If He gas has an average kinetic energy of 4310 J/mol under certain conditions, what is the root mean square speed of O2 gas molecules under the same conditions? (given that He and O_2 gas are at the same temperature what can you conclude about 0_2's average kinetic energy?) variable equations used to find the solution are greatly appreciated!!!

Answers

Answer 1

Answer:

The root mean square speed of O2 gas molecules is

519.01 m/s

Explanation:

The root mean square velocity  :

[tex]v_{rms}=\sqrt{\frac{3RT}{M}}[/tex]

[tex]K.E_{avg}=\frac{3}{2}RT[/tex]

[tex]K.E =\frac{1}{2}mv_{rms}^{2}[/tex]

Molar mass , M

For He = 4 g/mol

For O2 = 2 x 16 = 32 g/mol

O2 = 32/1000 = 0.032 Kg/mol

First calculate the temperature at which the K.E of He is 4310J/mol

K.E of He =

[tex]K.E_{avg}=\frac{3}{2}RT[/tex]

[tex]T=\frac{2(K.E)}{3(R)}[/tex]

K.E of He = 4310 J/mol

[tex]T=\frac{2(4310J/mol)}{3(8.314J/Kmol)}[/tex]

[tex]T=345.60K[/tex]

Now , Use Vrms to calculate the velocity of O2

[tex]v_{rms}=\sqrt{\frac{3(8.314J/Kmol)(345.60K)}{0.032Kg/mol}}[/tex]

[tex]v_{rms}=\sqrt{\frac{8619.9552}{0.032}}[/tex]

[tex]v_{rms}=\sqrt{26935.001}[/tex]

[tex]v_{rms}=519.01m/s[/tex]

Answer 2
Final answer:

The root mean square speed of O2 gas molecules can be calculated using the average kinetic energy of He gas and the formula Urms = sqrt(3 * kB * T / m).

Explanation:

The root mean square speed (Urms) of gas molecules can be calculated using the equation:



Urms = sqrt(3 * kB * T / m)



Where kB is the Boltzmann constant (1.38 x 10^-23 J/K), T is the temperature in Kelvin, and m is the molar mass of the gas.



Since the average kinetic energy (KEavg) of helium gas (He) is given as 4310 J/mol, we can assume that the temperature is the same for He and oxygen gas (O2). We know that the root mean square speed of He gas is close to 500 m/s. By using the equation and the given data, we can calculate the root mean square speed of O2 gas molecules.

Learn more about Root mean square speed of gas molecules here:

https://brainly.com/question/4108751

#SPJ3


Related Questions

A sample of carbon dioxide(CO2) has a mass of 52.0g. What is the mass in grams of one molecule of CO2? SHOW WORK AND EXPLAIN

Answers

Answer:

52.0 gof CO2 contains 7.1 *10^23 molecules

1 molecule of CO2 has a mass of 7.3*10^-23 grams

Explanation:

Step 1: Data given

Mass of CO2 = 52.0 grams

Molar mass of CO2 = 44.01 g/mol

Number of Avogadro = 6.022 * 10^23 / mol

Step 2: Calculate moles of CO2

Moles CO2 = Mass CO2 / molar mass CO2

Moles CO2 = 52.0 grams / 44.01 g/mol

Moles CO2 = 1.18 moles

Step 3: Calculate molecules in 1.18 moles CO2

Number of molecules = 1.18 moles * 6.022*10^23 = 7.1 *10^23 molecules

1 molecule of CO2

Number of moles = 1 / 6.022*10^23

Number of moles = 1.66 *10^-24

Mass CO2 = 1.66*10^-24 moles * 44.01 g/mol

Mass CO2 = 7.3*10^-23 grams

Final answer:

To calculate the mass in grams of one molecule of CO₂, we divide the molar mass of CO₂ (44.01 g/mol) by Avogadro's number (6.022 × 10²³ molecules/mol), resulting in a mass of approximately 7.31 × 10⁻²³ g for one molecule.

Explanation:

To find the mass in grams of one molecule of CO₂, we use the molar mass of carbon dioxide and Avogadro's number. The molar mass of CO₂ is 44.01 g/mol, which means 1 mole (6.022 × 10²³ molecules) of CO₂ has a mass of 44.01 grams. To find the mass of one molecule, divide the molar mass by Avogadro's number:

Molar mass of CO₂ = 44.01 g/mol

Mass of one CO₂ molecule = Molar mass / Avogadro's number

Mass of one CO₂ molecule = 44.01 g/mol ÷ 6.022 × 10²³ molecules/mol

Mass of one CO₂ molecule ≈ 7.31 × 10⁻²³ g

To express this mass in terms of a single molecule of CO₂, we describe it as an extremely small mass because it represents a miniscule fraction of the mass of a mole of CO₂.

Hypocalcemia could be caused by the ______. Hypocalcemia could be caused by the ______. apoptosis of parathyroid cells failure of osteoclasts to respond to PTH (parathyroid hormone/parathormone) malfunction of the parathormone receptors in kidney tubule cells All of the listed responses are correct

Answers

Answer:Deficiency of vitamin D or Magnesium

Explanation:

Hypocalcemia is a condition where the calcium in body fluid such as plasma or blood is lower than the critical level. And this can be caused by a deficiency of vitamin D

Hypocalcemia could be caused by the apoptosis of parathyroid cells, failure of osteoclasts to respond to PTH and malfunction of the parathyroid hormone receptors in kidney tubule cells. Therefore, option D is correct.

The parathyroid glands produce parathyroid hormone (PTH), which plays a crucial role in regulating calcium levels.

Osteoclasts are cells responsible for breaking down bone tissue and releasing calcium into the bloodstream under the influence of PTH.

The kidneys play a crucial role in regulating calcium levels by reabsorbing or excreting calcium in response to PTH.

To learn more about Hypocalcemia, follow the link:

https://brainly.com/question/31822845

#SPJ6

A molecule with a central atom and two bonded atoms is bent with a bond angle of 105◦ . Assuming the central atom satisfies the octet rule, how many lone pairs does it have?

Answers

Answer: 2 lone pairs

Explanation: this is clearly a water molecule in which two hydrogen atom is bonded to one oxygen atom.

Please see attachment for explanation

Final answer:

The molecule with a central atom and two bonded atoms is bent with a bond angle of 105°. It has two lone pairs of electrons on the central atom.

Explanation:

The molecule with a central atom and two bonded atoms is bent with a bond angle of 105°. When a central atom has two bonded atoms and a bond angle less than the typical angle for that geometry, it indicates the presence of one or more lone pairs of electrons on the central atom. In this case, since the molecule is bent, it suggests the presence of two lone pairs of electrons on the central atom. The central atom satisfies the octet rule, which requires it to have 8 valence electrons, made up of both shared and unshared electrons.

What volume of 3.00 MM HClHCl in liters is needed to react completely (with nothing left over) with 0.750 LL of 0.500 MM Na2CO3Na2CO3?

