By what process does oxygen move from the alveoli into the blood of the pulmonary capillaries?

Answers

Answer 1

Answer:

Diffusion

Explanation:

Diffusion is a simple process of molecules' movement, from their higher concentration to he area with their lower concentration. The process of oxygen movement from the alveoli into the blood of the pulmonary capillaries is called gas exchange and it is actually simple diffusion. Alveoli have huge surface area, thin cell walls and a lot of blood vessels around them. All of these are adaptations that facilitate gas exchange. There is a high oxygen gradient:  oxygen concentration in the alveoli is much higher (inhaled air) than in the surrounding capillaries so oxygen moves down its gradient-from the alveoli to the blood.


Related Questions

If an allele makes up one fourth of a population's alleles for a given trait, its relative frequency is

Answers

.25

This is because 1/4 = .25

To find the allele frequency, you need to find the decimal representation of the fraction.

For example: If an allele makes up four twentieths of a population's alleles, then the frequency would be .2 (4/20 = .2)

An alternative form of genes that are variant and are responsible for conferring the phenotypic character is called an allele. A single allele gets inherited to the offspring from each parent. The allele can make purebred or heterozygous traits.

The relative frequency is 25%.

What is the relative frequency and how it is calculated?

A chance or probability of the occurrence of the gene carrying the specific allele in the percentage of a certain population is called relative frequency.

The allele is the question that makes up the [tex]\dfrac{1}{4} \rm th[/tex] population hence,

[tex]\begin{aligned} & = \dfrac{1 }{4} \\\\& = 0.25\end{aligned}[/tex]

For calculating it in percentage:

[tex]\begin{aligned} & =0.25 \times 100\\\\& = 25 \%\end{aligned}[/tex]

Therefore, 25% is the relative frequency.

Learn more about relative frequency here:

https://brainly.com/question/16260418

Dan is on his high school swim team. Which muscle is the primary mover that allows him to perform a swimming stroke?

A.

Pectoralis major

B.

Infraspinatus

C.

Latissimus dorsi

D.

Supraspinatus

Answers

Answer:

it will be A

Explanation:

Answer:

A  Pectoralis major

The length of time required for half of the radioactive atoms in a sample to decay is its

Answers

Answer:

HALF LIFE.

Explanation:

The half life of a radioactive element refers to the length of time that is required for the half of the atoms of a particular sample of radioactive element to decay. For instance a radioactive element that a mass of 120 g and a half life of 2 years will be reduce to 60 g in two years. Half life is usually used to measure the rate of disintegration of an unstable isotope. The principle of half life of radioactive elements can be used to determine the relative ages of rocks.  

Approximately how many kg of carnivore biomass can be supported by a field plot containing 1,000 kg of plant material?

A) 10,000
B) 1,000
C) 100
D) 10
E) 1

Answers

1,000 i think I’m not sure

The location of the first nucleotide read by rna polymerase is the

Answers

Answer:

Promoter site (region)

Explanation:

RNA polymerase is known to be an enzyme that is involved in the synthesis of RNA from DNA by polymerizing the RNA from the 5’ to 3’ end. The process of RNA transcription from DNA begins at the promoter site (region) which is a designated base sequence that marks the beginning of transcription process on the long DNA strand.

Land-based plants must have mechanisms to disperse and scatter their seeds so that new plants don't grow in the shadow of old plants. Which of the following do gymnosperms, such as pine trees, rely on to disperse fertilized seed cones? A. Wind B. Animals that eat the seeds C. Animals, seed wings, and wind D. Seed wing structures

Answers

Answer:

Its c ,animals ,seed wings and wind

Explanation:

There are mainly 2 ways the seeds of gymnosperms are dispersed :-

The gymnosperms that are old become rip and their cones open up and the seeds are dispersed by the wind.There are small seed wings present on seeds that take the seed to long distance places The fruit of the gymnosperms gets eaten by the animals in different places as its their source of food .The seeds are not digested by the animals and excreted as a result the seed is dispersed far away from the source

The classification levels of a human are listed below from largest to smallest. Eukarya Animalia Chordata Mammalia Primates Hominidae Homo sapiens Which level of biological classification do Mammalia and Hominidae represent, respectively? class and family order and class family and species species and kingdom

Answers

Answer:

The answer is class and family.

