Reaction 2 is 3.385 times faster compared to reaction 1
Further explanationThe reaction rate (v) shows the change in the concentration of the substance (changes in addition to concentrations for reaction products or changes in concentration reduction for reactants) per unit time.
Can be formulated:
Reaction: aA ---> bB
[tex]\large{\boxed{\boxed{\bold{v~=~-\frac{\Delta A}{\Delta t}}}}[/tex]
or
[tex]\large{\boxed{\boxed{\bold{v~=~+\frac{\Delta B}{\Delta t}}}}[/tex]
A = reagent
B = product
v = reaction rate
t = reaction time
For A + B reactions ---> C + D
Reaction speed can be formulated:
[tex]\large{\boxed{\boxed{\bold{v~=~k.[A]^a[B]^b}}}[/tex]
where
v = reaction speed, M / s
k = constant, mol¹⁻⁽ᵃ⁺ᵇ⁾. L⁽ᵃ⁺ᵇ⁾⁻¹. S⁻¹
a = reaction order to A
b = reaction order to B
[A] = [B] = concentration of substances
Reaction 1 uses 0.130 mol / l of reactant, and reaction 2 uses 0.440 mol / l of reactant.
Assuming a reaction order is one then:
reaction rate 1 =
v₁ = k. [A]
v₁ = k. 0.130
reaction rate 2 =
v₂ = k. [B]
v₂ = k. 0.440, so that
[tex]\frac{v_2}{v_1}~=~k.\frac{0.440}{0.130}[/tex]
[tex]\frac{v_2}{v_1}~=~3,385[/tex]
v₂ = 3.385. v₁
Learn morethe factor can decrease the rate of a chemical reaction
https://brainly.com/question/807610
increase the rate of a chemical reaction
https://brainly.com/question/1569924
Which of the following does not influence the effectiveness of a detergent
https://brainly.com/question/10136601
Keywords: reaction rate, reaction order, molar concentration, products, reactants
The rate of reaction 2 is approximately 3.38 times faster than reaction 1, assuming that it is a first-order reaction where the rate is directly proportional to the concentration of the reactant.
Explanation:The student is comparing the rates of two reactions with different initial concentrations of reactants. To determine how many times faster reaction 2 is compared to reaction 1, it is essential to understand the order of the reaction. In this context, it is suggested that the reaction is first order since rates of reaction are directly proportional to the concentration of the reactant, which follows the rate law rate = k[Reactant]. Therefore, if we double the concentration of the reactant, the reaction rate doubles, which is a characteristic of a first-order reaction. Hence, without needing explicit rate constants or measurements, we can infer that if the concentration of reactant in reaction 2 is 0.440 mol/L, which is roughly 3.38 times the concentration in reaction 1 (0.130 mol/L), the rate of reaction 2 would also be 3.38 times faster than reaction 1.
What type of microscope is used to show the fine detail of cell organelles, as well as the spindle fibers and chromosomes as seen during anaphase? A) compound light microscope B) binocular stereomicroscope C) scanning electron microscope D) transmission electron microscope
Hiya there friend!!
Your answer is D) Transmission Electron Microscope.
Have A Spooooky Thursday XDDD!!
Happy Halloween!!
Scariest Regards,
-Ans-
If 18.7 ml of 0.800 m hcl solution are needed to neutralize 5.00 ml of a household ammonia solution, what is the molar concentration of the ammonia? nh3(aq) + hcl(aq) →nh4cl(aq)
Which of the following is an example of a vertical merger?
How are deltas and rivers similar?
Answer:
The answer for this question would be B. Both feed into other bodies of water.
Balance the chemical equation, with the states of matter, describing the complete combustion of propane gas (c3h8).
The balanced chemical equation for the complete combustion of propane (C3H8) is: C3H8(g) + 5 O2(g) → 3 CO2(g) + 4 H2O(g). This shows propane reacting with oxygen to yield carbon dioxide and water, an example of complete combustion.