Answers

Answer: The volume of HCl needed is 0.250 L

Explanation:

To calculate the number of moles for given molarity, we use the equation:

[tex]\text{Molarity of the solution}=\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}}[/tex]

For sodium carbonate:

Molarity of sodium carbonate solution = 0.500 M

Volume of solution = 0.750 L

Putting values in above equation, we get:

[tex]0.500M=\frac{\text{Moles of sodium carbonate}}{0.750}\\\\\text{Moles of sodium carbonate}=(0.500mol/L\times 0.750L)=0.375mol[/tex]

The chemical equation for the reaction of sodium carbonate and HCl follows:

[tex]Na_2CO_3+2HCl\rightarrow 2NaCl+H_2CO_3[/tex]

By Stoichiometry of the reaction:

1 mole of sodium carbonate reacts with 2 moles of HCl

So, 0.375 moles of sodium carbonate will react with = [tex]\frac{2}{1}\times 0.375=0.750mol[/tex] of HCl

Now, calculating the volume of HCl by using equation 1:

Moles of HCl = 0.750 moles

Molarity of HCl = 3.00 M

Putting values in equation 1, we get:

[tex]3.00M=\frac{0.750mol}{\text{Volume of solution}}\\\\\text{Volume of solution}=\frac{0.750mol}{3.00mol/L}=0.250L[/tex]

Hence, the volume of HCl needed is 0.250 L

calculate the solubility of oxygen in water at 25C when the total external pressure is 1 at and the mole fractionof oxygen in the air is 0.2

Answers

The given question is incomplete. The complete question is as follows.

The value of Henry's law constant [tex]k_{H}[/tex] for oxygen in water at [tex]25^{o}C[/tex] is [tex]1.66 \times 10^{-6}[/tex] M/torr.

Calculate the solubility of oxygen in water at [tex]25^{o}C[/tex] when the total external pressure is 1 atm and the mole fraction of oxygen in the air is 0.20 atm.

Explanation:

Formula to calculate partial pressure of a gas is as follows.

   Partial pressure of oxygen = mole fraction of oxygen x total pressure

Putting the given values into the above equation as follows.

       = [tex]0.20 \times 760[/tex] = 152 torr

Therefore, solubilty (concentration) of oxygen in water  will be calculated as follows.

        Solubility = Henry's law constant x partial pressure of oxygen

                       = [tex]1.66 \times 10^{-6} M/torr \times 152 torr[/tex]

                       = [tex]2.52 \times 10^{-4}[/tex] M

Thus, we can conclude that solubility of given oxygen is [tex]2.52 \times 10^{-4}[/tex] M.

The solubility of oxygen in water at 25°C, when the total external pressure is 1 atm and the mole fraction of oxygen in the air is 0.2, is approximately [tex]\( 0.000260 \, \text{mol/L} \)[/tex].

The solubility of oxygen in water at 25°C, when the total external pressure is 1 atm and the mole fraction of oxygen in the air is 0.2, can be calculated using Henry's Law. Henry's Law states that the solubility of a gas in a liquid is directly proportional to the partial pressure of the gas above the liquid. The relationship can be expressed as:

[tex]\[ C = k \cdot p \][/tex]

where:

- C  is the concentration of the gas in the liquid (solubility of oxygen in water, in this case),

- k  is the Henry's Law constant for oxygen in water at the given temperature,

-  p is the partial pressure of oxygen above the liquid.

Given that the total external pressure is 1 atm and the mole fraction of oxygen is 0.2, the partial pressure of oxygen [tex](\( p_{O_2} \))[/tex] can be calculated as:

[tex]\[ p_{O_2} = \text{total pressure} \times \text{mole fraction of oxygen} \] \[ p_{O_2} = 1 \, \text{atm} \times 0.2 \] \[ p_{O_2} = 0.2 \, \text{atm} \][/tex]

The Henry's Law constant for oxygen in water at 25°C [tex](\( k_{O_2} \)) is approximately \( 769.23 \, \text{L} \cdot \text{atm/mol} \).[/tex]

Now, we can calculate the solubility of oxygen in water:

[tex]\[ C_{O_2} = k_{O_2} \cdot p_{O_2} \]\[ C_{O_2} = 769.23 \, \text{L} \cdot \text{atm/mol} \times 0.2 \, \text{atm} \] \[ C_{O_2} = 153.846 \, \text{L} \cdot \text{atm/mol} \][/tex]

To express the solubility in terms of molarity (mol/L), we divide the partial pressure by the Henry's Law constant:

[tex]\[ C_{O_2} = \frac{p_{O_2}}{k_{O_2}} \]\[ C_{O_2} = \frac{0.2 \, \text{atm}}{769.23 \, \text{L} \cdot \text{atm/mol}} \]\[ C_{O_2} \approx 0.000260 \, \text{mol/L} \][/tex]

The answer is: [tex]0.000260 \, \text{mol/L}.[/tex]

Atoms of iron (Fe) form metallic bonds with other iron atoms. How are the valence electrons of these atoms rearranged to form the bonds?

Answers

Question: Atoms of iron (Fe) form metallic bonds with other iron atoms. How are the valence electrons of these atoms rearranged to form the bonds?

A) a few valence electrons are shared between the atoms.

B) many valence electrons are shared between the atoms.

C) electrons are transferred from the iron atoms to atoms in the air.

D) electrons are transferred to the iron atoms from atoms in the air

Answer:

"Many valence electrons are shared between the atoms"

Explanation:

Chemical bonds can be broadly classified into 3 categories:

1) Ionic bond

2) Covalent Bond

3) Metallic bond

Metallic bonds are formed due to the attraction among the mobile valence electrons of the metal atom and its positively charged nucleus. In a piece of iron, the metallic bonds among Fe atoms will spread over the whole molecular assembly due to the de- localization of the valence electrons.  

These de-localized electrons are the valence electrons of metal atoms which are shared between them.

Hence, the correct answer from the given options is option B.

Answer: B) many valence electrons are shared between the atoms.

Explanation:

Iron has a density of 7.86 g/cm^3. Calculate the volume of a piece of iron having a mass of 3.99 kg.

Answers

Answer:

508 cm^3

Explanation:

3.99 kg * (1000 g)/(1 kg) = 3990 g

density = mass/volume

density * volume = mass

volume = mass/density

volume = (3990 g)/(7.86 g/cm^3)

volume = 508 cm^3

4.19-g sample of nitrous oxide (an anesthetic, sometimes called laughing gas) contains 5.73 × 1022 N2O molecules. How many nitrogen atoms?

Answers

Answer:

We have 1.15 *10^23 nitrogen atoms

Explanation:

Step 1: Data given

Mass of N2O = 4.19 grams

Number of N2O molecules = 5.73 *10^22 molecules

Molar mass = 44.01 g/mol

Step 2: Calculate moles N2O

Moles N2O = mass N2O / molar mass N2O

Moles N2O = 4.19 grams / 44.01 g/mol

Moles N2O = 0.0952 moles

Step 3: Calculate moles nitrogen

For each mol N2O we have 2 moles of Nitrogen

For 0.0952 moles N2O we have 2*0.0952 = 0.1904 moles nitrogen

Step 4: Calculate atoms nitrogen

Number of nitrogen atoms = moles * number of Avogadro

Number of nitrogen atoms = 0.1904 moles * 6.022*10^23

Number of nitrogen atoms = 1.15 *10^23 atoms

We have 1.15 *10^23 nitrogen atoms

Final answer:

For every molecule of Nitrous Oxide, there are two nitrogen atoms. Multiplying the given number of N2O molecules (5.73 x 10^22) by two gives us the total number of nitrogen atoms in the sample, which is approximately 1.146 × 10^23 nitrogen atoms.

Explanation:

To calculate the number of nitrogen atoms in a sample of nitrous oxide (N2O), we must first understand the molecular structure of N2O. This molecule consists of two nitrogen atoms bonded to one oxygen atom. Thus, for every one molecule of N2O, there are two nitrogen atoms.

The question stated that the sample contained 5.73 × 1022 N2O molecules. By multiplying this number by two (for the two nitrogen atoms per molecule), the total number of nitrogen atoms in the sample can be calculated.