Explanation:

Taxonomic groups are used for biological classification. There are eight main taxonomic groups: domain, kingdom, phylum, class, order, family, genus and species, with the domain as the most inclusive and species as the least inclusive. If we take a look on Mammalia and Hominidae classification, we can assume that Mammalia represents class, and Hominidae represents family:

1. Domain: Eukarya

2. Kingdom: Animalia

3. Phylum: Chordata

4. Class: Mammalia

5. Order: Primates

6. Family: Hominidae

7. Genus: Homo

8. Species: Homo sapiens

Answer:

the answer is class and family

Explanation:

Which best explains the importance of nitrogen in the cycling of energy and
matter?
A Nitrogen increases protein production in plants.
B Nitrogen decreases protein production in plants.
C Nitrogen decreases the effectiveness of photosynthesis.
D Nitrogen increases the effectiveness of photosynthesis.

Answers

Answer:

The correct option is A.

Explanation:

Nitrogen is a gas that is present in high quantity in the atmosphere. This gas contribute significantly to the growth and development of plants and that of animals. Nitrogen in the atmosphere usually get incorporated into the soil via lightening and it is typically fixed by nitrogen fixing bacteria. This nitrogen is then used as part of the nutrients that plants need to grow and develop and it is also used in the production of protein in plant parts. Animals use these plants as source of proteins in their diets. Ultimately the waste products derived from protein is return to the soil where they are broken down by decomposers to nitrogen forms that plants can use. Thus, nitrogen increases the production of proteins in plants.

Option A) Nitrogen increases protein production in plants, vital for growth and development, making it crucial in the cycling of energy.

The best explanation for the importance of nitrogen in the cycling of energy and matter is that nitrogen increases protein production in plants (Option A). Nitrogen is a critical macronutrient, essential for the synthesis of proteins, nucleic acids, and chlorophyll. Plants require these compounds for growth and development, and insufficient nitrogen can lead to stunted growth and chlorosis (yellowing of leaves). Atmospheric nitrogen (N₂) is abundant but not directly usable by plants; they rely on nitrogen fixation processes to convert it into biologically available forms like ammonia (NH3). Nitrogen is thus crucial for the primary productivity of plants and the overall health of ecosystems.

Would the pi values of the animal insulins be the same as, greater than, or less than human insulin?

Answers

The pI values for animals and human insulin are the same, with the exception of duck and chicken insulin.

What is a pI value?

The pI value is the isoelectric point of the protein or amino acid chain. The isoelectric point can be given as the pH value at which the net charge of the insulin molecule is zero.

The insulin molecule is composed of amino acids that are charged at a specific pH. With the change in the pH, charge transfer takes place and results in the net-zero pH at pI.

The changeable amino acids in animal insulin and human insulin are the same. Thus, the pI values for human and animal insulin are the same.

The exceptions to the condition are duck and chicken insulin.

Learn more about insulin here:

https://brainly.com/question/6658031

Final answer:

Animal insulins such as bovine and porcine may have different isoelectric points (pI) compared to human insulin due to variations in amino acid sequences. Recombinant DNA technology enables the production of insulin identical to human insulin, which circumvents the immune response issues caused by animal-sourced insulin.

Explanation:

The isoelectric point (pI) of animal insulins such as those derived from pigs (bovine) and cows (porcine) may differ from that of human insulin due to their amino acid composition differences. Pig insulin differs from human insulin by one amino acid and beef insulin by three. These sequence differences can affect the pI of the insulin molecules because pI is determined by the overall charge of the protein, which in turn is influenced by the presence and position of charged amino acids within the sequence.

Insulin's functionality is also related to its similarity to human insulin. Although animal insulins were effective in treating diabetes, they were recognized by the immune system as foreign, which could lead to an antibody response and require higher doses of insulin for treatment. Furthermore, the animal-derived insulin had the potential to induce other immunological complications.

With the advent of recombinant DNA technology, it has become possible to produce insulin that is identical to human insulin in bacteria like E. coli. This insulin has the same sequence and therefore the same pI as naturally occurring human insulin, eliminating the immune response seen with animal-sourced insulins and allowing for a more consistent and safe treatment for diabetes.