Explanation:The complete combustion of propane (C3H8) involves the reaction between propane and oxygen (O2) to yield carbon dioxide (CO2) and water (H2O). The balanced equation for this chemical reaction, with states of matter, is: C3H8(g) + 5 O2(g) → 3 CO2(g) + 4 H2O(g). This equation shows that one propane molecule reacts with five oxygen molecules to produce three carbon dioxide molecules and four water molecules. This reaction is a common example of complete combustion, in which the fuel fully burns in the presence of oxygen to produce carbon dioxide and water. If there isn't enough oxygen for complete combustion, incomplete combustion occurs, generating carbon monoxide (an extremely poisonous gas) and/or soot (unburned carbon particles).
Learn more about Combustion of Propane here:https://brainly.com/question/12328568
#SPJ12
Nutritional tables give the potassium content of a standard apple (3 apples/lb) as 159 mg. how many grams of potassium are in 4.82 kg of apples?
From the parameters given:
For a standard apple, the potassium content = 159 mg
To determine the potassium content(in grams) in 4.82 kg of apples;
Then, we need to consider the conversion factors;
Recall that:
1 kg = 2.2 lbs
∴
4.82 kg will be =[tex]\mathbf{\dfrac{( 4.82 \ kg \times 2.2 \ lbs)}{1 \ \ kg}}[/tex]
4.82 kg will be = 10.604 lbs
However, Since there are three apples, then the potassium content in the apples will be:
= 3 apples/lb × 10.604 lbs
= 31.812 apples
Now, if the potassium content of a single standard apple = 159 mg
Thus, for 31.812 apples, we have the potassium content to be:
= 31.812 × 159 mg
= 5058.108 mg
We know that:
1 milligram(mg) = 0.001 gram(g)
5058.108 mg will be equal to:
[tex]\mathbf{= \dfrac{5058.108 \ mg \times 0.001 \ g}{1 mg}}[/tex]
= 5058.108 × 0.001 g
≅ 5.058 g
Therefore, we can conclude that the number of grams in 4.82 kg of apples is 5.058 g
Learn more about potassium here:
https://brainly.com/question/13321031?referrer=searchResults
How many neutrons do (k) potassium-39 and potassium-40 have, respectively?
in the early studies of chemistry, scientists used properties and changed to help identify compounds. this is still done today. if you were given the following observation about salt water, how would you classify it? “when electricity flows through a flask of salt water, bubbles form in the water. these bubbles, when collected, will burn.”
Which compound matches the ir spectrum best?
The matching compound to an IR spectrum can be determined by comparing the light absorption behaviors of distinct compounds to what is suggested by the spectrum. These behaviors—whether red, orange, yellow, or blue-green—are resultant of specific ligands' influence on their color of coordination complexes.
Explanation:To determine which compound matches an IR spectrum best, we evaluate the influence of the specific ligands coordinated to the metal center. This influence is on the color of coordination complexes by causing changes in light absorption due to alterations in energy between d orbitals. For example, compounds with strong-field ligands typically present as yellow, orange or red as they absorb higher-energy violet or blue light.
However, compounds with weak-field ligands are often blue-green, blue or indigo as they absorb lower-energy yellow, orange or red light. That's why the iron(II) complex [Fe(H₂O)6]SO4 appears blue-green, while the low-spin iron(II) complex K4[Fe(CN)6] appears pale yellow.
With the understanding of these principles, it's possible that you could identify the compound that matches the IR spectrum best by comparing the light absorption behaviors and corresponding colours of the respective compounds against those suggested by the spectrum.
Learn more about IR Spectrum here:https://brainly.com/question/29753167
#SPJ6
When comparing elements in the same column of the periodic table, which factor- distance or the number of protons seems to be the dominant factor?
In the periodic table, elements in the same column share similar properties due to the same number of protons or atomic number, not their distance from each other.
Explanation:When comparing elements in the same column of the periodic table, the dominant factor is the number of protons, which is associated with the atomic number of the element, not the distance.
The periodic table is designed in such a way that it arranges elements in increasing order of their atomic numbers, from top to bottom and left to right. The atomic number is essentially the number of protons in an element's nucleus. Furthermore, in electrically neutral atoms, the atomic number also equates to the number of electrons which determine the chemical behaviour of an element.
