A pharmacist–herbalist mixed 100 g lots o St. John’s wort containing the ollowing percentages o the active component hypericin: 0.3%, 0.7%, and 0.25%. Calculate the percent strength o hypericin in the mixture.

Answers

Answer 1

Answer:

strength of hypericin in mixture = 0.42 %

Explanation:

given data

each lot = 100 g

active component hypericin = 0.3%, 0.7%, and 0.25%

solution

we get here percent strength o hypericin in the mixture that is

Hypericin contribution lot 1 =  [tex]\frac{0.3}{100}[/tex] × 100

Hypericin contribution lot 1 =  0.3 g

and

Hypericin contribution lot 2 = [tex]\frac{0.3}{100}[/tex] × 100

Hypericin contribution lot 2 = 0.7 g

and

Hypericin contribution lot 3 = [tex]\frac{0.25}{100}[/tex] × 100  

Hypericin contribution lot 3  = 0.25 g

so

total 300 g mixture of hypericin contain = 0.3 g + 0.7 g + 0.25 g

total 300 g mixture of hypericin = 1.25 g  

so here percent strength o hypericin in mixture is

strength of hypericin in mixture = [tex]\frac{1.25}{300}[/tex] × 100  

strength of hypericin in mixture = 0.42 %

Answer 2

The percent strength of hypericin in the mixture will be "0.42%".

According to the question,

From lot 1, Hypericin contribution will be:

= [tex]100\times \frac{0.3}{100}[/tex]

= [tex]0.3 \ g[/tex]

From lot 2, Hypericin contribution will be:

= [tex]100\times \frac{0.7}{100}[/tex]

= [tex]0.7 \ g[/tex]

From lot 3, Hypericin contribution will be:

= [tex]100\times \frac{0.25}{100}[/tex]

= [tex]0.25 \ g[/tex]

For 300 g mixture,

The amount of hypericin will be:

= [tex]0.3+0.7+0.25[/tex]

= [tex]1.25 \ g[/tex]

hence,

The percentage strength will be:

= [tex]\frac{1.25}{300}\times 100[/tex]

= [tex]0.42[/tex] (%)

Thus the above approach is right.

Learn more:

https://brainly.com/question/19976573


Related Questions

Calcium reacts with sulfur forming calcium sulfide. What is the theoretical yield (g) of CaS(s) that could be prepared from 8.54 g of Ca(s) and 2.33 g of sulfur(s)? Do not type units with your answer.

Answers

Answer:

5.242

Explanation:

Molar mass of Ca = 40.078 g/mol

Molar mass of S = 32.065 g/mol

Equation of reaction

Ca (s) + S(s) - CaS(s)

To find the limiting reagent

Mole of Ca = 8.54/40.078 (g/mol) = 0.213 mol

Mole of S = 2.33g / 32.065 (g/mol) = 0.072664 mol

From their mole ratio, sulphur is the limiting reagent

From the reaction

1 mole of calcium react with 1 mole of Sulphur to yield 1 mole of calcium sulphide

0.072664 mol of calcium will react with 0.072664 of sulphur to yield 0.072664 mole of CaS

Theoretical yield of CaS = 0.072664 × molar mass of CaS = 0.072664 × 72.143 g/mol = 5.242 g

What is the mass % of ammonium chloride in a 1.73 M ammonium chloride aqueous solution at 20 °C?

Answers

The question is incomplete, here is the complete question:

What is the mass % of ammonium chloride in a 1.73 M ammonium chloride aqueous solution at 20 °C? The density of the solution is 1.0257 g/mL

Answer: The mass percent of ammonium chloride in solution is 9.03 %

Explanation:

We are given:

Molarity of ammonium chloride solution = 1.73 M

This means that 1.73 moles of ammonium chloride is present in 1 L or 1000 mL of solution.

To calculate the mass of solution, we use the equation:

[tex]\text{Density of substance}=\frac{\text{Mass of substance}}{\text{Volume of substance}}[/tex]

Density of solution = 1.0257 g/mL

Volume of solution = 1000 mL

Putting values in above equation, we get:

[tex]1.0257g/mL=\frac{\text{Mass of solution}}{1000mL}\\\\\text{Mass of solution}=(1.0257g/mL\times 1000mL)=1025.7g[/tex]

To calculate the number of moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]

Moles of ammonium chloride = 1.73 moles

Molar mass of ammonium chloride = 53.5 g/mol

Putting values in above equation, we get:

[tex]1.73mol=\frac{\text{Mass of ammonium chloride}}{53.5g/mol}\\\\\text{Mass of ammonium chloride}=(1.73mol\times 53.5g/mol)=92.6g[/tex]

To calculate the mass percentage of ammonium chloride in solution, we use the equation:

[tex]\text{Mass percent of ammonium chloride}=\frac{\text{Mass of ammonium chloride}}{\text{Mass of solution}}\times 100[/tex]

Mass of solution = 1025.7 g

Mass of ammonium chloride = 92.6 g

Putting values in above equation, we get:

[tex]\text{Mass percent of ammonium chloride}=\frac{92.6g}{1025.7g}\times 100=9.03\%[/tex]

Hence, the mass percent of ammonium chloride in solution is 9.03 %

Study this chemical reaction: FeSO4 (aq) + Zn (s) --> Fe (s) + ZnSO4 (aq) Then, write balanced half-reactions describing the oxidation and reduction that happen in this reaction.

oxidation:

reduction:

Answers

Answer: The oxidation and reduction half reactions are written below.

Explanation:

Oxidation reaction is defined as the chemical reaction in which an atom looses its electrons. The oxidation number of the atom gets increased during this reaction.

[tex]X\rightarrow X^{n+}+ne^-[/tex]

Reduction reaction is defined as the chemical reaction in which an atom gains electrons. The oxidation number of the atom gets reduced during this reaction.

[tex]X^{n+}+ne^-\rightarrow X[/tex]

For the given chemical reaction:

[tex]FeSO_4(aq.)+Zn(s)\rightarrow Fe(s)+ZnSO_4(aq.)[/tex]

The half reactions for the given reaction follows:

Oxidation half reaction:  [tex]Zn(s)\rightarrow Zn^{2+}(aq.)+2e^-[/tex]

Reduction half reaction: [tex]Fe^{2+}(aq.)+2e^-\rightarrow Fe(s)[/tex]

Hence, the oxidation and reduction half reactions are written above.

