] = 0.200 * e^(-k*1.50)[/tex]

Since the rate constant is not given, we cannot calculate the exact concentration. However, we can still make a general qualitative statement that the concentration will be less than 0.200 mol/L.

Learn more about concentration here:

https://brainly.com/question/4445420

#SPJ6

Why doesn't oil dissolve in water? oil molecules are non–polar. oil molecules carry a net negative charge. oil molecules carry a net positive charge?

Answers

oil molecules are non–polar.

How many moles of ammonium nitrate are necessary to form 0.692 moles water?

Answers

First step is to write the balanced equation as follows:
NH4NO3(aq)→N2O(g)+2H2O(l)
where (aq) means aqueous and (l) means liquid

From this equation, we find that 1 mole of NH4NO3 yields 2 moles of H2O, thus the ratio between them is 1/2

Now, to get the number of moles (assume it is given the symbol 'n') of ammonium nitrate to form 0.692 moles of water:
n = 0.692 x (1/2) = 0.346 moles

How many milliliters of calcium, with a density of 1.55 g/mL, are needed to produce 85.8 grams of calcium fluoride in the single replacement reaction below? Show all steps of your calculation as well as the final answer.

Unbalanced equation: Ca + HF yields CaF2 + H2

Answers

Answer: 55.35ml

Explanation:

[tex]Ca+2HF\rightarrow CaF_2+H_2[/tex]

To calculate the given moles, we use the formula:

[tex]Moles=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]

[tex]Moles=\frac{85.8g}{78g/mol}=1.1moles[/tex]

By  stoichiometry of the reaction,

1 mole of [tex]CaF_2[/tex]  is produced by 1 mole of Ca

1.1 moles of [tex]CaF_2[/tex]  are produced by=[tex]\frac{1}{1}\times 1.1=1.1 moles[/tex] of Ca.

Mass of [tex]CaF_2=\text{no of moles}\times \text{Molar mass}[/tex]

Mass of [tex]CaF_2=1.1\times {78}=85.8g[/tex]

[tex]Volume=\frac{Mass}{Density}[/tex]

[tex]Volume=\frac{85.8g}{1.55g/ml}=55.35ml[/tex]



The compound ch3 - ch2 - sh is in the organic family known as

Answers

The name of these family is thiols
Final answer:

The compound CH3-CH2-SH belongs to the organic family known as Thiols. Thiols are structurally similar to alcohols but the oxygen atom in alcohols is replaced by sulfur in thiols. Both thiols and alcohols belong to a larger class called the Hydrocarbon Derivatives.

Explanation:

The compound you mentioned, CH3-CH2-SH, falls into the organic family categorized as 'Thiols'. Thiols are similar to alcohols in structure, but they have a sulfur atom rather than an oxygen atom. They are identified by the -SH or sulfhydryl functional group. Like the hydroxyl group in an alcohol, this sulfhydryl group gives a thiol its properties.

For example, the compound CH3-SH, also known as 'Methanethiol', is analogous to the alcohol methanol. Both thiols and alcohols are part of a larger class called the 'Hydrocarbon Derivatives'. As the name suggests, these are derived from hydrocarbons by replacing one or more hydrogen atoms with a functional group, which in this case is either a hydroxyl group (-OH) for alcohols or a sulfhydryl group (-SH) for thiols.

Learn more about Thiols here:

https://brainly.com/question/35084168

#SPJ6

42.5 grams of an unknown substance is heated to 105.0 degrees Celsius and then placed into a calorimeter containing 110.0 grams of water at 24.2 degrees Celsius. If the final temperature reached in the calorimeter is 32.4 degrees Celsius, what is the specific heat of the unknown substance?

Show or explain the work needed to solve this problem, and remember that the specific heat capacity of water is 4.18 J/(°C x g).

Answers

q = mcΔT 
 = 110.0g * 4.18J/(°C x g) * 8.2°C
 = 3770.36 J

3770.36 J = 42.5 g * c * 72.6°C

c = 1.222 J/(°C x g)

Answer:The specific heat of the unknown substance is 1.22 J/ °Cg.