Which best contrasts flocking and schooling?

A)Flocking provides aerodynamic efficiency and schooling provides hydrodynamic efficiency.
B)Flocking provides protection and schooling provides hydrodynamic efficiency.
C)Flocking provides aerodynamic efficiency and schooling provides foraging benefits.
D)Flocking provides reproductive benefits and schooling provides foraging benefits.

Answers

Hello There!

A)Flocking provides aerodynamic efficiency and schooling provides hydrodynamic efficiency.

Answer:

A)

Explanation:

Flocking provides aerodynamic efficiency and schooling provides hydrodynamic efficiency. ... The birds are aerodynamically efficient so they can use the air around them to reduce the energy used to fly.

Feather color in budgies is determined by two different genes. True or False

Answers

Answer:

the answer is true.

The _____ species concept is the most applicable to classifying species from the fossil record.

Answers

Answer:

Morphological (Morphology)

Explanation:

Morphology is a branch of biology dealing with the study of the form and structure of organisms and their specific structural features.

Humans have more than 100 vestigial structures in their bodies. Comparative morpho. is an important tool that helps determine evolutionary relationships between organisms and whether or not they share common ancestors.

However, it is also important evidence for evolution.


1.) When the Greenhouse Effect is exaggerated through human activities more and more heat will be trapped on the Earth, increasing the average temperature. What is this called?

A.) Global cooling
B.) Global Warming
C.) Photosynthesis
D.) CO2 Emissions


2.) What is the largest source of U.S. greenhouse gas emissions?
A.) Agriculture
B.) Transportation
C.) Electricity production
D.) Home heating


3.) What is an example of the greenhouse effect?

A.) Steam rising from boiling water
B.) Baking brownies on a metal pan.
C.) Stepping on hot pavement and it burning your feet.
D.) Inside of a car becoming hot on a warm day.


4.) What are the two most major gases produced by people?

A.) Methane and Fluorine
B.) Carbon Dioxide and Methane
C.) Carbon Dioxide and Nitrous Oxide
D.) Methane and Nitrous Oxide

Answers

1 - B

2 - Also B

3 - D

4 - B again

Anything else i can help with Dean?

1. Global warming

2. Transportation

3. Inside of a car becoming hot on a warm day.

4.Carbon Dioxide and Methane

What is greenhouse effect?The greenhouse effect is a natural mechanism that causes the surface of the Earth to warm. Some of the Sun's energy is reflected back to space, while the rest is absorbed and re-radiated by greenhouse gases as it enters the Earth's atmosphere.Emissions of carbon dioxide. The principal greenhouse gas emitted by human activity is carbon dioxide (CO2). Carbon dioxide is released into the atmosphere as a result of the combustion of fossil fuels (coal, natural gas, and oil), solid waste, trees, and other biological materials, as well as chemical processes.Coal, natural gas, and oil production and transportation all generate methane. Livestock and other agricultural techniques, land use, and the breakdown of organic material in municipal solid waste landfills all contribute to methane emissions.

learn more about greenhouse effect here:

https://brainly.com/question/19521661

#SPJ2

When we look at islands across the planet (think the islands of the Galápagos and Hawaii) we see that there are a remarkable number of island endemic species, species that are found nowhere else. What is a possible explanation for this observation?Sympatric speciation on islands is easier than in mainland environments because rates of chromosomal evolution are higher on islands.Extinction rates are lower in islands so species that have gone extinct elsewhere persist on islands.Sympatric speciation on islands is easier than in mainland environments because levels of disruptive selection are higher on islands.Vicariance events are more common on islands than in mainland environments.Island isolation promotes allopatric speciation.Island isolation promotes allopatric speciation.

Answers

Answer:

Island isolation promotes allopatric speciation.

Explanation:

Allopatric speciation is a form of speciation (creation of new species) that occurs as a result of geographic isolation. This means that a part of population becomes physically separated from the initial main population. There is no gene flow between these two populations and as a result the two populations  reach a high level  of genetic divergence. They can no longer interbreed which means they become two different species (speciation).

New populations evolve as result of mutation, genetic drift and natural selection.

For example, Galapagos finches are isolated from others by the ocean (geographic isolation).  Because of the isolation, the finches don’t breed with one another. So, they developed unique characteristics and became endemic.