Elements that belong in the same column or group in the periodic table have the same electron configuration in their outer shells, which means they possess the same number of valence electrons. This, not the distance among them, accounts for the shared chemical characteristics among elements in the same group. For instance, both Lithium (Li) and Sodium (Na), which belong to the same column, both have one valence electron in their outermost shell.
Learn more about Periodic Table here:https://brainly.com/question/35461104
#SPJ12
The number of protons, or the atomic number, is the primary factor when comparing elements in the same column of the periodic table. The number of protons directly influences the properties of elements, including how they bond with other elements, as these properties are a periodic function of their atomic numbers.
Explanation:When comparing elements in the same column of the periodic table, the dominant factor is the number of protons, also known as the atomic number. The periodic table is arranged in increasing order of atomic numbers and atoms with similar properties are grouped in the same column. This is because the properties of the elements are periodic functions of their atomic numbers.
All electrically neutral atoms, the number of protons is equal to the number of electrons. Thus, each element, when electrically neutral, has a unique number of electrons equivalent to its atomic number. For instance, Li and Na atoms bond similarly to other atoms because they belong to the same column and have the same number of valence electrons. So, the number of protons is the primary factor for the properties of elements in the same column of the periodic table, not the distance.
Learn more about Atomic Number here:https://brainly.com/question/16858932
#SPJ11
What causes a substance to change states of matter?
A 5.0 gram sample of lead and a 3.2 gram sample of iron are placed into 367 mL of water. What will be the new volume level of water in units of mL?
A molecular biologist measures the mass of cofactor a in an average yeast cell. the mass is 74.06 pg . what is the total mass in micrograms of cofactor a in a yeast colony containing 105 cells
blank is defined as the distance something travels divided by the time it takes
The student's question asks about the definition of average speed, which is the distance traveled divided by the time it takes, and when direction is considered, this measure is referred to as average velocity.
The term the student is asking to define is average speed, which is a fundamental concept in physics. Average speed is calculated by dividing the total distance traveled by the total time it took to travel that distance. When the direction of travel is also taken into account, we refer to this as average velocity, which means that velocity equals displacement (change of position) divided by time.
In practice, if you were traveling in a car and you wanted to figure out your average speed, you would look at the odometer to see the distance covered and then divide by the number of hours or minutes it took to cover that distance.
To put it into symbols, for average speed s, if the total distance traveled is d and the total time taken is t, the average speed is expressed as:
s = d / t
Conversely, average velocity includes direction and is defined by the formula:
v = Δd / Δt
where Δd represents displacement and Δt represents the travel time.
A 0.1510 gram sample of a hydrocarbon produces 0.5008 gram CO2 and 0.1282 gram H2O in combustion analysis. Its
molecular weight is found to be 106. For this hydrocarbon, determine (a) it‟s percent composition; (b) its empirical
formula; (c) its molecular formula.
To determine the percent composition of the hydrocarbon, we first need to calculate the mass of carbon and hydrogen in the sample. From the combustion analysis, we can obtain the masses of CO2 and H2O produced. By comparing the moles of carbon and hydrogen, we can determine the empirical formula. The molecular formula is found by comparing the empirical formula mass with the given molar mass. Hence the correct answer is option B
Explanation:To determine the percent composition of the hydrocarbon, we first need to calculate the mass of carbon and hydrogen in the sample. From the combustion analysis, we know that 0.5008 grams of CO2 is produced. Since the molar mass of CO2 is 44.01 g/mol, this corresponds to 0.0114 moles of CO2. Similarly, we know that 0.1282 grams of H2O is produced. With the molar mass of H2O being 18.02 g/mol, this corresponds to 0.00713 moles of H2O. From these values, we can calculate the moles of carbon and hydrogen:
Moles of carbon = 0.0114 moles CO2 * 1 mole C / 1 mole CO2 = 0.0114 moles C
Moles of hydrogen = 0.00713 moles H2O * 2 moles H / 1 mole H2O = 0.01426 moles H
Now we divide both values by the smallest number of moles, which is 0.0114 moles:
Moles of carbon = 0.0114 moles C / 0.0114 moles C = 1 mole C
Moles of hydrogen = 0.01426 moles H / 0.0114 moles C = 1.25 moles H
The empirical formula therefore is CH. To find the molecular formula, we need to compare the empirical formula mass (14.03 g/mol) with the given molar mass (106 g/mol). The ratio is 106 g/mol / 14.03 g/mol = 7.56. This means that the molecular formula is 7.56 times the empirical formula, giving us C7.56H7.56. To simplify, we round this to C8H8. Therefore, the molecular formula of the hydrocarbon is C8H8.