Explanation:

Heat absorbed by the water .

Mass of the water = 110.0 g

Change in temperature of water = [tex]\Delta T=32.4^oC-24.2^oC=8.2^oC[/tex]

[tex]Q=mc\Delta T=110.0g\times 4.18 J/^oCg\times 8.2^oC=3,770.36 J[/tex]

Heat lost by substance(Q') = Heat gained by the water(Q)

-Q' = Q

Change in temperature of the substance =

[tex]\Delta T'=(32.4^oC)-105.0^oC=-72.6 ^oC[/tex]

Mass of the substance = m'=42.5 g

Specific heat of substance = c'

[tex]-(m'\times c'\times \Delta T')=3,770.36 J[/tex]

[tex]c'=\frac{3,770.36 J}{42.5 g\times 72.6^oC}=1.22 J/^oCg[/tex]

The specific heat of the unknown substance is 1.22 J/ °Cg.

Which best explains why scientific theories grow stronger over time?

A.) As more scientist attempt to find holes in the current theory adjustments are made which make the theory stronger

B.) More students are taught about the theory and so there are more people who will leave the theory to be true

C.) Scientists believe that older theories are stronger than newer theories

D.) New evidence is ignored if it's contradicts to the older more accepted theories
I need the best answers please!

Answers

Scientific theories become stronger over time primarily because scientists continuous attempt to challenge and refine them, which leads to improvements and adjustments that further solidify the theory.

The best explanation for why scientific theories grow stronger over time is option A: 'As more scientist attempt to find holes in the current theory adjustments are made which make the theory stronger.' Scientific theories are rigorously tested and often challenged by researchers who seek to uncover any weaknesses or inconsistencies. When such efforts are made, they can lead to refinements and adjustments that subsequently strengthen the theory. This process may involve incorporating new evidence, reinterpreting existing data, or modifying theoretical frameworks to better explain the phenomenon in question.

Scientific theory is not just an educated guess; it is a comprehensive explanation supported by many research studies that collectively provide falsifiable evidence. Throughout history, theories such as the heliocentric model have been revised and strengthened through this process. It is by this meticulous scrutiny, including the elimination of competing hypotheses and the aggregation of reliable evidence, that a scientific theory matures and gains acceptance.

The statement which best explains why scientific theories grow stronger over time is A.) As more scientists attempt to find holes in the current theory, adjustments are made which make the theory stronger.

Scientific theories are dynamic and grow stronger through a process of rigorous testing, criticism, and refinement. When scientists develop a theory, they propose explanations for phenomena observed in the natural world. These theories are not merely guesses; they are grounded in substantial evidence that has been gathered through experimentation and observation. The process of scientific investigation includes trying to refute or find the limitations of current theories. As researchers explore these theories in different contexts and conditions, they either gather more evidence that supports the theory or uncover discrepancies that prompt modifications. This critical assessment and ongoing peer review contribute to the strength and reliability of scientific theories over time. Each time a theory withstands scrutiny or is adjusted to incorporate new data, it becomes more robust and dependable. Scientific theories are considered strong because they have been tested and falsified repeatedly, not because they are simply old or widely taught. It is the accumulation of evidence and the continuous critical analysis by the scientific community that gradually builds the strength of a theory.

When dissolved in water, baking soda is basic.the ph of baking soda (sodium bicarbonate) is closest to:?

Answers

This question has four answer choices:

2
4
6
8

The question do not have information enough to calculate a number.

But given the options given it is easy to answer. You just must know that

1) the pH scale is from 1 to 14

2) the pH of acidic compounds is below 7 (1 extremely acid and 7 is neutral).

3) the pH of basic compounds is above 7 (7 is neutral and 14 is extremely basic, or alkalyne).

So, the numbers 2, 4, and 6 are pH of acid solutions. Then only number, from the list, that corresponds to a pasic pH is 8.