Final answer:

The balanced half-reaction for oxidation in the reaction is Zn (s) -> Zn2+ (aq) + 2e-, signifying Zinc is being oxidised. The reduction half-reaction is Fe2+ (aq) + 2e- -> Fe (s) demonstrating Iron being reduced.

Explanation:

In this chemical reaction:FeSO4 (aq) + Zn (s) --> Fe (s) + ZnSO4 (aq) two processes occur simultaneously; oxidation and reduction. Oxidation involves loss of electrons, and in this case, it is the Zinc metal that gets oxidized. It unites with Sulphate forming ZnSO4 and in the process gains a positive charge by losing 2 electrons.

The balanced half-reaction for oxidation is: Zn (s) --> Zn2+ (aq) + 2e-

Reduction on the other hand involves gain of electrons. Iron in this reaction gains electrons to form metallic iron (Fe). This can be represented by the following balanced half-reaction:

Fe2+ (aq) + 2e- --> Fe (s).

Learn more about Balanced half-reactions here:

https://brainly.com/question/32068911

#SPJ3

If the rate of formation of ammonia is 0.345 M/s, what is the rate of disappearance of N2?

Answers

Answer: The rate of disappearance of [tex]N_2[/tex] is 0.172 M/s

Explanation:

Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.

[tex]N_2(g)+3H_2(g)\rightarrow 2NH_3(g)[/tex]

The rate in terms of reactants is given as negative as the concentration of reactants is decreasing with time whereas the rate in terms of products is given as positive as the concentration of products is increasing with time.

Rate in terms of disappearance of [tex]N_2[/tex] = [tex]-\frac{1d[N_2]}{dt}[/tex]

Rate in terms of disappearance of [tex]H_2[/tex] = [tex]-\frac{1d[H_2]}{3dt}[/tex]

Rate in terms of appearance of [tex]NH_3[/tex] = [tex]\frac{1d[NH_3]}{2dt}[/tex]

The rate of formation of ammonia is = 0.345 M/s

[tex]\frac{1d[NH_3]}{dt}=0.345 M/s[/tex]

The rate of disappearance of [tex]N_2[/tex] is one by three times the rate of appearance of [tex]NH_3[/tex]

[tex]-\frac{1d[N_2]}{dt}=\frac{d[NH_3]}{2dt}[/tex]

[tex]-\frac{1d[N_2]}{dt}=\frac{0.345M/s}{2}=0.172M/s[/tex]

Thus the rate of disappearance of [tex]N_2[/tex] is 0.172 M/s

If the rate of formation of ammonia is 0.345 M/s, the rate of disappearance of nitrogen is 0.173 M/s.

Let's consider the balanced equation for the formation of ammonia.

N₂(g) + 3 H₂(g) ⇒ 2 NH₃(g)

The molar ratio of N₂ to NH₃ is 1:2. If the rate of formation of ammonia is 0.345 M/s, the rate of disappearance of nitrogen is:

[tex]\frac{0.345molNH_3}{L.s} \times \frac{1molN_2}{2molNH_3} = \frac{0.173molN_2}{L.s} = 0.173 M/s[/tex]

If the rate of formation of ammonia is 0.345 M/s, the rate of disappearance of nitrogen is 0.173 M/s.

Learn more: https://brainly.com/question/1403809

Consider a mixture of four proteins with various molecular weights. A histone molecule weighs 15 kDa, 15 kDa, a p53 molecule weighs 53 kDa, 53 kDa, an actin molecule weighs 42 kDa, 42 kDa, and an IgG molecule weighs 150 kDa. 150 kDa. Arrange the molecules in order of their elution from a gel filtration column.

Answers

Answer:

IgGp53ActinHistone

Explanation:

In gel filtration chromatography a porous matrix is used as the stationary phase. The smaller molecules are able to diffuse into this matrix while the larger ones are not. For this reason the larger molecules will elute first, followed by the smaller ones in decreasing order of size.

In other words the largest molecule will elute first and the smallest molecule will elute last:

IgGp53ActinHistone

You have a 275 mg sample of a compound that contains aluminum and a group 7A element (F, Cl, Br, I or At). This compound reacts with excess silver nitrate as follows ("X" represents the unknown element):

Answers

Complete Question:

You have a 275 mg sample of a compound that contains aluminum and a group 7A element (F, Cl, Br, I or At). This compound reacts with excess silver nitrate as follows (“X” represents the unknown element): AlX3 + 3 AgNO3 → 3 AgX + Al(NO3)3. This reaction forms 581 mg of AgX. Identify element X.

Answer:

Br

Explanation:

By the stoichiometry of the reaction, 1 mol of AlX3 will form 3 moles of AgX. If we call the molar mass of X as m, and by the periodic table the molar masses of Al is 26.982 g/mol, and of Ag is 107.87, thus the molar masses of the compounds will be:

AlX3 = 26.982 + 3m

AgX = 107.87 + m

And the mass relationship will be the number of moles multiplied by the molar mass. So, by a simple direct rule of three:

26.982 + 3m g of AlX3 ------------- 3*(107.87 + m) g of AgX

275 mg of AlX3             ----------- 581 mg

825*(107.87 + m) = 15676.542 + 1743m

88992.75 + 825m = 15676.542 + 1743m

-918m = -73316.208

m = 79.86 g/mol

So, comparing with the values of the masses of the group 7 elements, X must be Br (79.904 g/mol).

A mixture of xenon and oxygen gas is compressed from a volume of 99.0 L to a volume of 98.0 L, while the pressure is held constant at 69.0 atm. Calculate the work done on the gas mixture. Be sure your answer has the correct sign (positive or negative) and the correct number of significant digits

Answers

Final answer:

The work done on the gas mixture when it is compressed from 99.0 L to 98.0 L at a constant pressure of 69.0 atm is -69.0 atm L.

Explanation:

In order to calculate the work done on a gas, we can use the equation:

Work = Pressure * Change in Volume

In this case, the pressure is held constant at 69.0 atm, and the change in volume is from 99.0 L to 98.0 L.