Hence the correct answer is option B
How many fe atoms are contained in 787 g of fe?
Answer:
[tex]atomsFe=8.49x10^{24}atomsFe[/tex]
Explanation:
Hello,
To find the required atoms, we proceed to develop the following mole-mass-atom relationship:
[tex]atomsFe=787gFe*\frac{1molFe}{55.845gFe}*\frac{6.022x10^{23}atomsFe}{1molFe}\\atomsFe=8.49x10^{24}atomsFe[/tex]
Best regards.
The student conducts an experiment to determine the composition of a mixture of nahco3 and na2co3. the student places a sample of the mixture into a preweighted test tube that is attached to container that holds a drying agent. answer
The student's experiment involves applying gravimetric analysis to a mixture of nahco3 and na2co3 by measuring weight change after the application of a drying agent. The weight loss represents the moisture (water) content in the sample. An example of another gravimetric analysis method is the precipitation reaction where the weight of precipitate helps understand the concentration of analyte.
Explanation:The student's experiment to determine the composition of a mixture of nahco3 and na2co3 is a classic application of gravimetric analysis. In such a procedure, the composition of a mixture can be discovered by measuring the weight change of a sample when it undergoes a chemical reaction or a physical change.
In this specific case, the student is using a drying agent to measure the amount of water (moisture) present in a sample. The initial mass of the sample is taken (including the mixture and water weight). The drying agent then effectively removes the water from the sample. The post-drying mass of the sample is then taken, and the difference of weight is calculated. This difference presents the water content of the mixture.
In the context of gravimetric analysis, another example is the precipitation reaction. A solid mixture containing MgSO4 is dissolved in water and treated with an excess of Ba(NO3)2, resulting in the precipitation of BaSO4. The weight of the precipitate gives an idea about the amount of analyte in the initial mixture.
Learn more about Gravimetric Analysis here:https://brainly.com/question/30864235
#SPJ12
how many significant figures are in measurement 0.00304kg
What physical property makes wax good for making sculptures
Answer: Melting point.
Explanation:
The melting point of wax is very low which makes it suitable for making sculptures. It needs molding, cutting and melting of wax to make a sculpture.
such kind of modification in the wax is done by melting it at low temperature. More heat and effort is not required with wax as compared to other substances.
The wax cools down very easily after melting, it is hard when cools down and soft when heated to make the proper shape. All these properties makes the wax more suitable for making sculptures.
The value of ksp for srso4 is 2.8x10-7. what is the solubility of srso4 in moles per liter? 7.6 x 10-7 1.4 x 10-7 5.3 x 10-4 2.8 x 10-7
Answer : The correct answer is [tex]5.3\times 10^{-4}moles/L[/tex].
Solution : Given,
[tex]K_{sp}=2.8\times 10^{-7}[/tex]
The balanced equilibrium reaction is,
[tex]SrSO_4\rightleftharpoons Sr^{2+}+SO^{2-}_4[/tex]
At equilibrium s s
The expression for solubility constant is,
[tex]K_{sp}=[Sr^{2+}][SO^{2-}_4][/tex]
Now put the given values in this expression, we get
[tex]2.8\times 10^{-7}=(s)(s)\\2.8\times 10^{-7}=s^2\\s=5.29\times 10^{-4}=5.3\times 10^{-4}moles/L[/tex]
Therefore, the solubility of [tex]SrSO_4[/tex] in moles/L is [tex]5.3\times 10^{-4}[/tex].