Therefore, the answer is 8.

Final answer:

Baking soda, or sodium bicarbonate, when dissolved in water, has a basic pH close to 9.0, classifying it as a weak base.

Explanation:

When sodium bicarbonate, commonly known as baking soda, is dissolved in water, it exhibits basic properties. The pH of a baking soda solution is closest to 9.0, which means it is a weak base. Water is neutral with a pH of 7.0, whereas a substance with a pH higher than 7.0 is considered alkaline or basic.

The pH scale ranges from 0 to 14, with 7 being neutral. Acids have a pH less than 7, and bases have a pH greater than 7. The pH of a substance is determined by its concentration of hydronium ions. Baking soda has a lower concentration of hydronium ions compared to pure water, thereby making it a base with a pH higher than 7.

In practical applications, baking soda is used to neutralize acids, such as in bee sting treatments or when mixed with acetic acid in vinegar during bread preparation.

25 g of ethyl alcohol is dissolved in 100 ml of water (density = 0.99993 at 20 oc). what is the % w/w for the ethyl alcohol in the resulting solution?

Answers

Percentage by mass is the amount in mass of a component in a mixture per 100 unit of mass of the total mixture. Percentage by mass is the same as  %w/w. We can determine this by dividing the mass of the solute with the total mass of the mixture. However, from the problem statement, we are given the volume of the water so there is a need to convert this value to mass by using the density of water. We calculate as follows:

Mass of solution = 100 mL (0.99993 g/mL) water + 25 g EtOH
Mass of solution = 124.993 g solution

%w/w = 25 g / 124.993 g x100
%w/w = 20% of EtOH

Which is the next logical step in balancing the given equation?
CS2(l) + Cl2(g) CCl4(l) + S2Cl2(l)
A.) Place the coefficient 2 in front of sulfur dichloride (S2Cl2).
B.)Place the coefficient 3 in front of the chlorine molecule.
C.)Leave the equation alone as it is already balanced.
D.) Place the coefficient 4 in front of carbon disulfide(CS2).
E.)Place the coefficient 2 in front of carbon tetrachloride(CCl4).

Answers

B. For balancing this equation: it originally starts with one carbon and two sulfurs and on the reactant side, you still end up with one carbon and two sulfurs. As for chlorine, to balance the equation you will need 6 chlorine molecules, and since chlorine is a diatomic molecule on the left it is Cl2. Therefore, to get 6 molecules of chlorine you will need 3 Cl2.

  CS2(l)  +Cl2(g)→CCl4(l)   + S2Cl2 (l)

The next  logical  step  in balancing  the  equation above is  place  the  coefficient  3  in front  of the chlorine  molecule  ( answer B)


  Explanation

When   coefficient 3  in placed in front  of   chlorine  molecule  the balanced equation is as below

CS2 (l)  +3Cl2 (g) → CCl4 (l)  + S2Cl2 (l)
According to the law  of mass  conservation  the  number of atom in side of reactant  should  be equal to the side of product.The  reaction above is balanced  because  the number of atom  is equal in both side.
For example  there  are 2 atoms of S in  side  of product  and 2 atoms of S in the product side.s

What state of change do atoms or molecules become more ordered?

Answers

When they become a solid, as in a solid the particles are packed tightly together and have little space between them, thus at solid state , particles are more ordered.

How much water should be added to 30 l of a 40 acid solution to reduce it to a 30 solution?

Answers

To solve this we use the equation, 

M1V1 = M2V2

where M1 is the concentration of the stock solution, V1 is the volume of the stock solution, M2 is the concentration of the new solution and V2 is its volume.

M1V1 = M2V2

40% x 30 L = 30% x V2

V2 = 40 L 

Therefore, you will need to have 30 mL of the 40% acid solution and 10 mL of distilled water. In mixing the two liquids, you should remember that the order of mixing would be acid to water. So, you use a 40 mL volumetric flask . Put small amount of distilled water and add the 30 mL of HCl solution. Lastly, dilute with distilled water up to the mark.