Using the formula, we can calculate the work as follows:

Change in Volume = Final Volume - Initial Volume = 98.0 L - 99.0 L = -1.0 LWork = Pressure * Change in Volume = 69.0 atm * -1.0 L = -69.0 atm L

The work done on the gas mixture is -69.0 atm L. The negative sign indicates that work is done on the system rather than by the system.

Learn more about work done on gas here:

https://brainly.com/question/32263955

#SPJ3

While ethanol is produced naturally by fermentation, e.g. in beer- and wine-making, industrially it is synthesized by reacting ethylene with water vapor at elevated temperatures. A chemical engineer studying this reaction fills a flask with of ethylene gas and of water vapor. When the mixture has come to equilibrium she determines that it contains of ethylene gas and of water vapor. The engineer then adds another of water, and allows the mixture to come to equilibrium again. Calculate the pressure of ethanol after equilibrium is reached the second time. Round your answer to significant digits.

Answers

Answer:

Pressure of alcohol after reaching equilibrium the second time = 2.62atm

Explanation:

Detailed step by step with explanation is as shown in the attachment.

A 27.40 g sample of liquid mercury is initially at 158.30°C. If the sample is heated at constant pressure ( = 1 atm), kJ of energy are needed to raise the temperature of the sample to 376.20°C. How much energy in kJ is required?

Answers

Answer:

energy required is 0.247kJ

Explanation:

The formula to use is Energy = nRdT;

Where n is number of mole

R is the molar gas constant

dT is the change in temperature

n = reacting mass of mercury / molar mass of mercury = 27.4/200.59 = 0.137

dT = final temperature - initial temperature = 376.20 - 158.30 = 217.90K

R = 8.314Jper mol per Kelvin

Energy = 0.137 x 8.314 x 217.90 = 247.12J

Energy in kJ= 247.12/1000= 0.247kJ

Which of the following compounds would have the highest boiling point?
a. 1-propanol,
b. CH3CH2CH2OH ethanol,
c. CH3CH2OH dimethyl ether,
d. CH3OCH3 ethyl methyl ether,
e. CH3OCH2CH3

Answers

Answer:a. 1-propanol,

Explanation:

Boiling point depends on the relative molecular mass of the compound and the kind of intermolecular interactions present in the substance. 1-propanol has a relative molecular mass of 60 and posses strong intermolecular hydrogen bonding. The presence of hydrogen bonding is known to lead to an increase in boiling point. As a result of this, it is obvious that 1-propanol has the highest boiling point among other compounds in the list.

Final answer:

1-propanol has the highest boiling point among the mentioned compounds due to its ability to form hydrogen bonds, which significantly elevate its boiling point compared to the other options.

Explanation:

The question pertains to determining which of the listed compounds would have the highest boiling point. When comparing boiling points, factors such as molecular mass, polarity, and the presence of hydrogen bonding play crucial roles. Among the options, 1-propanol (C3H7OH) stands out because it is capable of hydrogen bonding, which significantly increases its boiling point compared to the other compounds listed, such as dimethyl ether (CH3OCH3) and ethyl methyl ether (CH3OCH2CH3), which primarily exhibit dipole-dipole interactions and London dispersion forces. Ethanol (CH3CH2OH) also exhibits hydrogen bonding but has a shorter carbon chain than 1-propanol, leading to a slightly lower boiling point.

A chemist adds of a M zinc nitrate solution to a reaction flask. Calculate the mass in grams of zinc nitrate the chemist has added to the flask. Round your answer to significant digits.

Answers

corrected question: A chemist adds 135mL of a 0.21M zinc nitrate solution to a reaction flask. Calculate the mass in grams of zinc nitrate the chemist has added to the flask. Round your answer to significant digits.

Answer:

5.37g

Explanation:

0.21M means ; 0.21mol/dm³

1dm³=1L , so we can say 0.21mol/L

if 0.21mol of Zinc nitrate is contained in 1L of water

x   will be contained in 135mL of water

x= 0.21*135*10³/1

=0.02835moles

number of moles=  mass/ molar mass

mass= number of moles *molar mas

molar mass of Zn(NO₃)₂=189.36 g/mol

mass= 0.02835 *189.36

mass=5.37g

what is the kinetic energy of a particle of mass m moving through space with velocity v?

Answers

Answer:

Kinetic Energy of the particle is half the mass of the particle multiplied by the square of the velocity of the particle

Explanation:

Kinetic Energy is given by 1/2mv^2

Where, m is the mass of the object and v is the velocity of the object

Answer: kinetic energy is equal to 1/2mv^2

A brick has a mass of and the Earth has a mass of . Use this information to answer the questions below. Be sure your answers have the correct number of significant digits. What is the mass of 1 mole of bricks? How many moles of bricks have a mass equal to the mass of the Earth?

Answers

Complete question

A brick has a mass of 4.0 kg and the Earth has a mass of 6.0 X 10²⁷ g. Use this information to answer the questions below. Be sure your answers have the correct number of significant digits. What is the mass of 1 mole of bricks? Round your answer to 2 significant digits. How many moles of bricks have a mass equal to the mass of the Earth? Round your answer to 2 significant digits.

Answer:

The mass of 1 mole of bricks = 24 X 10²⁶ g (2 significant digits), and

2.5 moles of bricks (2 significant digits) have a mass equal to the mass of the Earth.

Explanation:

Given mass of bricks = 4.0 kg

4.0kg of brick = 4000g

1 mole of any substance always contain  6.022 X 10²³ Avogadro's number

1 mole of bricks contains 6.022 X 10²³ bricks

Therefore, mass of 1 mole of brick = 6.022 X 10²³ X 4000g

= 4000 X 6.022 X 10²³ g

= 24088 X 10²³ g

The mass of 1 mole of bricks = 24 X 10²⁶ g (2 significant digits)

-----------------------------------------------------------------------------------------------------

⇒How many moles of bricks have a mass equal to the mass of the Earth?

