The pH of a 0.20 M solution of KCN is [tex]\boxed{11.31}[/tex].
Further Explanation:
pH is used to describe acidity or basicity of substances. Its range varies from 0 to 14. It is defined as negative logarithmof hydrogen ion concentration.
The expression for pH is mentioned below.
[tex]{\text{pH}} = - \log \left[ {{{\text{H}}^ + }} \right][/tex] …… (1)
Where [tex]\left[ {{{\text{H}}^ + }}\right][/tex] is the concentration of hydrogen ion.
Dissociation reaction of KCN is as follows:
[tex]{\text{KCN}} \to {{\text{K}}^ + } + {\text{C}}{{\text{N}}^ - }[/tex]
Cyanide ions thus formed can react with water to form HCN and [tex]{\text{O}}{{\text{H}}^ - }[/tex] as follows:
[tex]{\text{C}}{{\text{N}}^ - } + {{\text{H}}_{\text{2}}}{\text{O}} \rightleftharpoons {\text{HCN}} + {\text{O}}{{\text{H}}^ - }[/tex]
The relation between [tex]{{\text{K}}_{\text{w}}}[/tex], [tex]{{\text{K}}_{\text{b}}}[/tex] and [tex]{{\text{K}}_{\text{a}}}[/tex] is expressed by following relation:
[tex]{{\text{K}}_{\text{w}}} = {{\text{K}}_{\text{b}}} \cdot {{\text{K}}_{\text{a}}}[/tex] …… (2)
Where,
[tex]{{\text{K}}_{\text{w}}}[/tex] is the ionic product constant of water.
[tex]{{\text{K}}_{\text{b}}}[/tex] is the dissociation constant of base.
[tex]{{\text{K}}_{\text{a}}}[/tex] is the dissociation constant of acid.
The value of [tex]{{\text{K}}_{\text{w}}}[/tex] is [tex]{10^{ - 14}}[/tex].
The value of [tex]{{\text{K}}_{\text{a}}}[/tex] is [tex]4.9 \times {10^{ - 10}}[/tex].
Substitute these values in equation (2).
[tex]{10^{ - 14}} = {{\text{K}}_{\text{b}}}\left( {4.9 \times {{10}^{ - 10}}} \right)[/tex]
Solve for [tex]{{\text{K}}_{\text{b}}}[/tex],
[tex]{{\text{K}}_{\text{b}}} = 2 \times {10^{ - 5}}[/tex]
The expression for [tex]{{\text{K}}_{\text{b}}}[/tex] of HCN is as follows:
[tex]{{\text{K}}_{\text{b}}} = \dfrac{{\left[ {{\text{HCN}}} \right]\left[ {{\text{O}}{{\text{H}}^ - }} \right]}}{{\left[ {{\text{C}}{{\text{N}}^ - }} \right]}}[/tex] …… (3)
Consider x to be change in equilibrium concentration. Therefore, equilibrium concentrationof [tex]{\text{C}}{{\text{N}}^ - }[/tex], HCN and becomes (0.2 – x), x and x respectively.
[tex]{\text{2}} \times {\text{1}}{{\text{0}}^{ - 5}} = \dfrac{{{x^2}}}{{\left( {0.2 - x} \right)}}[/tex]
Solving for x,
[tex]x = 0.002[/tex]
Therefore concentration of hydroxide ion is 0.002 M.
The expression to calculate pOH is as follows:
[tex]{\text{pOH}} = - \log \left[ {{\text{O}}{{\text{H}}^ - }} \right][/tex] …… (4)
Substitute 0.002 M for [tex]\left[ {{\text{O}}{{\text{H}}^ - }} \right][/tex] in equation (4).
[tex]\begin{aligned}{\text{pOH}} &= - \log \left( {0.002{\text{ M}}} \right) \\&= 2.69 \\\end{aligned}[/tex]
The relation between pH and pOH is as follows:
pH + pOH = 14 …… (5)
Substitute 2.69 for pOH in equation (4).
[tex]{\text{pH}} + 2.69 = 14[/tex]
Solving for pH,
pH = 11.31
Learn more:
Write the chemical equation responsible for pH of buffer containing and : https://brainly.com/question/8851686 Reason for the acidic and basic nature of amino acid. https://brainly.com/question/5050077Answer details:
Grade: High School
Subject: Chemistry
Chapter: Acids, base and salts
Keywords: pH, pOH, 11.31, 2.69, 14, 0.002 M, Kb, Kw, Ka, 10^-14, 2*10^-5.