How many oxygen atoms are there in 7.00 g of sodium dichromate, na2cr2o7?

Answers

From the periodic table:
molar mass of sodium = 23 gm
molar mass of Cr = 51.99 gm
molar mass of oxygen = 16 gm

molar mass of Na2Cr2O7 = 2(23) + 2(51.99) + 7(16) = 261.98 gm

number of moles in 7 gm = mass / molar mass = 7 / 261.98 = 0.0267 moles

1 mole of  Na2Cr2O7  contains 7 moles of oxygen, therefore:
number of moles of oxygen in 0.0267 moles = 0.0267 x 7 = 0.1869 moles

To find the number of atoms, we multiply the number of moles by Avogadro's number as follow:
number of atoms = 0.1869 x 6.02 x 10^23 = 1.125138 x 10^23 atoms

[tex]\boxed{1.1255 \times {{10}^{23}}{\text{ atoms}}}[/tex] of oxygen are present in 7.00 g of sodium dichromate.

Further Explanation:

Given information:

Mass of sodium dichromate: 7.00 g

To calculate:

Number of oxygen atoms in 7.00 g of sodium dichromate

Steps to proceed:

I. First of all, moles of sodium dichromate that are present in 7.00 g of sodium dichromate are to be calculated. This is done with the help of equation (1) as mentioned below.

The formula to calculate moles of sodium dichromate [tex]\left( {{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{7}}}} \right)[/tex] is as follows:

[tex]{\text{Moles of N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{7}}} = \dfrac{{{\text{Mass of N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{7}}}}}{{{\text{Molar mass of N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{7}}}}}[/tex]                                               …… (1)

The mass of [tex]{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{7}}}[/tex] is 7.00 g.

The molar mass of [tex]{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{7}}}[/tex] is 261.97 g/mol.

Substitute these values in equation (1).

[tex]\begin{aligned}{\text{Moles of N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{7}}} &= \frac{{{\text{7}}{\text{.00 g}}}}{{{\text{261}}{\text{.97 g/mol}}}} \\ &= 0.0267{\text{ mol}} \\ \end{aligned}[/tex]  

II.Moles of oxygen that are present in 0.267 moles of sodium dichromate are to be calculated.

According to the chemical formula of sodium dichromate, it is evident that one mole of sodium dichromate contains two moles of sodium, two moles of chromium and seven moles of oxygen in it. Since one mole of sodium dichromate consists of seven moles of oxygen, moles of oxygen present in 0.267 moles of sodium dichromate can be calculated as follows:

[tex]\begin{aligned}{\text{Moles of oxygen}} &= \left( {0.0267{\text{ mol N}}{{\text{a}}_2}{\text{C}}{{\text{r}}_4}{{\text{O}}_7}} \right)\left( {\frac{{7{\text{ mol O}}}}{{{\text{1 mol N}}{{\text{a}}_2}{\text{C}}{{\text{r}}_4}{{\text{O}}_7}}}} \right) \\&= 0.1869{\text{ mol O}} \\\end{aligned}[/tex]  

III. Number of oxygen atoms that are present in 0.1869 moles of oxygen is to be calculated. This is done with the help of Avogadro’s law which states that one mole of a substance contains [tex]6.022 \times {10^{23}}{\text{ particles}}[/tex] . Such particles can be atoms, molecules, or formula units.

Since one mole of oxygen contains [tex]6.022 \times {10^{23}}{\text{ atoms}}[/tex], atoms of oxygen present in 0.1869 moles of oxygen can be evaluated as follows:

[tex]\begin{aligned}{\text{Number of oxygen atoms}} &= \left( {0.1869{\text{ mol}}} \right)\left( {\frac{{6.022 \times {{10}^{23}}{\text{ atoms}}}}{{{\text{1 mol}}}}} \right) \\&= 1.1255 \times {10^{23}}{\text{ atoms}} \\\end{aligned}[/tex]  

Hence, [tex]1.1255 \times {10^{23}}{\text{ atoms}}[/tex] of oxygen are present in 7.00 g of sodium dichromate.