Which statement about reproduction is true? A. Angiosperms reproduce using seeds, but gymnosperms do not. B. Gymnosperms reproduce using seeds, but angiosperms do not. C. Both angiosperms and gymnosperms reproduce using seeds. D. Neither angiosperms nor gymnosperms reproduce using seeds.

Answers

Answer:

c

Explanation:

A is correct because Gynosperms using female and male cones and Angiosperms use seeds.....Brainliest?

Different ratios occur in crosses with single gene pairs or two gene pairs. What types of ratios are likely to occur in crosses dealing with a single gene pair?

Answers

Answer:

Genotype ratio: 1, 1:1, 1:2:1

Phenotype ratio: 1, 3:1

Explanation:

Single gene pair cross is also known as monohybrid cross. This means that only one gene usually with two alleles is observed and it express one trait.

For example, if we name the gene for a certain trait with A, the possible genotypes are AA (dominant homozygous), aa (recessive homozygous) and Aa (heterozygous). Possible crosses are:

P: AA  x  AA

F1 : all of them are AA

The same is with aa x aa (all of the offspring are with aa genotype)

P: AA  x  Aa

F1: AA Aa AA Aa  (genotype ratio 1:1) (phenotype ratio 3:1)

The same genotype ratio is  in aa x Aa (offspring will have aa Aa aa Aa-(genotype ratio 1:1) (phenotype ratio 1:1)

P: Aa x Aa

F1: AA Aa Aa aa (genotype ratio 1:2:1) (phenotype ratio 3:1)

P: AA x aa

F1: Aa Aa Aa Aa (1)

Final answer:

In genetics, single-gene pair crosses often result in simple Mendelian ratios, such as a 3:1 phenotype ratio and a 1:2:1 genotype ratio in a monohybrid cross with complete dominance. Two-gene interactions can lead to more complex ratios, such as 9:3:3:1 in a dihybrid cross, and are characterized by a phenotypic ratio totaling 16 parts when genes are assorting independently into gametes.

Explanation:

In genetics, when dealing with crosses involving a single gene pair, the typical ratios observed are a result of the modes of inheritance such as complete dominance, incomplete dominance, or co-dominance. For example, in a monohybrid cross of heterozygote parents with complete dominance (Aa x Aa), the expected phenotype ratio for the dominant versus recessive trait is 3:1, and the genotype ratio is 1:2:1 (where the genotypes are AA:Aa:aa). However, in situations involving epistasis or other gene interactions, even when considering a single gene pair, the phenotypic ratios can differ from the expected simple Mendelian ratios.

It's important to differentiate between single-gene crosses and two-gene interactions. A phenotypic ratio that totals 16 is indicative of a two-gene interaction, such as observed in Mendel's dihybrid cross which gives a 9:3:3:1 ratio. However, for a single-gene pair, we typically do not encounter ratios that total 16, unless modified by gene interactions or epistasis.

List the structures that make up the pathway of air through the respiratory system starting with the external nares.

Answers

Answer:

Nose: Air is inhaled through the nostrils (and sometimes through the mouth) where it is filtered by the hairs and cilia to remove dust particles and moistened. The nasal cavity also moderates the temperature of the inhaled air.

Pharynx: This is a common passage for food, water, and air. It leads from both the nose and the mouth and leads to both the trachea (windpipe) and the oesophagus (foodpipe).

Larynx: This is the voice box situated just over the trachea and has a flap called the epiglottis which closes during swallowing to prevent food from entering the trachea and opens during breathing.

Trachea: Air now enters the windpipe which is situated behind the sternum (breastbone) and between the two lungs.

Bronchus: From the trachea, two bronchi (one bronchus for each lung) enter the lungs and divide and subdivide into secondary and tertiary bronchi, getting narrower as they proceed into the lung.

Bronchioles: The tertiary bronchi branch into fine tubules called bronchioles, the last passageways for air.

Alveoli:. Air ends its pathway in the alveoli (sing. alveolus) which are tiny sacs with very fine singe-celled walls. These alveoli are surrounded by capillaries that connect the pulmonary arteries and veins and that enable transfer of oxygen and carbon dioxide.