Therefore, 5.73 × 1022 N2O molecules * 2 N atoms per molecule = 1.146 × 1023 nitrogen atoms.

Learn more about Counting Atoms in Molecules here:

https://brainly.com/question/15172278

#SPJ3

A(n) 6.76 mL sample of water is cooled from 39.5°C to 13.6°C. How many joules of energy are absorbed or released by the water? (Use a negative sign if the water is releasing heat.) The specific heat capacity of liquid water is 4.184 J/g • K.

Answers

Answer:

-732.5 5 Joules

Explanation:

This a typical calorimetry problem  that can be solved with the formula:

Q = m . C . ΔT

First of all, we determine the mass of water, by density.

Density is mass /volume

1 g/mL = mass / 6.76 mL → 6.76 g

Q = 6.76 g . 4.184 J/g°C . (13.6°C - 39.5°C)

Q = -732.5 5 Joules

Water is releasing heat to be cooled, that's why the answer is negative.

Consider the function represented by the equation 6q = 3s - 9. Write the equation in function notation, where q is the independent variable. f of q = one-half q minus three-halves f(q) = 2s + 3 f of s = one-half s minus three-halves f(q) = 2q + 3

Answers

Answer:

The equation in function notation is:

= [tex]f(q)=\frac{1}{2}s-\frac{3}{2}[/tex]

Explanation:

Given equation:

[tex]6q = 3s-9[/tex]

Where q is the independent variable.

To write the equation in function notation we will do the following:

Step 1 : divide 6 on both sides:

[tex]\frac{6q}{6}=\frac{3s-9}{6}[/tex]

[tex]q=\frac{1}{2}s-\frac{3}{2}[/tex]

The function notation will become:

[tex]f(q)=\frac{1}{2}s-\frac{3}{2}[/tex]

Answer:

D. f(q)=2q+3

Explanation:

The answer should be D. f(q)=2q+3

If you need a explannation, comments below and I will edit the explannation  

A ____________--(also called a reductant or reducer) is an element or compound that loses (or "donates") an electron to an electron recipient (oxidizing agent) in a redox chemical reaction.

A reducing agent is thus oxidized when it loses electrons in the redox reaction. Reducing agents "reduce" (or, are "oxidized" by) oxidizing agents. Oxidizers "oxidize" (that is, are reduced by) reducers.

Answers

Answer:

A reducing agent is an element or compound that loses (or "donates") an electron to an electron recipient (oxidizing agent) in a redox chemical reaction.

Explanation:

Redox reaction is defined as the reaction in which oxidation and reduction reaction occur simultaneously.

Oxidation reaction is defined as the chemical reaction in which an atom looses its electrons. The oxidation number of the atom gets increased during this reaction.

[tex]X\rightarrow X^{n+}+ne^-[/tex]

Reduction reaction is defined as the chemical reaction in which an atom gains electrons. The oxidation number of the atom gets reduced during this reaction.

[tex]X^{n+}+ne^-\rightarrow X[/tex]

Electrons are transferred from one atom to another in this type of reaction.

Reducing agent is defined as those substance which reduces other chemical compound and oxidizes itself by donating electrons.

Oxidizing agent is defined as those substance which oxidizes other chemical compound and reduces itself by accepting electrons.

Answer:

A reducing agent

Explanation:

A reducing agent--(also called a reductant or reducer) is an element or compound that loses (or "donates") an electron to an electron recipient (oxidizing agent) in a redox chemical reaction.

A reducing agent thus oxides( loses an electron) itself to electron acceptor. This mean that oxidation and reduction occur in pair. One element is oxidized and the other is reduced.

According to Boyle's law, for a fixed quantity of gas at a given temperature, what quantity relating pressure and volume is constant?
A) PV
B) P×V
C) P+V
D) VP

Answers

Answer: A. PV

Explanation: In Boyles Law it is a concept on ideal gases which states the relationship between volume and absolute pressure of the gas is inversely proportional. The relationship can be expressed in PV = k where k is a proportionality constant.

Answer:

A , B and D.

Explanation:

Pressure times volume is a constant.

is first order in NO2 and first order in F2. If the concentration of NO2 was increased by half and the concentration of F2 was increased by four, by what factor would the reaction rate increase?

Answers

Final answer:

The reaction rate increases by a factor of 6 when the concentration of NO2 is increased by half and the concentration of F2 is increased by four. This is because the reaction is first order with respect to both reactants, meaning the rate is directly proportional to their concentrations.

Explanation:

The chemical reaction is first order in NO2 and first order in F2, meaning the rate of the reaction is directly proportional to the concentration of these two reactants. If the concentration of NO2 is increased by a factor of 1.5 (or by half), the reaction rate also increases by a factor of 1.5. Likewise, if the concentration of F2 is increased by a factor of 4, the reaction rate also increases by a factor of 4. Therefore, with both these changes, the overall reaction rate would increase by a factor of 1.5 * 4 = 6.

In general, for a reaction that is first order in respect to a certain reactant, doubling the concentration of that reactant would double the rate of the reaction. Therefore, in this case, increasing the concentration of NO2 by half increases the rate by the same factor (1.5), and increasing the concentration of F2 by 4 increases the rate by the same factor (4).

Learn more about Chemical Reaction Rates here:

https://brainly.com/question/1971112

#SPJ12

Final answer:

For a reaction that is first order in both NO₂ and F₂, increasing NO₂ concentration by half and F₂ concentration by four would result in a sixfold increase in the reaction rate.

Explanation:

The reaction being described is first order in NO₂ and first order in F₂. The rate of the reaction would increase in proportion to the changes in concentrations of both reactants, since it is first order with respect to each one. If the concentration of NO₂ was increased by half (a factor of 1.5) and the concentration of F₂ was increased by four (a factor of 4), the overall increase in rate would be calculated by multiplying the individual rate increases due to each reactant. This would give us an overall rate increase by a factor of 1.5 (due to NO₂) × 4 (due to F₂) = 6.

A 100g sample of a metal was heated to 100oC and then quickly transferred to an insulated container holding 100g of water at 22oC. The temperature of the water rose to reach a final temperature of 35oC. Which of the following can be concluded?
A) The metal temperature changed more than the water temperature did; therefore the metal
lost more thermal energy than the water gained.
B) The metal temperature changed more than the water temperature did, but the metal lost
the same amount of thermal energy as the water gained.
C) The metal temperature changed more than the water temperature did; therefore the heat
capacity of the metal must be greater than the heat capacity of the water.
D) The final temperature is less than the average starting temperature of the metal and the
water; therefore the total energy of the metal and water decreased.

Answers

Answer:

B) The metal temperature changed more than the water temperature did, but the metal lost

the same amount of thermal energy as the water gained.

Explanation:

Heat capacity or thermal capacity is defined as the amount of heat required by a given mass of a material to raise its temperature by one unit which means that the heat capacity of the water, that is the quantity of heat required to cause a rise from 22°C to 35°C that is a rise of 13°C is the quantity of heat that caused the drop in temperature of the metal from 100°C to 35°C a change of 65°C

The water has more capacity to absorb heat or a higher heat capacity than the metal

However, the first law of thermodynamics states that energy is neither created nor destroyed, but it changes from one form to another. In this case, the thermal energy lost by the metal is the same as the thermal or heat energy gained by the water

The branch of science which deals with chemicals and bonds is called chemistry.