Learn more:

How many moles of Cl are present in 8 moles of [tex]{\text{CC}}{{\text{l}}_4}[/tex]? https://brainly.com/question/3064603 Calculate the moles of ions in HCl solution: https://brainly.com/question/5950133

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Mole concept

Keywords: sodium dichromate, oxygen, mass, molar mass, 7.00 g, 1.1255*10^23 atoms, Avogadro’s law, one mole, atoms, molecules, particles.

The atomic number of this element is 9 and its mass is 20. how many neutrons does this element have?

Answers

Hey there!

n = A - Z

n = 20 - 9

n = 11

Answer:

11 neutrons

Explanation:

Mass no. = 20

atomic no. = 9

no. of neutrons = mass number - atomic number

                          =   20 - 9

                          =     11 neutrons

What volume is needed to make a 4.0 molar solution holding 12 moles of solute? 3.0 liters 48 liters 12 liters 4.0 liters

Answers

Hey there ! :

Number of moles ( solute ) = 12 moles

Molarity of solution = 4.0 M

Therefore:

M = n / V

4.0 = 12 / V

V = 12 / 4.0

V = 3.0 liters

Answer A

Answer: Option (a) is the correct answer.

Explanation:

Molarity is defined as the number of moles present in a liter of solution.

Mathematically,       Molarity = [tex]\frac{\text{no. of moles}}{volume}[/tex]

Since, it is given that molarity is 4.0 molar or 4.0 m/L and no. of moles is 12 moles.

Therefore, calculate volume as follows.

                      Molarity = [tex]\frac{\text{no. of moles}}{volume}[/tex]

                         4.0 m/L = [tex]\frac{12 moles}{volume}[/tex]

                      volume = 3 L

Hence, we can conclude that volume of the given solution is 3 liters.

Explain how the law of conservation of mass necessitates our balancing all chemical equations.

Answers

The law of conservation of mass states that energy can neither be created, nor destroyed. It applies to all the chemical equations because everything is about matter. Changing one chemical to another, changing forms, shapes, colors, types to other ones. But in each and every single process of this universe, nothing is created or destroyed. It's just the simplest to the most complex transfers of energy throughout the universe.
I hope this helped. 

If nickel is added to copper sulfate solution, the nickel will replace the copper. write the balanced equation

Answers

Ni(s) + CuSO₄(aq) → Cu(s) + NiSO₄(aq)

Ni + Cu²⁺ + SO₄²⁻ → Cu + Ni²⁺ + SO₄²⁻

Ni + Cu²⁺ → Cu + Ni²⁺

Answer:-

Ni + CuSO4 --> NiSO4 + Cu

Explanation:-

The symbol for Nickel is Ni.

The Symbol for copper is Cu.

Copper Sulphate has the formula CuSO4.

If Nickel replaces copper from copper sulphate then nickel sulphate is formed.

Nickel sulphate has the formula NiSO4.

So the equation becomes

Ni + CuSO4 --> NiSO4 + Cu

What is the balanced equation when aluminum reacts with copper (ii) sulfate in a single displacement reaction?

Answers

This will be the balanced equation: 2Al + 3CuSO4 -> 3Cu + Al2(SO4)3.

The balanced equation is :

2Al + 3CuSO4 -> 3Cu + Al2(SO4)3.

What happens in a single displacement reaction?

A single-displacement reaction takes place while an element replaces any other element in a compound. A metallic handiest replaces steel, and a nonmetal only replaces a nonmetal. only a greater reactive element can update the opposite element within the compound with which it reacts.

A single substitute response, now and again known as a single displacement response, is a reaction in which one element is substituted for another detail in a compound. The starting materials are continually natural elements, which include pure zinc steel or hydrogen fuel, plus an aqueous compound.