Answer: The solubility of [tex]SrSO_4[/tex] is [tex]5.3\times 10^{-4}mol/L[/tex]
Explanation:
It is given that [tex]K_{sp}[/tex] of strontium sulfate is [tex]2.8\times 10^{-7} [/tex]
The balanced equilibrium reaction for ionization of [tex]SrSO_4[/tex] is given by:
[tex]SrSO_4\rightleftharpoons Sr^{2+}+SO^{2-}_4[/tex]
At equilibrium: s s
The equation to calculate solubility constant is given as:
[tex]K_{sp}=[Sr^{2+}][SO^{2-}_4][/tex]
Now put the given values in above equation, we get:
[tex]2.8\times 10^{-7}=(s)(s)\\2.8\times 10^{-7}=s^2\\s=5.29\times 10^{-4}\approx 5.3\times 10^{-4}moles/L[/tex]
Therefore, the solubility of [tex]SrSO_4[/tex] is [tex]5.3\times 10^{-4}mol/L[/tex]
Which is the correct Lewis structure for carbononitridic chloride (CNCl)? A B C
Explanation:
Lewis-dot structure : It shows the bonding between the atoms of a molecule and it also shows the unpaired electrons present in the molecule.
In the Lewis-dot structure the valance electrons are shown by 'dot'.
In structure of carbononitridic chloride , chlorine atom is single bonded to carbon where as carbon is bonded by triple bond with nitrogen atom. It is a linear molecule.
Carbononitridic chloride (CNCl) = Cl-C≡N
The Lewis dot structure of carbononitridic chloride is given in an image.
If a solution containing 16.38 g of mercury(ii) acetate is allowed to react completely with a solution containing 5.102 g of sodium dichromate, how many grams of solid precipitate will be formed?
To determine the grams of solid precipitate formed, calculate the moles of each reactant, and then use stoichiometry to calculate the moles and mass of the solid precipitate.
Explanation:To determine the grams of solid precipitate formed, we need to first write a balanced chemical equation for the reaction:
Hg2(CH3COO)2 + Na2Cr2O7 → Hg2Cr2O7 + 2NaCH3COO
Next, calculate the moles of each reactant:
Moles of Hg2(CH3COO)2 = 16.38 g / (2 * molar mass of Hg2(CH3COO)2)
Moles of Na2Cr2O7 = 5.102 g / (2 * molar mass of Na2Cr2O7)
Finally, using the stoichiometry of the balanced equation, calculate the moles of solid precipitate formed:
Moles of Hg2Cr2O7 = Moles of Hg2(CH3COO)2 * (1 mole of Hg2Cr2O7 / 1 mole of Hg2(CH3COO)2)
Finally, convert moles of solid precipitate to grams:
Mass of Hg2Cr2O7 = Moles of Hg2Cr2O7 * molar mass of Hg2Cr2O7
https://brainly.com/question/31870304
#SPJ12
Helppppppppppppppp helppppppppp
1- A __________ is a raised, flat-surfaced area bound on one or more sides by cliffs or steep slopes. A: hill B: plain C: plateau D: river ________________________________________________________________ 2- A __________ is the boundary between the land and an ocean or a lake. A: coastline B: dune C: glacier D: hill ________________________________________________________________ 3- A __________ is an area of land that rises very high above the land around it. A: lake B: mountain C: plain D: river
A Plateau is a raised, flat-surfaced area bound on one or more sides by cliffs or steep slopes.
A Coastline is the boundary between the land and an ocean or a lake.
A Mountain is an area of land that rises very high above the land around it.
What is Plateau , Coastline and Mountain ?A plateau is a flat, elevated landform that rises sharply above the surrounding area on at least one sideThe boundary of a coast, where land meets water, is called the coastline. Waves, tides, and currents help create coastlinesMountain is landform that rises prominently above its surroundings, generally exhibiting steep slopes, a relatively confined summit area, and considerable local relief.Answer ;
A Plateau is a raised, flat-surfaced area bound on one or more sides by cliffs or steep slopes.
A Coastline is the boundary between the land and an ocean or a lake.
A Mountain is an area of land that rises very high above the land around it.