Given mass of Earth = 6.0 X 10²⁷ g

24088 X 10²³ g --------> mass of 1 mole of bricks

6.0 X 10²⁷ g --------------> ?

= (6.0 X 10²⁷ g)/(24088 X 10²³ g)

= 2.4909 moles of bricks

2.5 moles of bricks ( 2 significant digits)

Therefore, 2.5 moles of bricks have a mass equal to the mass of the Earth

Answer

2.4x10^27 g

2.5 mol

Which of the following statements is true? I. Carbon forms covalent rather than ionic bonds. II. Carbon has an electronegativity value that is midway between that of the most metallic element and the most nonmetallic element. III. Carbon forms four bonds in virtually all its compounds. IV. A Si-Si bond is much stronger than a C-C bond. V. Relatively little heat is released when a C chain reacts and one bond replaces the other. Group of answer choices I, II, II, V I only II only III only IV only V only I and II I and III I and IV I and V II and III II and IV II and V III and IV III and V

Answers

Explanation:

Atomic number of carbon is 6 and its electronic distribution is 2, 4. As there are 4 valence electrons present in a carbon atom. Hence, it belongs to group 14 of the periodic table.

So, being a non-metal carbon atom tends to form covalent bonds. Also, the electronegativity value of carbon atom is mid-way between those of metals and non-metals.

In order to complete its octet, carbon atom tends to gain or share its 4 valence electrons. Therefore, it forms four bonds in all its compounds.

The Si-Si bond will be less stronger than C-C bond due to the larger size of silicon atom. As a result, there will be less overlapping between the silicon atoms due to which the bond formed will be weak in nature.

Whereas C-C bond is more stronger as a carbon atom is smaller in size as compared to silicon atom. As a result, more will be the overlapping between the carbon atoms. Hence, more stronger will be C-C bond than Si-Si bond.

As there will be covalent bonds present in a carbon chain and these bonds are weak as compared to ionic bonds. Hence, relatively little heat is released when a C chain reacts and one bond replaces the other.

Thus, we can conclude that out of the given options statements of I, II, III and V are true.

The synthesis of dipropyl ether can be accomplished using 1-propanol. What reactants and conditions are necessary for this to occur

Answers

Answer: Reactants==>2 molecules of propanol.

Condition for Reaction to occur==> Strong acid,e.g HCl and high temperature (140°C).

Explanation:

Dipropyl ether can be sythesized commonly in two ways;

(1). Williamson ether synthesis of dipropyl ether: this chemical reaction involves the reaction of alkyl halide(propyl halide) with conjugate base of propanol.

(2). Acid catalyzed ether synthesis of dipropyl ether: this is the reaction this question is talking about. A strong acid is used in the Chemical Reaction, and , it is reaction between two(2) molecules of propanol. This is done in the presence of strong acid such as HCl and high temperature (up to 140°C).

The Reactants are the two molecules of propanol. The condition necessary for the reaction to occur is that the temperature must be high(140-143°C) and it must be in the presence of a strong acid.

In a dehydration reaction, 2 molecules lose one water molecule to combine.  In presence of strong acid ([tex]\bold{H_2SO4}[/tex]) and high temperature at [tex]\bold{145^oC}[/tex] propanol can be accomplished to synthesize dipropyl ether.

Dehydration of Alcohol:

In high acidic and high-temperature conditions, alcohol dehydrates to form ether.

[tex]\bold{2R-OH \rightarrow R-O-R +H_2O}[/tex]

2 molecules of propanol will combine to form dipropyl ether in the presence of strong acid ([tex]\bold{H_2SO4}[/tex]) at [tex]\bold{145^oC}[/tex].

[tex]\bold{2CH_3 CH_2CH_2OH \rightarrow CH_3 CH_2CH_2-O-CH_2CH_2CH_3 + H_2O }[/tex]

Therefore, In presence of strong acid ([tex]\bold{H_2SO4}[/tex]) and high temperature at [tex]\bold{145^oC}[/tex]

To know more about Dehydration reaction, refer to the link:

https://brainly.com/question/14834582

Write the rate law for the following elementary reaction:

2N2O5(g) - 2N204 Use k1 to stand for the rate constant.

Answers

Answer:

Rate law = k1 [N2O5]^2

Explanation:

Rate law only cares about reactants and rate law can only be determined experimentally or by using the coefficients of reactants in elementary reactions

If 2A---->B is an elementary reaction... rate law for this is rate=k[A]^2

So if we look at your question...2N2O5---->2N2O4 + 02 (I think you are missing O2 in question because otherwise equation is unbalanced)

Rate law = k1 [N2O5]^2

Final answer:

The rate law for the reaction 2N2O5(g) → 2N2O4(g) is rate = k1[N2O5]^2, indicating a second-order dependence on [N2O5]. For the reaction H2(g) + 2NO(g) → N2O(g) + H2O(g), the rate law is rate = k[NO]^2[H2], with the reaction being second order in NO and first order in H2.

Explanation:

The rate law for an elementary reaction can be written directly from the stoichiometry of the reaction. Considering the provided elementary reaction 2N2O5(g) → 2N2O4(g), the rate law would be rate = k1[N2O5]^2, which indicates that the reaction is second order with respect to N2O5.

In general, for an elementary reaction like H2(g) + 2NO(g) → N2O(g) + H2O(g), the rate law given is rate = k[NO]^2[H2], which means that the reaction is second order with respect to NO (order of 2) and first order with respect to H2 (order of 1), making the overall order of the reaction three.

The frequency of stretching vibrations is correlated to the strength and stiffness of the bond between two atoms. This can be thought of as a ball-and-spring model. Using this knowledge, rank the following bonds in each part of the question by increasing frequency.

(a) Alkyne
(b) Alkane
(c) alkene

Answers

Answer:

a > c > b

Explanation:

As higher is the strength and stiffness of the bond between two atoms, more stable it is, and more difficult is to these bonds vibrate. So, the stretching vibration decreases when the strength and stiffness increases.

As more bonds are done between the atoms, more strength, and stiffness they have. So, the order of increase is:

simple bond > double bond > triple bond

And the increased frequency of vibration is:

triple bond > double bond > simple bond

An alkane is a hydrocarbon that has only simple bonds between carbons, an alkene is a hydrocarbon with one double bond between carbon, and an alkyne is a hydrocarbon with one triple bond. So, the increase in vibration of them is:

alkyne (a) > alkene (c) > alkane (b)

Answer: (A) < (C) < (B)

Ranking in order of increasing frequency.