To determine whether or not a given single replacement will occur, you have to use an “activity series” table. If the metal or the halogen is above the detail it will replace based totally on the hobby series, a single displacement response will occur. Examples of displacement reactions are The reaction among iron and copper sulphate to present iron sulphate as a product. here, iron displaces copper due to the fact iron is extra reactive than copper. The response between zinc and iron sulphate to offer zinc sulphate as a product.

Learn more about single displacement reaction here https://brainly.com/question/11904766

#SPJ2

Which is the correct formula for the compound made when aqueous solutions containing a dissolved magnesium compound and a dissolved chloride compound are mixed?

Answers

it would be MgCl₂ ~ Magnesium Chloride. 

Answer:

The correct formula for the compound made when aqueous solutions containing a dissolved Magnesium and Chloride are mixed is Magnesium chloride [tex]MgCl_2[/tex]

Explanation:

If we suppose the existence of two components in aqueous solutions containing Magnesium and Chloride. For example: Hydrochloric acid - HCl and Magnesium hydroxide - [tex]Mg(OH)_2[/tex].

The global reaction would be:  

HCl + [tex]Mg(OH)_2[/tex] --> [tex]MgCl_2[/tex] + [tex]H_2 O[/tex]

It means, Hydrochloric acid is neutralized with Magnesium hydroxide to produce Magnesium chloride and Water.  

Besides of that, we can analyze the aqueos solution of every componenent:

For Hydrochloric acid:

HCl + [tex]H_2 O[/tex] --> [tex]H_3O^+[/tex] + [tex]Cl^-[/tex]

For Magnesium hydroxide

[tex]Mg(OH)_2[/tex] +  [tex]H_2 O[/tex] --> [tex]H_2O-(OH)^-[/tex] + [tex]Mg^+2[/tex]

Finally, the ionic compounds will form the salt:

[tex]Mg^+2[/tex] + [tex]Cl^-[/tex] ->  [tex]MgCl_2[/tex]

 

What is the approximate molar mass of a molecular solute if 300 g of the solute in 1000 g of water causes the solution to have a boiling point of 101°C? (Kb = 0.512°C/m; Kf = 1.86°C/m; molar mass of water = 18 g)

Answers

If i'm not mistaken, the answer would be 150 amu. 

Answer: The molar mass of solute is 156 g/mol

Explanation:

Elevation in boiling point is defined as the difference in the boiling point of solution and boiling point of pure solution.

The equation used to calculate elevation in boiling point follows:

[tex]\Delta T_b=\text{Boiling point of solution}-\text{Boiling point of pure solution}[/tex]

[tex]\Delta T_b[/tex] = ? °C

Boiling point of pure water = 100°C

Boiling point of solution = 101°C  

Putting values in above equation, we get:

[tex]\Delta T_b=(101-100)^oC=1^oC[/tex]

To calculate the elevation in boiling point, we use the equation:

[tex]\Delta T_b=iK_bm[/tex]

Or,

[tex]\Delta T_b=i\times K_b\times \frac{m_{solute}\times 1000}{M_{solute}\times W_{solvent}\text{ (in grams)}}[/tex]

where,

[tex]\Delta T_b[/tex] = 1°C

i = Vant hoff factor = 1 (For non-electrolytes)

[tex]K_b[/tex] = molal boiling point elevation constant = 0.52°C/m.g

[tex]m_{solute}[/tex] = Given mass of solute = 300 g

[tex]M_{solute}[/tex] = Molar mass of solute  = ?

[tex]W_{solvent}[/tex] = Mass of solvent (water) = 1000 g

Putting values in above equation, we get:

[tex]1^oC=1\times 0.52^oC/m\times \frac{300\times 1000}{M_{solute}\times 1000}\\\\M_{solute}=156g/mol[/tex]

Hence, the molar mass of solute is 156 g/mol

Draw a fatty acid chain that is 8 carbons long and is unsaturated

Answers

Fatty acid => hydrocarbon chain + carboxilic group => CnHm-COOH

8 carbons long => C - C - C - C - C - C - C - C - COOH

unsaturated => double bonds

=> CH3-CH=CH-CH2-CH2-CH2-CH2-CH2 - COOH: 8 carbon chain, one double bond, carboxylic group.