The correct answer is B

Heat capacity or thermal capacity is defined as the amount of heat required by a given mass of a material to raise its temperature by one unit which means that the heat capacity of the water

The quantity of heat required to cause a rise from 22°C to 35°C that is a rise of 13°C is the quantity of heat that caused the drop in temperature of the metal from 100°C to 35°C a change of 65°C

The water has more capacity to absorb heat or a higher heat capacity than the metal because the water has more space in between the particles.

However, the first law of thermodynamics states that energy is neither created nor destroyed, but it can transform from one material to another material. The heat always flows from the high temperature to the low temperature.

Hence, the correct option is B that is The metal temperature changed more than the water temperature did, but the metal lost the same amount of thermal energy as the water gained.

For more information, refer to the link:-

https://brainly.com/question/19524691

Winston predicts that certain people will be vaporized and that certain people will never be vaporized. Who? Why?

Answers

Answer:

Hi

One of the most famous works George Orwell shows us in 1984 a society that is controlled by the Superstate, in such a way that the inhabitants cannot do or say anything without The Big Brother finding out. If anyone tries to oppose this system, it is vaporized and in less than three days society forgets that there was a person who conspired or worse, that existed.

The detentions happened at night. He woke up startled because one hand shook one shoulder, a flashlight focused on him and a circle of grim faces appeared around the bed. In most cases there was no process. People disappeared and always during the night. The name of the individual in question disappeared from all the records, any reference to what he had done was erased from everywhere and his passage through life was completely annulled as if he had never existed.

Explanation:

What effect do you think other halogen elements have on human health?
(I WILL GIVE YOU BRAINLIEST)

Answers

Answer:

Explanation:

The elements of group 17 are called halogens. These are six elements Fluorine, Chlorine, Bromine, Iodine, Astatine. Halogens are very reactive these elements can not be found free in nature. Their chemical properties are resemble greatly with each other.

Fluorine:

it is flammable gas.

It has pungent smell.

its reactions with all other elements are very vigorous except neon, oxygen, krypton and helium.  

It has adverse effect on human health. It is absorbed and lead to teeth decay.

It effects the nerves, kidney and muscles.

It causes osteoporosis.

Chlorine:

it is greenish-yellow irritating gas.

it is disinfectant and can kill the bacteria.

it is also used in manufacturing of paper, paints and textile industries.

It also have some adverse effect on human health such as it can effect the respiratory system, immune system and heart.

Bromine:

it is present in reddish brown color.

it has pungent odor.

it is very corrosive for human tissues.

Its vapors create irritation in throat and eyes.

In organic form it causes our lungs, gastrointestinal track and stomach.

Iodine:    

It is very corrosive and has pungent odor.  

It is used for thyroid treatment but large exposure to its radiations cause the tissue damage.

Calculate the coulombic force of repulsion between nearest-neighbor o2- ions in cao. (note problems 2.15, 2.16, and 2.17.)

Answers

Answer:

F = -1.604x10⁻⁸ N

Explanation:

The Coulomb force (F) of repulsion between nearest-neighbor O²⁻ ions in CaO can be calculated using the next equation:    

[tex] F = K frac{(Z_{Ca^{2+}})(Z_{O^{2-}})(e^{-})^{2}}{r^{2}} [/tex]

where K: is the coulomb's constant, Z: is the charge of the Ca²⁺ and O²⁻ ions, e⁻: is the electron's charge, and r: is the distance between the nuclei of the two ions.  

Having that:

[tex] r = r_{Ca^{2+}} + r_{O^{2-}} = 114 pm + 126 pm = 240 pm = 2.4\cdot 10^{-10} m [/tex]Z Ca²⁺ = 2+Z O²⁻ = 2-e⁻ = 1.602x10⁻¹⁹ CK = 9x10⁹ N*m²*C⁻²  

The Coulomb force (F) of repulsion is:

[tex] F = 9\cdot 10^{9} N*m^{2}*C^{-2} \frac{(2+)(2-)(1.602\cdot 10^{-19}C)^{2}}{(2.4\cdot 10^{-10} m)^{2}} = -1.604 \cdot 10^{-8} N [/tex]

Hence, the Coulomb force of repulsion between the two ions in CaO is -1.604x10⁻⁸ N.

I hope it helps you!

Final answer:

The coulombic force of repulsion between nearest-neighbour O²⁻ ions in CaO can be calculated using Coulomb's law and the crystal structure of CaO. The formula for calculating the force is F = k(q₁ × q₂)/r₂, where q₁ and q₂ are the charges of the ions, r is the distance between them, and k is a constant.

Explanation:

The coulombic force of repulsion between nearest-neighbor O²⁻ ions in CaO can be calculated using Coulomb's law. The formula for calculating the force of repulsion between two ions with charges q1 and q2, separated by a distance r, is given by:

F = k(q₁ × q₂)/r₂

In this case, the charge of each O²⁻ ion is -2. The distance between the ions can be determined using the crystal structure of CaO, which is rock salt. The nearest-neighbour distance (equilibrium separation distance) in a rock salt crystal is equal to the sum of the ionic radii of the cation and anion.

The value of the constant k in Coulomb's law is 8.99 x 109Nm²/C². The ionic radii of the O²⁻ and Ca²⁺ ions can be obtained from a reference table or provided data. Using the given values, you can calculate the coulombic force of repulsion between the nearest-neighbor O²⁻ ions in CaO.

Learn more about the Coulombic force of repulsion here:

https://brainly.com/question/9261306

#SPJ3

Aqueous solutions of aluminum sulfate and barium chloride are mixed, resulting in the precipitate formation of barium sulfate with aqueous aluminum chloride as the other product. (Use the lowest possible coefficients.

Answers

Answer:

Al2(SO4)3(aq) + 3BaCl2(aq) → 3BaSO4(s) + 2AlCl3(aq)

Explanation:

The question wants you to use the lowest possible coefficients to balance the equation.

According to the question the reaction is as follows ;

Generally, writing the chemical formula requires one to exchange the charge between the cations and anions involved. Example aluminum sulfate has Al3+ and (SO4)2- . cross multiply the charges to get Al2(SO4)3

aluminum sulfate → Al2(SO4)3

barium chloride → BaCl2

barium sulfate → BaSO4

aluminum chloride → AlCl3

Al2(SO4)3(aq) + BaCl2(aq) → BaSO4(s) + AlCl3(aq)

To balance a chemical equation one have to make sure the number of atom of element on the reactant side(left) is equal to the number of atom of elements on the product side(right).

Now, the equation can be be balance with the lowest coefficient as follows;

Al2(SO4)3(aq) + 3BaCl2(aq) → 3BaSO4(s) + 2AlCl3(aq)

The bold numbers is the coefficient use to balance the equation.

The number of atom on the reactant side is equal to the product side. Using aluminium atom as a case study the number of aluminium atom on the reactant side is 2 and the on the product  side it is also  2.

Final answer:

When aqueous aluminum sulfate and barium chloride are mixed, aluminum chloride forms as a product, while barium sulfate precipitates.

Explanation:

When aqueous solutions of aluminum sulfate and barium chloride are mixed, a double replacement reaction occurs. The aluminum sulfate dissociates into aluminum ions (Al³⁺) and sulfate ions (SO₄²⁻), while the barium chloride separates into barium ions (Ba²⁺) and chloride ions (Cl⁻).

The aluminum ions react with the chloride ions, forming aluminum chloride (AlCl₃) as a product. The barium ions react with the sulfate ions, resulting in the formation of solid barium sulfate (BaSO₄) as a precipitate. This reaction can be represented by the chemical equation: 3BaCl₂ + Al₂(SO₄) ₃ → 3BaSO₄ + 2AlCl₃.