Explanation:

13.3 g of benzene (C6H6) is dissolved in 282 g of carbon tetrachloride. What is the molal concentration of benzene in this solution?

Answers

Answer:

0.605 molal

Explanation:

molality is the amount of solute in a particular mass of solvent.

lets calculate the amount of benzene solute.

mass of benzene= 13.3g

molar mass of C6H6= 12*6 +1*6 =72+7=78g/mol

amount of benzene= mass/molar mass

                           =13.3/78

                          =0.1705mol

molality= amount of solute/mass of solvent in kg

mass of solvent=282g=0.282kg

molality = 0.1705/0.282

    =0.605 molal

To calculate the molal concentration of benzene in the solution, divide the number of moles of benzene (0.1703 moles) by the mass of carbon tetrachloride in kilograms (0.282 kg), resulting in a concentration of 0.604 molal.

To calculate the molal concentration of benzene in the solution, first, we need to determine the number of moles of benzene. The molar mass of benzene (C6H6) is approximately 78.11 g/mol. Using the mass of benzene given (13.3 g), we can calculate the moles of benzene as follows:

Number of moles of benzene = mass of benzene / molar mass of benzene

Number of moles of benzene = 13.3 g / 78.11 g/mol = 0.1703 moles

The molal concentration is then calculated by the number of moles of solute per kilogram of solvent. Since the mass of the solvent (carbon tetrachloride) is given in grams, we convert it to kilograms:

Mass of solvent in kg = 282 g / 1000 = 0.282 kg

Now, the molal concentration (m) can be calculated as:

Molal concentration (m) = moles of solute / mass of solvent in kg

Molal concentration (m) = 0.1703 moles / 0.282 kg = 0.604 Molal

write out the acid dissociation reaction for hydrochloric acid. b) calculate the pH of a solution of 5.0 x 10^-4 M HCl. c) write out the acid dissociation reaction for sodium hydroxide. d) calculate the pH of a solution of 7.0 x 10^-5 M NaOH.

Answers

Answer:

The answer to your question is below

Explanation:

a) Acid dissociation reaction for HCl

                  HCl(g)  +   H₂O(l)    ⇒    H⁺¹  (aq)  +  Cl⁻¹ (aq)

b) pH = -log [H⁺¹]

Concentration = 5 x 10⁻⁴

                   pH = -log [5 x 10⁻⁴]

                    pH = 3.3

c) Acid dissociation reaction

                       NaOH(s)  + H₂O   ⇒   Na⁺¹(aq)   +   OH⁻¹(aq)

d) pH

                      pOH = -log [7 x 10⁻⁵]

                      pOH = 4.2

                      pH = 14 - 4.2

                     pH = 9.8

Final answer:

The acid dissociation and pH for HCl and NaOH were detailed. For HCl, the reaction and solution pH were HCl -> H+ + Cl- and 3.3 respectively. For NaOH, the dissociation and solution pH were NaOH -> Na+ + OH- and 9.8 respectively.

Explanation:

a) The acid dissociation reaction for hydrochloric acid (HCl) is as follows:

HCl → H+ + Cl-

b) The pH of a solution of hydrochloric acid can be calculated using the formula:

pH = -log[H+].

As HCl is a strong acid, it will completely ionize in water, meaning the concentration of H+ ions equals the concentration HCl. Therefore, the pH for a 5.0 x 10^-4 M HCl solution is -log(5.0 x 10^-4) = 3.3.

c) Sodium hydroxide is a base, not an acid, so its ionization does not involve releasing protons into the solution, but rather attracting them. It has the following dissociation reaction:

NaOH → Na+ + OH-.

d) As for the pH of a solution of 7.0 x 10^-5 M NaOH, we first need to find the pOH using the formula pOH = -log[OH-], since NaOH being a strong base completely ionizes. This equals -log(7.0 x 10^-5) = 4.2. Given that pH and pOH are related by the expression pH + pOH = 14 at 25°C, we can solve for the pH of the NaOH solution = 14 - pOH = 14 - 4.2 = 9.8.

Learn more about Acid dissociation and pH calculations here:

https://brainly.com/question/32772735

#SPJ

A chemist makes of magnesium fluoride working solution by adding distilled water to of a stock solution of magnesium fluoride in water. Calculate the concentration of the chemist's working solution. Round your answer to significant digits.

Answers

The question is incomplete, here is the complete question:

A chemist makes 600. mL of magnesium fluoride working solution by adding distilled water to 230. mL of a stock solution of 0.00154 mol/L magnesium fluoride in water. Calculate the concentration of the chemist's working solution. Round your answer to 3 significant digits.

Answer: The concentration of chemist's working solution is [tex]5.90\times 10^{-4}M[/tex]

Explanation:

To calculate the molarity of the diluted solution (chemist's working solution), we use the equation:

[tex]M_1V_1=M_2V_2[/tex]

where,

[tex]M_1\text{ and }V_1[/tex] are the molarity and volume of the stock magnesium fluoride solution

[tex]M_2\text{ and }V_2[/tex] are the molarity and volume of chemist's magnesium fluoride solution

We are given:

[tex]M_1=0.00154M\\V_1=230mL\\M_2=?M\\V_2=600mL[/tex]

Putting values in above equation, we get:

[tex]0.00154\times 230=M_2\times 600\\\\M_2=\frac{0.00154\times 230}{600}=5.90\times 10^{-4}M[/tex]

Hence, the concentration of chemist's working solution is [tex]5.90\times 10^{-4}M[/tex]

In a 4.00 L pressure cooker, water is brought to a boil. If the final temperature is 115 °C at 3.10 atm, how many moles of steam are in the cooker?

Answers

Answer: 0.39mol of the steam are in the cooker.

Explanation:Please see attachment for explanation

The number of moles will be "0.39 mol".

Given:

Volume, V = 4 LPressure, P = 3.10 atmTemperature, T = 115°C

                                   = 115+273

                                   = 388 K

We know the relation,

→ [tex]PV = nRT[/tex]

or,

→     [tex]n = \frac{PV}{RT}[/tex]

By substituting the values, we get

          [tex]= \frac{4\times 3.1}{0.082\times 388}[/tex]

          [tex]= 0.39 \ mol[/tex]

          [tex]= 0.39 \ mol[/tex]

Thus the above answer is correct.