The most probable mechanism of reactivity for the solvolysis of 2-chloro-norbornane is
The rate determining step for the reactivity for the solvolysis of 2-chloro-norbornane depends only on the decomposition of a single molecular species which is the 2-chloro-norbornane itself. For unimolecular reactions, the mechanism pathway being followed is that of an SN1 mechanism.
Answer:
SN1 mechanism
An archeological artifact was subjected to radiocarbon dating. the artifact showed a carbon-14 decay rate of 13.8 disintegrations/min per gram of carbon. carbon-14 has a half-life of 5715 years, and currently living organisms decay at the rate of 15.3 disintegrations/min per gram of carbon. what is the approximate age of the artifact?
The element that has a valence configuration of 2s2 is ________.
Answer: The element having given valence electronic configuration is beryllium.
Explanation:
Electronic configuration is defined as the representation of electrons around the nucleus of an atom. Number of electrons in an atom are determined by the atomic number of that atom.
Valence electrons are defined as the electrons present in the outermost shell of an atom.
We are given:
Valence electronic configuration of an atom = [tex]2s^2[/tex]
So, the actual electronic configuration of atom will be [tex]1s^22s^2[/tex]
Total number of electrons = 2 + 2 = 4
So, the atomic number of given element is 4 and the element is beryllium
Hence, the element having given valence electronic configuration is beryllium.
Given the formula m1v1=m2v2, where m indicates concentration and v indicates volume, which equation represents the correct way to find the concentration of the dilute solution (m2)?
M₂ = (M₁V₁) / V₂
Further explanationDilution represents the addition of a solvent (water) without adding solutes. In dilution, the mole of the solute remains, so the concentration of the solution will drop.
When calculating dilution factors, the units of volume and concentration must remain consistent.
Dilution calculations can be typically performed following the formula:
[tex]\boxed{ \ M_1V_1 = M_2V_2 \ }[/tex].
with,
V₁ and V₂ as volume before and after dilutionM₁ and M₂ as the molarity of the solution before and after dilution.The equation which represents the correct way to find the concentration of the dilute solution (M₂) is
[tex]\boxed{ \ M_2 = \frac{M_1V_1}{V_2} \ }[/tex].
_ _ _ _ _ _ _ _ _ _
Example:
How much must be dissolved to carry out 5 liters of 0.4 M methanol solution? How much water do you require adding?
M₁ = 25 MV₂ = 5 LM₂ = 0.4 MV₁ = ?[tex]\boxed{ \ V_1 = \frac{M_2V_2}{M_1} \ }[/tex]
[tex]\boxed{ \ V_1 = \frac{0.4 \times 5}{25} \ }[/tex]
[tex]\boxed{ \ V_1 = \frac{0.4}{5} \ }[/tex]
[tex]\boxed{ \ V_1 = \frac{0.8}{10} \ }[/tex]
[tex]\boxed{ \ V_1 = \frac{8}{100} \ }[/tex]
Thus we have 0.08 L or 80 mL of 25 M methanol solution.The amount of water that needs to be added is 5 L - 0.08 L = 4.92 L or 492 mL._ _ _ _ _ _ _ _ _ _
Notes:
A solution consists precisely of a solute and a solvent. There are several ways to properly express the concentration of a solution, one of which is molarity. Molarity is also known as molar concentration with the symbol unit M or molar or mole/L.The molarity (M) of a solution is calculated by allowing the moles of solute and divided by the number of liters of solution.[tex]\boxed{ \ molarity = \frac{moles \ of \ solute}{liters \ of \ solution} \ }[/tex]
Learn moreTo make a 0.500 M solution, one could take 0.500 moles of solute and add? https://brainly.com/question/10278982 The molality and mole fraction of water https://brainly.com/question/10861444 How many liters of the 50% solution and how many liters of the 90% solution will be used? https://brainly.com/question/13034221M₂ = (M₁V₁) / V₂ is the equation which represents the correct way to find the concentration of the dilute solution.
In chemistry, concentration is the ratio of solute to solvent or solution in a given volume. The amount of material in various solutions is quantified and compared using this crucial characteristic. Chemistry requires concentration in many different areas, such as chemical reactions, analyte detection, and solution preparation. Concentration can be expressed in a number of different ways, including molarity (M), mass/volume percent (%), parts per million (ppm), and mole fraction. Depending on the needs of the experiment or application, each approach offers a distinctive viewpoint on the solute concentration in a solution and is applied in various situations.
M₂ V₂= (M₁V₁)
M₂ = (M₁V₁) / V₂
To know more about concentration, here:
https://brainly.com/question/30862855
#SPJ6