In this reaction, the aluminum chloride remains in the aqueous solution, while the barium sulfate precipitates and can be separated from the solution.

Learn more about Double replacement reaction here:

https://brainly.com/question/31864474

#SPJ3

Binary molecular (covalent) compounds are formed as the result of a reaction between two nonmetals. Although there are no ions in these compounds, they are named in a similar manner to binary ionic compounds. The nomenclature of binary covalent compounds follows these rules:The first element in the formula is given first, using the element’s full name.The second element is named as if it were an anion.ummarize the rules for naming binary molecular compounds. 32. Define a binary molecular compound. 33. Describe the difference between a binary acid and an oxyacid. 34. Apply Using the system of rules for naming binary molecular compounds, describe how you would name the molecule N 2 O 4 . 35. Apply Write the molecular formula for each of these compounds: iodic acid, disulfur trioxide, dinitrogen monoxide, and hydrofluoric acid. 36. State the molecular formula for each compound?

Answers

Answer:

Binary molecular compounds are the compounds consisting of two non-metallic elements. Examples of binary molecular compounds include: NO2, HCl, HF, P2O5 e.t.c.

Rules For Naming Binary Molecular Compounds

Naming binary molecular compounds is quite easy,

1. The first element is given its name.

2. The second element is given its root name (such as, hydro, carb,ox, chlor e.t.c.) followed by suffix ide.

Name of N2O4 - Dinitrogen tetraoxide

Chemical Formula of;

 iodic acid: HI

disulfur trioxide: S2O3

dinitrogen monoxide: N2O

hydrofluoric acid: HF

Difference between Binary acid and an oxyacid

An oxyacid is an acid consisting of an oxygen atom bonded to a hydrogen atom and at least one other non-metallic element. Examples of oxyacids include HNO3, H2SO4 e.t.c.

Binary acids are the acids consisting of hydrogen atom bonded to a non-metallic element. Examples include HF, HCl, HI  e.t.c.

Answer:

Explanation:Rrules for naming binary compounds.

1. The less electronegative element is written first.This is not always true for all elements.Nonmetals follow this order:C,p,N,H,S,I,Br,Cl,O,F.

2.The right numeric prefix is used example mono for 1 atom,did for 2 atoms,tri for 3 atoms,tetra for 4 atoms.etc

3. The second element is named after the first with the ending of the element's name changed to-ide then the right prefix is used for the second element.

4.Drop the 'a' in a prefix ending in one prior to the one starting with the vowel'o'. Example write tetroxide instead of tetra oxide.

32. A binary compound is a compound that contains two non metals.

33. A binary acid is a compound that contains a hydrogen atom that is bonded to a non metal in its molecule.They are called hydracids.The general formular is H-X.Examples are HCl,H2S, etcwhile oxyacid are compounds that are composed of hydrogen,oxygen and other elements in the molecule. An eample is HClO3.

34. N2O3 will be named dintrogentetroxide.This is because it is a covalent compound and will follow rule 2 by putting the right numeric prefix based on the number of atoms of nitrogen and oxygen in the molecule.The 'a"at the end of tetra dropped because of the vowel 'o'in the next letter.

35. a. Molecular formulae of iodic acid is HIO3

b.Molecular formulae for disulfurtrioxide is

S2O3

c.Molecular formulae for dinirtrogenmonoxide is N2O

d. Hydrogenchloric ice HCl

36. Answer 35

A 2.40 M aqueous solution of LiCl has a density of 1.0538 g/mL. If the total mass of the solution is 54.0 g, what masses of solute and solvent are present?

Answers

Answer:

5.21 g of solute (LiCl)

48.79 g of solvent (water)

Explanation:

This is our information

[LiCl] = 2.40 M → 2.40 moles of salt in 1L of solution

Density of solution: 1.0538 g/mL (solution mass / solution volume)

54 g → solution mass

Let's determine solution volume with density

1.0538 g/mL = solution mass / solution volume

1.0538 g/mL = 54 g / solution volume

Solution volume = 54 g / 1.0538 g/mL → 51.2 mL

Now, we can know the mass of solute, by molarity.

In 1 L of solution (1000 mL) we know that we have 2.40 mol of chloride.

Then, how many moles of chloride, do we have in 51.2mL of solution. We make a rule of three:

1000 mL has 2.40 moles of LiCl

51.2 mL would have (51.2 . 2.40)/1000 = 0.123 moles of solute

We apply molar mass to know the mass ( mol . molar mass)

0.123 moles .  42.39 g/m = 5.21 g of LiCl

Finally solute mass + solvent mass = solution mass

5.21 g LiCl + solvent mass = 54 g

54 g - 5.21 g = solvent mass → 48.79 g

The mass of solute is 5.22 g and the mass of solvent is 48.78 g

Molarity, Volume and Density relationshipMolarity = moles/volumeDensity = mass/volumemoles = mass/molar mass

Molarity of LiCl = 2.40 M

Therefore, 2.40 moles of salt is present in 1L of solution

Density of solution: 1.0538 g/mL

Mass of solution = 54.0 g

Volume of solution = mass/density

Volume = 54 g / 1.0538 g/mL

Volume of solution = 51.2 mL

Number of moles of LiCl present in 51.2 mL solution is determined;

1 L or 1000 mL solution contains 2.40 moles

51.2 mL will contain 51.2 * 2.4 mole/1000

Number of moles of LiCl present in 51.2 mL solution = 0.123 moles

mass of solute is determined

Using mass = number of moles * molar mass  

molar mass of LiCl = 42.5 g

mass of LiCl = 0.123 * 42.5 g

mass of LiCl = 5.22 g of LiCl

Total mass of solution = mass of solute + mass of solvent

mass of solvent = solution mass - mass of solute

mass of solvent = 54.0 g - 5.22 g

mass of solvent = 48.78

5.21 g LiCl + solvent mass = 54 g

Therefore, the mass of solute is 5.22 g and the mass of solvent is 48.78 g

Learn more about mass of solutions, solutes and solvent at: https://brainly.com/question/16757650

Acetylene gas C2H2 undergoes combustion to form carbon dioxide and water when it is used in the oxyacetylene torch for welding. Balance the reaction and answer the following questions.
C2H2(g)+O2(g) ---> CO2(g)+H2O(g)
a. How many grams of water can form if 113g of acetylene is burned?

b. How many grams of acetylene react if 1.10 mol of CO2 are produced?

PLEASE SHOW YOUR WORK!

Answers

By following the stoichiometry of the balanced chemical equation for combustion of acetylene, it is calculated that 113 g of acetylene will produce 78.20 g of water, and 14.32 g of acetylene are required to produce 1.10 mol of CO₂.

Combustion of Acetylene

The balanced chemical equation for the combustion of acetylene (C2H2) is:

2C₂H₂(g) + 5O₂(g)⇒ 4CO₂(g) + 2H₂O(g)

Part A: Grams of Water Formed

Step 1: Calculate the moles of C2H2 using its molar mass (26.04 g/mol).

Moles ofC₂H₂ = 113 g / 26.04 g/mol = 4.34 mol

Step 2: From the balanced equation, 1 mol of C2H2 produces 1 mol of H2O. Therefore, 4.34 mol of C2H2 will produce 4.34 mol of H2O.

Step 3: Convert moles of H2O to grams using its molar mass (18.02 g/mol).

Grams of H2O = 4.34 mol x 18.02 g/mol = 78.20 g

113 g ofC₂H₂ will produce 78.20 g of water.