Learn more about moles here:

https://brainly.com/question/24103515

A mineral sample is obtained from a region of the country that has high arsenic contamination. An elemental analysis yields the following elemental composition:

Element Atomic Weight (g/mol) Percent Composition
Ca 40.078 22.3%
As 74.9216 41.6%
O 15.9994 35.6%
H 1.00794 60%

What is the empirical formula of this mineral?

Answers

Answer:

CaAsHO₄

Explanation:

The data has a mistake in one of the values there. I believe the mistake is on the hydrogen. So, I'm going to assume the value of Hydrogen is 0.6%, so the total percent composition would be 100.1% (Something better). All you have to do is replace the correct value of H (or the value with the mistaken option) and do the same procedure.

Now, to calculate the empirical formula, we can do this in three steps.

Step 1. Calculate the amount in moles of each element.

In these case, we just divide the percent composition with the molar mass of each one of them:

Ca: 22.3 / 40.078 = 0.5564

As: 41.6 / 74.9216 = 0.5552

O: 35.6 / 15.9994 = 2.2251

H: 0.6 / 1.00794 = 0.5953

Now that we have done this, let's calculate the ratio of mole of each of them. This is doing dividing the smallest number of mole between each of the moles there. In this case, the moles of As are the smallest so:

Ca: 0.5564/0.5552 = 1.0022

As: 0.5552/0.5552 = 1

O: 2.2251/0.5552 = 4.0077

H: 0.5953/0.5552 = 1.0722

Now, we round those numbers, and that will give us the number of atoms of each element in the empirical formula

Step 3. Write the empirical formula with the rounded numbers obtained

In this case we will have:

Ca: 1

As: 1

O: 4

H: 1

The empirical formula would have to be:

CaAsHO₄

The gas in a 250. mL piston experiences a change in pressure from 1.00 atm to 4.45 atm. What is the new volume (in mL) assuming the moles of gas and temperature are held constant

Answers

Answer:

56.2 mL

Explanation:

Given data

Initial volume (V₁): 250 mLInitial pressure (P₁): 1.00 atmFinal volume (V₂): ?Final pressure (P₂): 4.45 atm

Assuming the gas has an ideal behavior, we can find the final volume using Boyle's law.

P₁ × V₁ = P₂ × V₂

V₂ = P₁ × V₁/P₂

V₂ = 1.00 atm × 250 mL/ 4.45 atm

V₂ = 56.2 mL

The new volume will be "56.2 mL".

According to the question,

Volume,

[tex]V_1 = 250 \ mL[/tex][tex]V_2 = \ ?[/tex]

Pressure,

[tex]P_1 = 1.00 \ atm[/tex][tex]P_2 = 4.45 \ atm[/tex]

By using the Boyle's Law, we get

→ [tex]P_1 V_1 = P_2 V_2[/tex]

or,

→     [tex]V_2 = \frac{P_1V_1}{P_2}[/tex]

By putting the values, we get

           [tex]= \frac{1.00\times 250}{4.45}[/tex]

           [tex]= \frac{250}{4.45}[/tex]

           [tex]= 56.2 \ mL[/tex]

Thus the above answer is right.

Learn more about pressure here:

https://brainly.com/question/24195697

How many grams of Al were reacted with excess HCl if 2.34 L of hydrogen gas were collected at STP in the following reaction2Al + 6HCl --> 2AlCl3 + 3H2

Answers

Answer:

1.87 g of Al were reacted

Explanation:

We must apply the Ideal Gases law to solve the amount of moles of H₂ produced at STP

T = 273 K

P = 1 atm

P. V = n . R . T

1 atm . 2.34 L = n . 0.082 . 273 K

( 1 atm . 2.34 L ) / ( 0.082 . 273 K) = n

0.104 moles  = n

Now we can find the moles of Al with the reaction. As ratio is 3:2 we have to make a rule of three to determine the moles we used.

3 moles of H₂ came from 2 moles of Al

0.104 moles of H₂ would come from ( 0.104 . 2 ) /3 = 0.0693 moles of Al

Finally we can know the mass of Al we used ( moles . molar mass)

0.0693 mol . 26.98 g/mol = 1.87 g

Final answer:

To determine the grams of Al reacted with excess HCl, we need to calculate the number of moles of H2 gas produced at STP, then use stoichiometry to convert the moles of H2 to moles of Al, and finally convert the moles of Al to grams using its molar mass.

Explanation:

To determine how many grams of Al were reacted with excess HCl, we need to first calculate the number of moles of H2 gas produced at STP. From the balanced chemical equation, we can see that for every 2 moles of Al, 3 moles of H2 gas are produced. Since 1 mole of any ideal gas occupies 22.4 L at STP, we can convert the given volume of H2 gas to moles by dividing 2.34 L by 22.4 L/mol. This gives us approximately 0.1045 moles of H2 gas.

Using the stoichiometry of the reaction, we can then determine the number of moles of Al, which is the same as the number of moles of H2 gas produced. Finally, we can convert the moles of Al to grams using the molar mass of Al, which is 26.98 g/mol. Therefore, the number of grams of Al reacted would be approximately 0.1045 moles multiplied by 26.98 g/mol, resulting in approximately 2.82 grams of Al.

Learn more about stoichiometry here:

https://brainly.com/question/30218216

#SPJ3

An acid that dissociates to the extent of 92% in water would be termed a strong acid.
True or Fasle?

Answers

Answer: False

Explanation:

Strong acid is defined as the acid which completely dissociates when dissolved in water. They have low pH. These releases  ions in their aqueous states.

[tex]HNO_3(aq.)\rightarrow H^+(aq.)+NO_3^-(aq.)[/tex]

Weak acid is defined as the acid which does not completely dissociates when dissolved in water. They have high pH. These releases  ions in their aqueous states.

[tex]CH_3COOH\rightleftharpoons CH_3COO^-+H^+[/tex]

Thus as the given acid is only 92% dissociated and cannot be completely dissociated, it is termed as a weak acid.

Final answer:

The given statement," An acid that dissociates to the extent of 92% in water would be termed a strong acid." is false.