For the weak acid ch3cooh (acetic acid) that is titrated with a strong base (naoh), what species (ions/molecules) are present in the solution at the stoichiometric point?

Answers

This is a strong base / week acid reaction.

NaOH + CH3COOH

The equilibrium of this reaction is very displaced to the right leading to the formation of the products

Na CH3COO + H2O

Na CH3COOH is a ionic compound which in solutionn will be as Na (+) and CH3COOH(-)

=> CH3COOH + NaOH = CH3 COO(-) + Na(+) + H2O

So, the predominant species in the solution are the ions Na(+) and CH3COO(-).

In general, in an strong base / weak acid titration, the predominant species present at the stoichiometric point will be the cation of the strong base (Na+ in this case) and the conjugate base of the weak acid (the anion of the weak acid, which is CH3COO- in this case).

The answer is predominantly Na(+) and CH3COO(-); predominantly because it is an equlibrium which means that the rectants will also br present.
Final answer:

At the stoichiometric point of the titration of acetic acid with a strong base, the species present in the solution are acetate ions (CH3COO-) and water (H2O).

Explanation:

During the titration of acetic acid (CH3COOH) with a strong base (NaOH), at the stoichiometric point all of the acetic acid will have reacted with the sodium hydroxide. This means that the species present in the solution at the stoichiometric point are the acetate ions (CH3COO-) and water (H2O). The balanced chemical equation for the reaction is:

CH3COOH(aq) + NaOH(aq) → CH3COONa(aq) + H2O(l)

Other Questions
Three measures that can improve a country's social indicators (mortality, HDI, literacy). Anita wants to encourage her classmates to read their textbooks thoroughly. to support her point, she says, "some students think of a book as a heavy object that weighs down a backpack; other students think of a book as an expensive bill that needs to be paid at the beginning of each semester. but we can also think of a book as the key to a world of new ideas." anita is defining a book by _______. Rectangle 800 feet long and 700 feet wide. if fencing costs $13 per yard, what will it cost to place fencing around the playground The "shogunate system" was established by Which of the following is most like a theocracy? A.Japan, which has an emperor and a parliament B.The Kingdom of Saudi Arabia, which has a king C.The Vatican, which elects a religious leader as the head of government D.The United States, which guarantees separation of church and state Before the spread of Islam throughout the East, non-Christians in the area had felt __________. A. free B. isolated C. liberated D. persecuted Mix 20ml per 500 ml of water what is ratio of the amount of insecticide to the amount of water Find all solutions in the interval [0, 2). 7 tan^3x - 21 tan x = 0 help plzzzzzzzz this is hard Los paps son __________. (1 point) trabajador trabajadores trabajadora trabajadoras Why do you think Bierce, a former Union soldier, chose to tell his story from the point of view of a Confederate supporter? What feature would you most likely find near stream and river beds?veinshydrothermal solutionslodesplacer deposits Find the angular size of a circular object with a 3-inch diameter viewed from a distance of 4 yards. The diagonals of a trapezoid are perpendicular and have lengths 8 and 10. find the length of the median of the trapezoid. Alexandra Romar has a previous balance at Porter Pharmacy of $68.42. She had payments and credits of $18.25. The monthly finance charge is 1.85% of the unpaid balance. After the finance charge was calculated, she made $34.00 in new purchases. What is her new balance? How did scientific management change factory work? If a line has a slope of 2 and contains the point (-2, 1), what is its equation in point-slope form? What type of macromolecule can move polar substances across membranes via facilitated diffusion and/or active transport? ___ cables are continually being improved to increase speed. the fastest cables under development today use multiple cores and/or multiple wavelengths to transmit data as fast as 255 tbps. The _________________ rules of the basketball coach demand that each player be in bed by 9:00pm.looserigidlegalmedicalflexible Steam Workshop Downloader