Final answer:

The pathway of air through the respiratory system starting with the external nares includes the nose, mouth, larynx, pharynx, lungs, and diaphragm.

Explanation:

The pathway of air through the respiratory system starting with the external nares includes the following structures:

Nose: The major entrance and exit for the respiratory system.Mouth: A secondary opening for the respiratory tract.Larynx: Also known as the voice box, it connects the pharynx to the trachea.Pharynx: It is composed of three major sections: the nasopharynx, oropharynx, and laryngopharynx. It connects the nasal cavity and oral cavity to the trachea and esophagus.Lungs: The main organs of the respiratory system where gas exchange takes place.Diaphragm: A dome-shaped muscle that separates the chest and abdominal cavities and plays a role in breathing.

Consider the genetic cross for absent-mindedness, which is a dominant trait. What is the probability that the offspring of this cross will be absent-minded?

Answers

Answer:

The correct answer is D.} 100%

Explanation:

Answer:

100%

Explanation:

Which stage of cellular respiration produces the most atp?

Answers

Answer:

Electron transport Chain (Oxidative phosphorylation)

Explanation:

Cellular respiration can be defined as the process that involves the breakdown of glucose molecules into CO2 and H2O to generate energy inform of Adenosine Triphosphate (ATP).  Also, cellular respiration usually takes place in the cells of an organism by converting biochemical energy present nutrients into Adenosine Triphosphate. Furthermore, it takes place in three stages which includes: glycolysis, TCA cycle and Electron transport (Oxidative phosphorylation). Thus, oxidative phosphorylation is the final stage of aerobic cellular respiration that produces maximum ATPs.

Final answer:

The oxidative phosphorylation stage of cellular respiration produces the most ATP. This stage utilizes an electron transport system to create an electrochemical gradient, which facilitates the production of ATP. Although other stages also produce ATP, about 90% is made during oxidative phosphorylation.

Explanation:

The stage of cellular respiration that produces the most ATP is the Oxidative Phosphorylation stage. During this stage, NADH and FADH2, made in glycolysis, the transition reaction, and the Krebs cycle, transfer their electrons to an electron transport system (ETS). This series of reactions is facilitated by protein complexes located in the inner membrane of a cell's mitochondria. The energy from the transferred electrons then creates an electrochemical gradient across the membrane, leading to the production of ATP through chemiosmosis, also known as oxidative phosphorylation.

It's important to note that while other phases such as glycolysis and the Krebs cycle also produce ATP, the bulk, about 90%, is generated during oxidative phosphorylation. This makes oxidative phosphorylation the most ATP-rich stage of cellular respiration.

For every oxidized NADH in the electron transport chain (ETC), approximately three ATP are produced, and around two ATP are produced for each oxidized FADH2. Consequently, one glucose molecule that enters the aerobic respiration process can net roughly 36 ATP in total.

Learn more about Oxidative Phosphorylation here:

https://brainly.com/question/34284794

#SPJ12

What is the floor of an aquatic biome called? benthic zone photic zone marine zone aphotic zone

Answers

Answer:  The floor of an aquatic biome is called the benthic zone.

Explanation:

Benthic zone is called as the floor of an aquatic biome. So, the correct option is A.

What is Benthic zone?

The benthic zone is defined as the lowest ecological zone in a water body, usually consisting of sediments on the ocean floor, where these sediments play an important role in providing nutrients for the organisms that live in the benthic zone.

Benthic zone is called as the bottom zone of a water body, fresh or marine where the light penetration is nil. Benthic animals include the polychaetas which live in or on the bottom while the animals that live in or on the bottom of the Bay are called the benthic community.

Despite being hidden, the benthic zone is a crucial component of lake ecosystems. Many aquatic species can breed, forage, and find shelter in this area alone. The shallow coastal waters' benthic zones offer optimum environment for animal and amphibian breeding.

So, the correct option is A.

Learn more about Benthic zone, here:

https://brainly.com/question/10124276

#SPJ7

The sporophyte generation is:a. diploidb. haploidc. polyploid

Answers

Answer:

a. diploid

Explanation:

After the fertilization process between haploid egg cell and haploid sperm cell, diploid zygote is formed. Zygote has two sets of chromosomes (one from each gamete) which means it is diploid. Sporophyte stage of life cycle will develop from diploid zygote. During the life cycle of a plant (or algae) sporophyte phase alternates with a gametophyte phase which is haploid. In both, seed plants and flowering plants sporophyte phase (roots, stem, leves, cones/flowers) is more prominent than gametophyte phase (pollen, embryo sac).