Explanation:

In chemistry, the degree to which an acid dissociates in water classifies it as either strong or weak. An acid that dissociates 100% into ions when dissolved in water is deemed a strong acid. In contrast, acids that do not reach 100% dissociation are termed weak acids. An example of a weak acid is acetic acid (CH3COOH), which has a dissociation level significantly lower than 100% when dissolved in water.

Considering the given information, an acid that dissociates to the extent of 92% in water would not meet the criteria for a strong acid, as it does not fully dissociate. Thus, even with a high dissociation percentage such as 92%, this acid would still be classified as a weak acid. It is important to note that in practical terms a 92% dissociation indicates a relatively strong acid amongst weak acids, but it is not categorized as a strong acid in the technical sense.

Identify the power of ten that defines each of these prefixes. Input your answers as 10 x where x is the power of ten. nano- _______________. kilo- _______________. centi- _______________. micro- _______________. milli- _______________. mega- _______________.

Answers

Answer: The quantity of every prefix is written below as a power of ten.

Explanation:

In the metric system of measurement, the name of multiples and subdivision of any unit is done by combining the name of the unit with the prefixes.

For Example: deka, hecto and kilo means 10, 100 and 1000 respectively. Deci, centi and milli means one-tenth, one-hundredth, and one-thousandth respectively.

The quantity of these prefixes are written as the power of 10.

For the given prefixes:

Nano:  The quantity will be [tex]10^{-9}[/tex]

Kilo:  The quantity will be [tex]10^3[/tex]

Centi:  The quantity will be [tex]10^{-2}[/tex]

Micro:  The quantity will be [tex]10^{-6}[/tex]

Milli:  The quantity will be [tex]10^{-3}[/tex]

Mega:  The quantity will be [tex]10^6[/tex]

Hence, the quantity of every prefix is written above as a power of ten.

Calculate the radius of a platinum atom in cm, given that Pt has an FCC crystal structure, a density of 21.4 g/cm3, and an atomic weight of 195.08 g/mol.

Answers

Answer:

Radius of platinum atom is [tex]1,38\times10^{-8} \ cm.[/tex]

Explanation:

We know, Density in solid state is also given by , [tex]\rho=\dfrac{Z\times M}{N_A\times a^3}[/tex]

Here, Z= total no of atom or molecule per unit cell. ( Z = 4 for FCC structure )

M = atomic weight = 195.08 gm/mol.

N_A= Avogadro's number = [tex]6.023\times 10^{23} .[/tex]

a= size of side of cube.

Also for, FCC crystal [tex]a=\sqrt2\times 2r[/tex]    ....1

Since,[tex]\rho=\dfrac{Z\times M}{N_A\times a^3}\\[/tex]

Therefore, [tex]a^3=\dfrac{Z\times M}{N_A\times \rho}[/tex]

Putting all values , [tex]a=3.9\times 10^{-8} \ cm.[/tex]

Putting value of a in equation 1 we get,

[tex]r=\dfrac{a}{\sqrt2\times2}=1.38\times 10^{-8} \ cm.[/tex]

Hence, this is the required solution.

Final answer:

The radius of a platinum atom can be found using the density, atomic weight, and the nature of the crystal structure. The calculation involves finding the volume of an atom from the atomic weight, density and Avogadro's number and converting this volume to a radius by considering the atom as a sphere.

Explanation:

The radius of a platinum atom can be calculated using the density, atomic weight, and the information about the crystal structure (in this case, face-centered cubic or FCC). Platinum (Pt) has a density (d) of 21.4 g/cm3 and an atomic weight (AW) of 195.08 g/mol.

First, let's calculate the number of atoms (n) in the unit cell of an FCC structure. An FCC unit cell has 4 atoms. Avogadro's number (Na) is 6.022 x 1023 mol-1.

The volume (V) of an atom can be calculated as follows: V = AW / (d * n * Na).Now we will calculate the radius (r) from the volume, considering the atom as a sphere: r = ((3*V) / (4*π))1/3.

Keep in mind that the values have to be converted to cm in the end.

Learn more about Platinum Atom Radius here:

https://brainly.com/question/34419731

#SPJ3

127 grams of copper metal react with 32 grams of oxygen gas to form a new compound, with no copper or oxygen left over. What is the mass of the new compound in grams?

Answers

Answer: The mass of the new compound formed will be 159 grams.

Explanation:

Synthesis reaction is defined as the reaction in which smaller substances combine in their elemental state to form a larger substance.

[tex]A+B\rightarrow AB[/tex]

Law of conservation of mass states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.

This also means that total mass on the reactant side must be equal to the total mass on the product side.

The chemical equation for the synthesis of copper oxide follows:

[tex]2Cu+O_2\rightarrow 2CuO[/tex]

Let the mass of new compound (copper oxide) formed be 'x' grams

We are given:

Mass of copper metal = 127 grams

Mass of oxygen gas = 32 grams

Total mass on reactant side = 127 + 32 = 159 g

Total mass on product side = x

So, by applying law of conservation of mass, we get:

x = 159 g

Hence, the mass of the new compound formed will be 159 grams.

Which of the following personal items are permitted to be at your workstation in the organic laboratory? Select all that apply. a. Pen or pencil b. Drinking water bottle c. I-Pad d. Lab manual e. Cell phone

Answers

Explanation:

While working in a laboratory it is necessary to be free from any kind of distraction. This is because a distraction while working in a laboratory can lead to serious consequences.

For this it is important to put all your electronic devices like mobile phones, tablets etc in your backpack. Also, you should not carry any kind of eatable, water bottle or anything into the lab.

This is because chemicals do react with food items. Hence, then food does not remain fit for consumption.

Thus, we can conclude that pen or pencil and lab manual personal items are permitted to be at your workstation in the organic laboratory.

An electron is confi ned to a linear region with a length of the same order as the diameter of an atom (about 100 pm). Calculate the minimum uncertainties in its position and speed.

Answers

Explanation:

The minimum uncertainty position is 100 nm.