Learn more about Land here ;
https://brainly.com/question/19985589
#SPJ2
Lithium carbonate, li2co3, contains 18.8 % lithium and is used in the treatment of mental illnesses such as bipolar disorder. what mass of lithium is present in a 1.00−g dose of lithium carbonate?
To find the mass of lithium in a 1.00-g dose of lithium carbonate, which contains 18.8% lithium, you multiply 0.188 by 1.00 g, resulting in 0.188 g of lithium.
Explanation:The mass of lithium present in a 1.00-g dose of lithium carbonate can be calculated by understanding that lithium carbonate (Li2CO3) contains 18.8% lithium by mass. To find the mass of lithium in a 1.00-g dose, we simply take 18.8% of 1.00 g.
To find the mass of lithium, multiply:
0.188 (the decimal equivalent of 18.8%) by 1.00 g of lithium carbonate.
Therefore, the mass of lithium in a 1.00-g dose of lithium carbonate is:
0.188 × 1.00 g = 0.188 g of lithium.
The speed of light is 3.00×108m/s. How long does it take for light to travel from Earth to the Moon and back again?
If we had 11.3 g of nitrogen and 2 g of hydrogen, how much nitrogen would remain if all the hydrogen was consumed? g
3H2 + N2 ........> 2NH3
This means that each 6 grams of hydrogen react with 28 grams of nitrogen. To know how many grams of nitrogen are required to react with 2 grams of hydrogen, we will simply do cross multiplication as follows:
mass of nitrogen = (2 x 28) / 6 = 9.334 grams
Therefore, if we have 11.3 grams of nitrogen, 9.334 grams would react with 2 grams of hydrogen.
remaining mass of nitrogen = 11.3 - 9.334 = 1.966 grams
An automobile gasoline tank holds 22 kg of gasoline. When the gasoline burns, 86 kg of oxygen is consumed and carbon dioxide and water are produced. What is the total combined mass of carbon dioxide and water produced?
The total combined mass of carbon dioxide and water produced from the combustion of 22 kg of gasoline is 198 kg.
Explanation:The total combined mass of carbon dioxide and water produced can be calculated by balancing the chemical equation of the combustion of gasoline and determining the molar ratios. From the given information, when 22 kg of gasoline burns, 86 kg of oxygen is consumed. Using the balanced equation, we can calculate the molar ratio between gasoline and carbon dioxide and water as follows:
2 mol of gasoline produces 8 mol of carbon dioxide and 10 mol of water.
Therefore, the total combined mass of carbon dioxide and water produced is 8/2 * 22 kg = 88 kg of carbon dioxide and 10/2 * 22 kg = 110 kg of water. So, the total combined mass of carbon dioxide and water produced is 88 + 110 = 198 kg.
Ca(OH)2 + H3PO4 = Ca3(PO4)2 + H2O
The balanced chemical equation 3Ca(OH)2 + 2H3PO4 → Ca3(PO4)2 + 6H2O indicates that 2.04 moles of calcium hydroxide are needed to react with 1.36 moles of phosphoric acid to produce calcium phosphate and water.
Explanation:The question pertains to a balanced chemical reaction where calcium hydroxide (Ca(OH)2) reacts with phosphoric acid (H3PO4) to produce calcium phosphate (Ca3(PO4)2) and water (H2O). The reaction is a typical acid-base reaction that results in the formation of a salt and water. In this case, the equation given is 3Ca(OH)2 + 2H3PO4 → Ca3(PO4)2 + 6H2O. To determine the amount of Ca(OH)2 needed to react with 1.36 mol of H3PO4, we can observe from the balanced equation that 3 moles of Ca(OH)2 are required for every 2 moles of H3PO4. Therefore, to react with 1.36 mol of H3PO4, we need (1.36 mol of H3PO4) × (3 mol Ca(OH)2 / 2 mol H3PO4) = 2.04 mol of Ca(OH)2.
If you were asked to convert 25 mg to the unit hg, which of the following would be the first fraction used in the conversion? ten to the negative third power hg over one g ten to the negative third power mg over one hg ten to the negative third power mg over one g ten to the negative third power g over one mg