Sporophyte phase produces spores via meiosis that develop into gametophte.

Please help!!
Create three relevant questions that you would like answered or clarified about the role of
DNA and chromosomes. Focus on the following areas as you generate questions:
i. The cause and effect relationship between the genetic code and gene expression
ii. Mechanisms of gene regulation
iii. The role of DNA segments that do not code for proteins

Answers

Answer:

1) How is DNA compacted to form a chromosome?

2) How to cells undergo differentiation to form the numerous types of cells in the body?

3) What are some functions for non-coding DNA [e.g. Centromere, telomere, promoter, terminator, silencer, enhancer, introns (alternative splicing)]

Explanation:

1) involves packing of DNA that involves DNA associating with H1, H2a, H2b, H3, H4 histone, scaffolding proteins and link genes)

2) since all somatic cells are genetically identical, differentiation involves silencing certain genes through different chemical signals that the stem cell's environment is in, resulting in certain genes related to its function being expressed while other genes are silenced.

3) non coding sequences although the bulk of DNA, has numerous importsnt roles. ( centromere allow for association of kinetochore proteins to form kinetochore that acts as site of attachment for microfibrils during mitosis or meiosis) (telomere act as sacrificial DNA that prevents erosion of Coding DNA during every round of semi-conservative DNA replication)...

Answer:

Question 1-  who 64 codon is responsible for the formation of all types of protein? who a codon expresses itself to form an amino acid?

Question 2- what is lac operon?

Question 3 - what are the exon and intros in the Hnrna and what are their functions?

Explanation:

Answer 1-  A codon is a group is three nitrogenous bases that together code a specific amino acid.  These base pairs arrange themselves in a new order to code for a new amino acid.

Answer 2-  Lac operon is a regulation unit present in the nucleus, which helps in the regulation of the formation of the protein in the presence of the inducer unit.

Answer 3- exons and introns are the codings and non-coding sequences of the DNA respectively. These introns are removed under the modification setup so that Rna can make protein without any hindrance.

For more genetic information, refer to the link:-

https://brainly.com/question/15159232?referrer=searchResults

Which type of star acts like a “lighthouse” that periodically emits radio waves into space?


a. black hole

b. neutron star

c. pulsar

d. supernova

Answers

Answer: B

Explanation:

had this in earth and space

The most efficient control of eukaryotic gene expression is achieved at the level ofA) replication.B) transcription initiation.C) post-transcription.D) translation initiation.E) post-translation.

Answers

B) transcription initiation

Which of the following is an abiotic factor that affects plant growth?
A.)taller plants
B.)bees
C.)worms
D.)temperature range​

Answers

Temperature range is the factor

Temperature range is the answer

I will mark brainliest! Complete the possible outcomes for each generation in the pedigree chart.

Fillers:

aa AA Aa

Answers

Answer:

The correct sequence of fillers left to right are AA. Aa, and aa.

Explanation:

In the given pedigree chart, parents are heterozygous Aa and homozygous AA produce gametes A and a, and A and A respectively. All gametes will assort and possible outcomes will be AA, AA, Aa, and Aa in first generation.

Cross between Aa and Aa will produce gametes A, A, and A, a. All these gametes assorted and produce offspring and outcomes are AA, aa, Aa, and Aa in second generation.

Thus, The correct sequence of fillers left to right are AA. Aa, and aa.

Answer:

The correct sequence of fillers left to right are AA. Aa, and aa.