Therefore, by Heisenberg Uncertainty principal

ΔxΔp≥h/2

Δp≥h/(2Δx)

we know that

h= [tex]1.0546\times10^{-34}[/tex] Js

Δx= [tex]100\times10^{-12} m[/tex]

therefore,

[tex]\Delta p =\frac{1.0546\times10^{-34}}{2\times12\times10^{-12}} = 5.3\times10^{-25} kgms^{-1}[/tex]

therefore,

[tex]\Delta v= \frac{\Delta p}{m} =\frac{5.3\times10^{-25}}{9.11\times10^{-31}}= 5.8\times10^{5} ms^{-1}[/tex]

Other Questions
To what extent was the populist movement a practical, liberal response to the political and economic problems of the gilded age? Which description is correct for the polynomial 5x23x+3 ?quartic binomialquadratic binomialquadratic trinomialcubic binomial . . . The Way of Tea was a matter of observing seven rules: make a satisfying bowl of tea, lay the charcoal so that the water boils efficiently, provide a sense of warmth in the winter and coolness in the summer, arrange the flowers as though they were in the field, be ready ahead of time, be prepared in case it should rain, and act with utmost consideration toward your guests. There ceremony is usually done in two parts, the first being the entrance of guests to the especially prepared room or konnichian (tea house) and the serving of a light meal (kaleski). Following the meal, the host prepares the charcoal or burner for the first time, then the guests retire to the garden for a short break. After the break, the host prepares koicha (thick tea) for guests. Then he prepares the charcoal for a second time and makes usucha (thin tea). When all is done, the host and guest respectfully acknowledge each other one last time and the guests take their leave. Tantri Yuliandini, Post What takes place during the first part of the tea ceremony? a. Thin tea is served. b. A light meal is eaten. c. Flowers are arranged. d. The host is respectfully acknowledged. Please select the best answer from the choices provided A B C D Which best describes what type of fungus this is?yeast, because its spores are produced in round cases at the top of the hyphaeyeast, because it is growing on a piece of foodmold, because it is growing on a piece of food (incorrect)mold, because its spores are produced in round cases at the top of the hyphae A project is a time-bound effort constrained by performance specifications, resources, and budget to create a unique product or service. a. True b. False Few restaurant management students opt for ____________________management, believing it lacks the variety, glamour and opportunity for self-expression. Investigator Barnes has examined the body of a young man who was murdered in his apartment. The body is just beginning to relax from rigor mortis. If the time is now 10:30 am on Friday morning, the condition of the body would indicate what possible time of death? Between 2 am and 10 am on Monday Between 10:30 am on Wednesday and 10:30 am on Friday Between 10:30 pm on Wednesday and 10:30 pm on Thursday Between 10:30 am on Saturday and 3 pm on Wednesday evaluate log base 12 of y^2, given log base 12=16 Find the width of a rectangular patio with a length of 16 feet and an area of 200 square feet A floor in an office building is made of a reinforced concrete slab 10 in. deep and spans 20 ft. For the purposes of calculating the tributary load you can assume the slab is 10 ft. wide. This scenario can be modelled as a simply supported beam, 20 ft. long, 10 in. deep and 10 ft. wide. Calculate the maximum factored maximum moments and shears on this structure using the appropriate load combinations discussed in class. Note which loading combination is critical. You can assume the uniform live load is 50 psf. Hint: since this is not a member that carries lateral load, there are no significant wind or earthquake loads contributing to the shear and moments in the member. Since this is not on the roof there are no roof or snow loads. h = 10 in. 20 ft. Lucy's Lunch and Latte has found that customers are put off by the local tourism tax of 9% that is added to their bill. If Lucy decides to cover the tax herself, rather than adding it to the customer's bill, what percent will the customer see in savings? Write your answer as a percent rounded to the nearest tenth. (Hint: the answer is not 9%.) Assign to maxSum the max of (numA, numB) PLUS the max of (numY, numZ). Use just one statement. Hint: Call findMax() twice in an expression.import java.util.Scanner;public class SumOfMax {public static double findMax(double num1, double num2) {double maxVal = 0.0;// Note: if-else statements need not be understood to// complete this activityif (num1 > num2) { // if num1 is greater than num2,maxVal = num1; // then num1 is the maxVal.}else { // Otherwise,maxVal = num2; // num2 is the maxVal.}return maxVal;}public static void main(String [] args) {double numA = 5.0;double numB = 10.0;double numY = 3.0;double numZ = 7.0;double maxSum = 0.0;/* Your solution goes here */System.out.print("maxSum is: " + maxSum);return;}} If 3x/5 = 3/2, then x = ? According to the textbook, one of the key reasons that immigration continues to be a controversial issue in the United States is because:the perception that the diversity of the current generation of migrants raises cultural challenges What revision of the sentence is not properly punctuated Two parallel lines are cut by a transversal. Angle 1 measures (4x + 28), and the angle adjacent to the alternate exterior angle with angle 1 measures (14x + 8). What is the value of x? Here are the steps. (1) Create a Student class containing an ID, a last name, and a list of course names such as "COP2210" or "COP2250". This should not be a string of multiple courses. The ID should be an integer which is printed with leading zeros. (2) Create a class named StudentTest that contains a List of students. Do not use the list provided here. In the class constructor, create 15 students and add them to the list. Each student's ID must be different. Each student you add to the list must contain 2-4 different course names. At least one should have two course names and at least one should have four course names. Make sure the students do not all have the same courses, although there should be some overlap (see the sample below). The student names must be inserted into the list in random order (not sorted). (3) Sort the list in ascending order by student last name and display the list. For each student, display the ID with leading zeros, last name, and list of courses on a single line. Here is sample output. Note how the tab character is inserted after the name to line up the next column containing courses. Be sure there is no trailing comma at the end of the list of courses. The terms intrusive and extrusive are used to describe which one of the three rock groups Allstocks, a Web seller that buys furniture, clothing, electronics, and more from a variety of producers at less-than-regular wholesale prices and then charges customers less than retail, is a(n) ________.A) specialty retailerB) independent off-price retailerC) departmental retailerD) full-service retailerE) category killer On September 1, Horton purchased $13,300 of inventory items on credit with the terms 1/15, net 30, FOB destination. Freight charges were $280. Payment for the purchase was made on September 18. Assuming Horton uses the perpetual inventory system and the net method of accounting for purchase discounts, what amount is recorded as inventory from this purchase?a. $13,580b. $13,300c. $13,167d. $13,447 Steam Workshop Downloader