Part B: Grams of Acetylene Reacted

Step 1: From the balanced equation, 2 mol of C₂H₂ produce 4 mol of CO₂. So, 1 mol ofCO₂ is produced by 0.5 mol of  C₂H₂.

Step 2: Calculate the moles of C₂H₂ needed to produce 1.10 mol ofCO₂.

Moles of C₂H₂ = 1.10 molCO₂ x 0.5 mol  C₂H₂/mol CO₂ = 0.55 mol C₂H₂

Step 3: Convert moles of C₂H₂  to grams using its molar mass (26.04 g/mol).

Grams of C₂H₂ = 0.55 mol x 26.04 g/mol = 14.32 g

14.32 g of C₂H₂ react to produce 1.10 mol of CO₂.

Part A What are plate boundaries at which lithospheric plates that a) move toward each other, b) move past each other, and c) move away from each other called

Answers

Answer:

a. Convergent boundary

b. Transform boundary

c. Divergent boundary

Explanation:

Convergent boundary are boundary where tectonic plates collide with each other. This kind of boundary might involve a collision between continental and oceanic plates, continental and continental plates and oceanic and oceanic plates. Generally, convergent boundary are regions for mountainous structures . Example of mountain formed through convergence are mountain Everest and Himalayas .

Transform boundary are boundary where tectonic plates move past each other . This kind of boundary is responsible for the creation of Extensive Fault like the San Andrea Fault.

Divergent boundary are boundary where tectonic plates move away from each other.  The diverging movements brings about oceanic ridges. The mid oceanic ridges is where magma rises to the surface to form a new crust. The up welling of this magma causes further separation of this plates.

The picture above illustrate convergent, divergent and transform boundary.

Final answer:

In plate tectonics, boundaries are categorized based on the relative movement of the lithospheric plates. Convergent boundaries occur when plates move toward each other, transform boundaries occur when plates slide past each other, and divergent boundaries occur when plates move away from each other.

Explanation:

In plate tectonics, the boundaries between different lithospheric plates are categorized based on their movement relative to each other.

a) Boundaries where plates move toward each other are known as convergent boundaries. At these boundaries, often one plate is forced under the other and is destroyed in the mantle in a process known as subduction. Examples include the boundary between the Pacific Plate and the North American Plate.

b) Boundaries where plates slide past each other are called transform boundaries. These usually cause earthquakes as the plates scrape against each other, the San Andreas Fault in California is a well-known example.

c) Boundaries where plates move away from each other are referred to as divergent boundaries. Here new crust is formed as magma wells up from the mantle, such as at the Mid-Atlantic Ridge.

Learn more about Plate Boundaries here:

https://brainly.com/question/31720127

#SPJ3

Check all that apply.

CH4(g) + 2O2(g) → CO2(g) + 2H2O(g)

-4 for C in CH4

+4 for C in CO2

-2 for O in all substances

+1 for H in both CH4 and H2O

+4 for O in H2O

Answers

Answer:

4 for C in CH4

+4 for C in CO2

-2 for O in all substances

+1 for H in both CH4 and H2O

option 1,2,3 and 4 are correct. Option 5 is not correct

Explanation:

Step 1: Data given

Oxidation number of H = +1

Oxidation number of O = -2

Step 2: The balanced equation

CH4(g) + 2O2(g) → CO2(g) + 2H2O(g)

Step 3: The oxidation numbers

-4 for C in CH4

 ⇒ Oxidation number of H = +1

    ⇒ 4x +1 = +4

C has an oxidation number of -4

This is correct.

+4 for C in CO2

 ⇒ Oxidation number of O = -2

    ⇒ 2x -2 = -4

C has an oxidation number of +4

This is correct.

-2 for O in all substances

⇒ this is correct, the oxidation number of O is always -2 (except in H2O2 and Na2O2)

This is correct.

+1 for H in both CH4 and H2O

⇒ this is correct, the oxidation number of H is always +1 (except in metal hydrides).

This is correct.

+4 for O in H2O

 ⇒ Oxidation number of H = +1

    ⇒ 2x +1 = +2

The oxidation number of O is -2

This is not correct

Final answer:

The correct statements regarding oxidation states in the methane combustion reaction are 4 for C in CH4

+4 for C in CO2

-2 for O in all substances

+1 for H in both CH4 and H2O

Explanation:

The student's question relates to the oxidation states of elements in a chemical reaction, specifically in the combustion of methane represented by the equation CH4 + 2O2 → CO2 + 2H2O. Let's evaluate the statements:

Step 1: Data given

Oxidation number of H = +1

Oxidation number of O = -2

Step 2: The balanced equation

CH4(g) + 2O2(g) → CO2(g) + 2H2O(g)

Step 3: The oxidation numbers

-4 for C in CH4

⇒ Oxidation number of H = +1

   ⇒ 4x +1 = +4

C has an oxidation number of -4

This is correct.

+4 for C in CO2

⇒ Oxidation number of O = -2

   ⇒ 2x -2 = -4

C has an oxidation number of +4

This is correct.

-2 for O in all substances

⇒ this is correct, the oxidation number of O is always -2 (except in H2O2 and Na2O2)

This is correct.

+1 for H in both CH4 and H2O

⇒ this is correct, the oxidation number of H is always +1 (except in metal hydrides).

This is correct.

+4 for O in H2O

⇒ Oxidation number of H = +1

   ⇒ 2x +1 = +2

The oxidation number of O is -2

This is not correct

How many grams of calcium phosphate are theoretically produced if we start with 3.40 moles of Ca(NO3)2 and 2.40 moles of Li3PO4? Reaction: 3Ca(NO3)2 + 2Li3PO4 → 6LiNO3 + Ca3(PO4)2

Answers

To solve this problem, we first need to determine the limiting reagent, which is the chemical that is completely used up in the reaction and thus dictates the amount of the product that can be formed. This is achieved by calculating the moles of the product, Ca3(PO4)2, that each reagent can potentially produce, and then choosing the smaller value.

We have 3.40 moles of Ca(NO3)2 and from the balanced reaction equation, we see that 3 moles of Ca(NO3)2 react to produce 1 mole of Ca3(PO4)2. Therefore, we can calculate the amount of Ca3(PO4)2 that can theoretically be produced by Ca(NO3)2:

3.40 moles / 3 = 1.133 moles of Ca3(PO4)2

Similarly, we have 2.40 moles of Li3PO4, and 2 moles of Li3PO4 produce 1 mole of Ca3(PO4)2. Therefore, the theoretical yield of Ca3(PO4)2 from Li3PO4 is:

2.40 moles / 2 = 1.20 moles of Ca3(PO4)2

Since the amount of Ca3(PO4)2 that can be produced from Ca(NO3)2 (1.133 moles) is less than the amount that could be produced from Li3PO4 (1.2 moles), Ca(NO3)2 is the limiting reagent. Therefore, the actual yield of Ca3(PO4)2 will be the smaller value, that is 1.133 moles.

Next, we convert the moles of Ca3(PO4)2 to grams. The molar mass of Ca3(PO4)2 is 310.18 g/mol. We use the conversion factor of molar mass to convert moles to grams:

1.133 moles * 310.18 g/mol = 351.54 g

Therefore, theoretically, 351.54 grams of calcium phosphate can be formed from starting with 3.40 moles of Ca(NO3)2 and 2.40 moles of Li3PO4.

Learn more about Theoretical Yield Calculation here:

https://brainly.com/question/16735180

#SPJ12

The element in this list with chemical properties similar to magnesium is
a. sodium.
b. strontium.
c. boron.
d. chlorine.
e. carbon.