Explanation:

Which of the following is often provided by anthropologists and biologists as a possible explanation for the development of bipedal hominids? A. Standing upright allowed for better tree climbing B. Standing upright allowed for more efficient movement C. Standing upright allowed for sightlines over tall grasses and savannah shrubbery D. Standing upright allowed for better foraging of tree fruits

Answers

Answer:

C. Standing upright allowed for sightlines over tall grasses and savanna shrubbery

Explanation:

One of the most accepted theories about the development of bipedalism of the hominids is that it was mostly because of the tall grasses and shrubs, so standing upright was providing them with better view. Once the environment changed, and the tropical rainforest was turned into savanna, the hominid ancestors had to adapt in order to survive. Being helpless against the large predators, they needed something in order to be able to detect them from bigger distance so that they can avoid them. The solution seemed to be to be able to see above the tall grasses and shrubs, which meant that they started to use their legs more and more in order to stand up taller. This gradually led to better development of legs for upright standing and walking, also causing changes in the structure of the body, providing the hominids with an adaptation that enabled them to survive in the very dangerous environment.

Answer:

The answer is "C. Standing upright allowed for sightlines over tall grasses and savanna shrubbery"

Hope this helps!!!

Based on the information in the table, eating which type of oil would most
likely cause buildup in blood vessels?

Answers

Well... a "build up in blood vessels" is actually called a CLOT. That should help you. :)

Answer: The answer is Coconut oil For Apex.

Explanation:

it has the most saturated fat. (85)

A chromosomal mutation where a segment breaks off, flips, and then reattaches itself is called a(n): reciprocal translocation. translocation. inversion. duplication. deletion.

Answers

Answer:

Inversion

Explanation:

This type of mutation is not as lethal on addition of deletion mutations. This is because it does not cause a frame-shift mutation.  Inversion only reverses the order of nucleotides in a section of a DNA strand and the genes in this regions may produce defective proteins.

What percentage of water on earth is freshwater?

Answers

2.5%

It is a very small percentage.

Other Questions
____ hormones produce detrimental and undesirable side effects (even more so in women) such as hypertension, fluid retention, decreased breast size, and a deepening of the voice. At which point along this stream are sedimentsmost likelyto accumulate, forming a point bar?A.4B.3C.2 I need help please. Quick. what are the products of photosynthesis ? What is the surface area of the right prism given below? what do you predict will occur to mark the end the cenozoic era? A record is _____.1one set of data or complete entry2a category3a group of files4lists of data The way to distinguish classical conditioning from operant conditioning is that _______________________. Classical conditioning is unconscious whereas operant conditioning is conscious. Classical conditioning is automatic and quick whereas operant conditioning is more controlled and slow. Classical conditioning involves animals whereas operant conditioning involves humans. Classical conditioning involves an association between two stimuli and whereas operant conditioning requires behavior on the part of the learner. What are the differences between Dr. Jekyll and Mr. Hyde? Check all that apply. Dr. Jekyll is tall, while Mr. Hyde is small. Dr. Jekyll is serious, while Mr. Hyde is funny. Dr. Jekyll is older, while Mr. Hyde is young. Dr. Jekyll is good, while Mr. Hyde is evil. Dr. Jekyll is happy, while Mr. Hyde is sad. What course of action might a government take to respond to the downturn revealed in this graph? A. reducing the size of its armed forces B. laying off unnecessary workersC. decrease taxes to increase consumer spending D. encouraging people to travel overseas what was the purpose of the appeasment plan ? did it succeed A circle is centered at N (-6 -2) The point E (-1, 1) is on the circle. Where does the point H (-10, -7) lie? How does the respiratory system control your voice what is the center of the circle given by the equation x^2+y^2-14y-15=0 Main idea of the declaration of independence Which of the following best describes the way that genes, chromosomes, and DNA are related?a.Chromosomes contain several genes, which are made up of sequences of DNA.b.Genes contain several chromosomes, which are made up of sequences of DNA.c.Genes contain several sequences of DNA, which are made up of chromosomes.d.Sequences of DNA contain several genes, which are made up of chromosomes. Elimination method 2x-7y=04x+9y=0 Abc is a rectangle find m angle AEB Over the last 120 years, the average temperature of the troposphere has _____.stayed the samecycled on an annual basisincreased by 0.5Cdecreased by 0.5C Drag each tile to the correct box.Match the people who were a major part of the Iranian Revolution to their descriptions.leader of Iran beforethe Iranian Revolutionnationalist prime ministerof Iranleader of the Islamic Republicafter the RevolutionMohammed MossadegharrowRightAyatollah KhomeiniarrowRightShah MohammedReza PahlaviarrowRight Steam Workshop Downloader