Answers

Final answer:

Strontium is the element in the provided list that has chemical properties similar to magnesium because they both are alkaline earth metals with two valence electrons.

Explanation:

The element in the given list with chemical properties similar to magnesium is strontium. This is because magnesium and strontium both belong to the same group in the periodic table, which is the group of alkaline earth metals.

Elements in the same group share similar chemical properties due to their similar valence electron configurations. Magnesium and strontium, like other alkaline earth metals, have two valence electrons. These two electrons play a crucial role in the chemical reactivity of the elements, including how they bond with other elements.

It's important to note that, despite being in the same group, the reactivity and specific properties vary among the alkaline earth metals. However, the underlying chemical behavior that stems from their valence electron configuration leads to similarities. For example, both magnesium and strontium readily react with water, though strontium's reactivity is somewhat higher.

Final answer:

Strontium is the element with chemical properties similar to magnesium because they both are alkaline earth metals with two valence electrons, belong to the same group in the periodic table, and show similar reactivity patterns.

Explanation:

The element in this list with chemical properties similar to magnesium is strontium (b). This is because the elements that are similar to magnesium would also be in the same group as magnesium in the periodic table. Magnesium is an alkaline earth metal found in Group 2 of the periodic table, which includes beryllium, calcium, strontium, barium, and radium, all known as alkaline earth metals. These elements have two valence electrons and exhibit similar chemical behaviors.

In summary, both magnesium (Mg) and strontium (Sr) are shiny and are good conductors of heat and electricity. Most importantly, the two elements share a common valence electron configuration, which causes them to display similar chemical reactivity patterns, such as forming compounds with a 2+ charge and reacting similarly with other substances.

Acetylene gas C2H2 undergoes combustion to form carbon dioxide and water when it is used in the oxyacetylene torch for welding. Balance the reaction and answer the following questions.
C2H2(g)+O2(g) ---> CO2(g)+H2O(g)
a. How many grams of water can form if 113g of acetylene is burned?
b. How many grams of acetylene react if 1.10 mol of CO2 are produced?
PLEASE SHOW YOUR WORK!

Answers

Answer:

The answer to your question is below

Explanation:

Reaction

                            C₂H₂ (g) + O₂(g)   ⇒   CO₂ (g)   +  H₂O (g)

                            Reactants         Elements         Reactants

                                    2                       C                       1

                                    2                       H                       2

                                    2                       O                       3

This reaction is unbalance

Reaction balanced

                          2C₂H₂ (g) +   5O₂(g)   ⇒   4CO₂ (g)   +  2H₂O (g)

                            Reactants         Elements         Reactants

                                    4                       C                       4

                                    4                       H                       4

                                   10                       O                      10

Now, the reaction is balanced

a) Calculate the molecular mass of acetylene and water

Acetylene = (12 x 2) + (2) = 26 g

Water = (1 x 2) + (1 x 16) = 18 g

                           2(26) g of Acetylene ---------------  2(18) g of Water

                               113 g  of Acetylene --------------   x

                                x = (113 x (2 x 18)) / 2(26)

                                x = 4068 / 52

                               x = 78. 2 g of water

b)                2 moles of Acetylene ------------  4 moles of carbon dioxide

                   x moles of acetylene ------------  1.10 moles of carbon dioxide

                         x = (1.10 x 2) / 4

                        x = 0.55 moles of acetylene

Answer:

a) 78.19 grams H2O

b) 14.3 grams acetylene

Explanation:

Step 1: Data given

Molar mass of acetylene = 26.04 g/mol

Molar mass of H2O = 18.02 g/mol

Step 2: The balanced equation

2C2H2 + 5O2 → 4CO2 + 2H2O

Step 3: a. How many grams of water can form if 113g of acetylene is burned?

Calculate moles of acetylene:

Moles = mass / molar mass

Moles = 113.0 grams / 26.04 g/mol

Moles = 4.339 moles

calculate moles of H2O

For 2 moles acetylene we need 5 moles O2 to produce 4 moles CO2 and 2 moles H2O

For 4.339 moles of acetylene we'll have 4.339 moles H2O

Calculate mass of H2O

Mass H2O = 4.339 moles * 18.02 g/mol

Mass H2O = 78.19 grams H2O

b. How many grams of acetylene react if 1.10 mol of CO2 are produced?

For 2 moles acetylene we need 5 moles O2 to produce 4 moles CO2 and 2 moles H2O

For 1.10 mol CO2 we need 1.10/2 = 0.55 moles of acetylene

Mass acetylene = 0.55 moles * 26.04 g/mol

Mass acetylene = 14.3 grams acetylene

Which of the following reasons best explains why it is possible to separate a 1:1 mixture of 1-chlorobutane and 1-butanol by fractional distillation?
A.
Both 1-chlorobutane and 1-butanol are polar.
B.
Both 1-chlorobutane and 1-butanol are nonpolar.
C.
The boiling point of 1-chlorobutane is substantially higher than that of 1-butanol.
D.
The boiling point of 1-chlorobutane is substantially lower than that of 1-butanol.

Answers

Answer:

The boiling point of 1-chlorobutane is substantially lower than that of 1-butanol

Explanation:

Fractional distillation is a separation process based on difference in boiling point of two compounds.

1-chlorobutane is a polar aprotic molecule due to presence of polar C-Cl bond. Hence  dipole-dipole intermolecular force exists in 1-chlorobutane as a major force.

1-butanol is a polar protic molecule. Hence dipole-dipole force along with hydrogen bonding exist in 1-butanol.

Therefore intermolecular force is stronger in 1-butanol as compared to 1-chlorobutane.

So, boiling point of 1-butanol is much higher than 1-chlorobutane.

Hence mixture of 1-chlorobutane and 1-butanol can be separated by fractional distillation based on difference in boiling point.

So, option (D) is correct.

A living cell with a tonicity (solute concentration) equivalent to 0.9% NaCl is placed in a solution containing 2% NaCl. Assume that aquaporins are present and that the membrane therefore is permeable to water.

Answers

Answer:

This question is incomplete

Explanation:

This illustration refers to an hypertonic solution. Hypertonic solution is a solution in which the surrounding solution has a higher solute concentration (2% of NaCl) than the cell's cytosol (0.9% of NaCl). In hypertonic solution, the solution outside the cell (with higher concentration) pulls the water from the cell's cytosol (via osmosis) causing the cell to shrink.

Final answer:

A cell with 0.9% NaCl placed in a 2% NaCl solution experiences a hypertonic environment, causing it to lose water and shrink due to osmosis.

Explanation:

When a living cell with an internal tonicity equivalent to 0.9% NaCl is placed in a solution containing 2% NaCl, the surrounding solution is considered hypertonic. This is because the extracellular solution has a higher solute (salt) concentration than the cell's cytoplasm. The process of osmosis will cause water to move from the cell, which has a higher water potential, to the outside solution, where the water potential is lower because it has a higher solute concentration. Over time, this will result in the cell shrinking or losing water.

Osmolarity and tonicity are important concepts in understanding how cells interact with their environment. Isotonic conditions mean that the concentration of solutes is equal inside and outside the cell, resulting in no net water movement. Aquaporins, which are channel proteins in the cell membrane, facilitate the rapid movement of water across the cell membrane in response to these tonicity conditions.

Living organisms have developed strategies to maintain osmotic balance, such as the secretion of salts or the regulation of solute concentrations within their cells, to prevent cellular damage from excessive swelling or shrinking in hypo- or hypertonic environments.

Identify the example of a homogeneous mixture. Please choose the correct answer from the following choices, and then select the submit answer button. Answer choices a cup of sugar (sucrose) a glass of soda with ice cubes a round of pizza dough a bowl of party snack mix?

Answers

A homogeneous mixture, also known as a solution, is a combination of substances that is uniform throughout. In the given options, the glass of soda is an example of a homogeneous mixture due to its uniform composition, which differs from a heterogeneous mixture where the composition can vary.

In order to identify a homogeneous mixture, we need to understand what it is. A homogeneous mixture is also known as a solution and it's a combination of substances with a composition that is uniform throughout. Each sample of a homogeneous mixture will show the same proportions of its components. This differs from a heterogeneous mixture, where the composition can vary from point to point. Examples of these would be cookies or salad dressing where the individual components can be visibly distinguished. From the list you provided, the glass of soda represents a homogeneous mixture. This is due to its uniform composition, you cannot tell the difference between one part of the soda from the others because the solute (usually a syrup) is completely dissolved in the solvent (carbonated water). Therefore, every part of the soda sample is identical in properties and composition.

Learn more about Homogeneous Mixtures here:

https://brainly.com/question/32534073

#SPJ3

20.1 g of aluminum and 219 g of chlorine gas react until all of the aluminum metal has been converted to AlCl3. The balanced equation for the reaction is the following.
2 Al(s) + 3 Cl2(g) → 2 AlCl3(s)
What is the quantity of chlorine gas left, in grams, after the reaction has occurred, assuming that the reaction goes to completion? (The formula mass of aluminum metal, Al, is 26.98 g/mol, and the formula mass of chlorine gas, Cl2, is 70.90 g/mol.)

Answers

Answer:

The amount of Cl2 gas left , after the reaction goes to completion is : 139.655 grams

Explanation:

Molar mass : It is the mass in grams present in one mole of the substance.

Moles of the substance is calculated by:

[tex]Moles=\frac{Mass}{Molar\ mass}[/tex]

[tex]2Al(s)+3Cl_{2}(g)\leftarrow 2AlCl_{3}(g)[/tex]

According  to this equation:

2 mole of Al = 3 mole of Cl2 = 2 mole of AlCl3

Molar mass of Al = 27.0 g/mol

Mass of Al = 20.1 gram

Moles of Al present in the reaction :

[tex]Moles=\frac{Mass}{Molar\ mass}[/tex]

[tex]Moles=\frac{20.1}{26.98}[/tex]

Moles of Al = 0.744

Similarly calculate the moles of Cl2

Molar mass of Cl2 = 71.0 g/mol

Mass = 219 gram

[tex]Moles=\frac{Mass}{Molar\ mass}[/tex]

[tex]Moles=\frac{219}{70.98}[/tex]

Moles of Cl2 = 3.08 moles

According to equation,

2 mole of Al reacts with = 3 mole of Cl2

1 moles of Al reacts with = 3/2  mole of Cl2

0.744 moles of Al reacts with = 3/2(0.744) moles of Cl2

= 1.116 moles of Cl2

But actually present Cl2 = 3.08 moles

Hence Al is the limiting reagent , and Cl2 is the excess reagent.

The whole Aluminium Al get consumed during the reaction.

The amount of Cl2 in excess = Total Cl2 - Cl2 consumed

Cl2 in excess = 3.08 - 1.116 = 1.964 moles

Cl2 in grams = 1.964 x 70.90 = 139.655 grams

Other Questions
he table gives the demand and supply schedules for boat rides. If the demand of boat rides increases by 40 rides a day, the price will ________. Circle the answer. Smith Elementary School scored 30 less points in their track meet than Jones Elementary School. If Jones Elementary School scored x points, write an expression to represent how many points Smith Elementary School scored. Assume that a customer shops are a local grocery store spending an average of $400 a week, resulting in the retailer earning a $30 profit each week from this customer. Assuming the shopper visits the store all 52 weeks of the year, calculate the customer lifetime value if this shopper remains loyal over a 10-year life- span. Also assume a 7 percent annual interest rate and no initial cost to acquire the customer. The customer yields $ per year in profits for this retailer. Which of the following is NOT one of the environmental forces shaping organizations?1. technological2. Social3. Regulatory4. Managerial The difference between variable costs and fixed costs is (CMA adapted) A. Unit variable costs fluctuate and unit fixed costs remain constant. B. Unit variable costs are fixed over the relevant range and unit fixed costs are variable. C. Total variable costs are constant over the relevant range, while fixed costs change in the long-term. D. Total variable costs are variable over the relevant range but fixed in the long-term, while fixed costs never change. There is a production possibilities frontier (PPF) that shows the combinations of goods X and Y that can be produced in the economy. The point where the PPF touches the good-X axis is at 40 units of good X and the point where the PPF touches the good-Y axis is at 60 units. As a result of an increase in resources that can be used for the production of both goods, the PPF a.shifts leftward, and the point at which the PPF touches the good-X axis has to be something less than 40 units of good X. b.shifts rightward, and the point at which the PPF touches the good-X axis has to be something more than 40 units of good X and the point at which the PPF touches the good-Y axis has to be something more than 60 units. c.shifts leftward, and the point at which the PPF touches the good-X axis has to be something less than 40 units of good X and the point at which the PPF touches the good-Y axis has to be something less than 60 units. d.shifts rightward, and the point at which the PPF touches the good-X axis has to be something more than 40 units of Y and the point at which the PPF touches the good-Y axis has to be something less than 60 units. e.none of the above Research evidence shows that younger clients have a good prognosis than older clients. What do you think, which factors are contributing towards it? Generate your discussion on the basis of real life examples and research findings. Sensationalism refers to:A) the research and development of a good storyB) magazines about pop culture and celebrities C) extra publications that introduce breaking news D) the publishing of stories covered in other sources Biogeography is the study of thea. distribution of organisms around the world,b). environments around the world.C.different types of rocks around the world.d. age of fossils around the world.different Which equation represents the line that passes through the points (4, 7) and (-2, -2) ?y = 3/2x + 1y = -5/2x + 17y = 5/2x - 3y = -3/2x + 13 At soccer practice, for every 5 minutes that Bob runs, e spends 20 minutes practicing dribbling. If Bob keeps the same ratio and he spends 36 minutes practicing dribbling, how many minutes does he spend running? A data set has nine values. The mean of the set is 5. When a tenth value is added, the mean becomes 6. What is the tenth value? Deliberate practice requires ______. a. working without goals b. avoiding possible weaknesses c. high levels of focus, attention, and concentration d. seeking perfection According to Karl Marx, ________ is a series of structures that erect barriers between the individual and the production process, the products of that process, other people, and the individual himself/herself.a. Capitalismb. bureaucracyc. species-beingd. the dialectic You are called for a young man who was diving head first off a dock into a lake. Bystanders say he struck his head on the bottom because the water was too shallow. They said he was not breathing when they pulled him from the water and they have been performing rescue breathing for him. He is awake, but he is unable to breathe on his own. What type of damage or injury does this indicate?A. Closed head injuryB. Open head injuryC. Damage to C3, C4, or C5D. Damage to his thoracic spine In a relational database, a primary key is sometimes made up of multiple fields. What is this known as? Using income data to determine the credit worthiness of a consumer who wishes to purchase a new car is an example of using statistics in the field of ________ When a group of stimuli all evoke the same response (for example, when one sees a picture of a Border collie, a Doberman pinscher, and a Labrador retriever, one says "that's a dog"), the group of stimuli is referred to as: Congressman Smith of South Dakota is a member of the U.S. House of Representatives. The position ofrepresentative is a part of which branch of government? Steam Workshop Downloader