Yes, it is possible to visually detect the presence of potassium, even though sodium produces a brighter and more persistent color.
In a flame test experiment, the color observed in the flame is due to the excitation and subsequent relaxation of electrons in atoms or ions.
Each element has a unique set of energy levels, and when the electrons transition between these levels, they emit light of specific wavelengths, which we perceive as colors.
To enhance the visibility of potassium's flame color, one could adjust the experimental conditions, such as using a higher concentration of potassium or reducing the concentration of sodium.
To learn more about potassium, follow the link:
https://brainly.com/question/13321031
#SPJ6
Final answer:
Potassium can be detected in the presence of sodium during a flame test by looking for its characteristic lilac color. Special equipment like spectrometers can enhance the detection of potassium's color in the flame test.
Explanation:
In a flame test experiment, when sodium is present, it can overwhelm other colors due to its bright yellow flame, which is highly persistent and intense. However, potassium can still be detected visually in the presence of sodium in a flame test. Potassium imparts a lilac color to the flame, which can be observed at the moment when the sodium's yellow emission fades, or by observing the edge of the flame where the color may be less intense. Additionally, the use of spectrometers or filters can help in better visualizing the potassium flame in the presence of sodium.
In the diagram below, particles of the substance are moving from the liquid phase to the gas phase at the same rate as they move from the gas phase to the liquid phase.
mc003-1.jpg
The gas and liquid are at...
~ equilibrium.
~ a high vapor pressure.
~ a low vapor pressure.
~ zero vapor pressure.
The gas and liquid are at equilibrium.
What type of energy is produced by a drycell?
the principal difference between isometric and isotonic exersies are ___________.
What is the chemical formula for tin(IV) phosphate?
Answer:
The chemical formula for Tin(IV)Phosphate is Sn3(PO4)4
Explanation:
The chemical formula for tin (IV) phosphate is Sn3(PO4)4. According to the Royal Society of Chemistry, tin (IV) phosphate is an ionic compound with a 736.0154 g/mol. molar mass.
This chemical compound is made up of three tin (IV) ions, bound ionically to four phosphate ions. Each tin (IV) ion has a 4+ charge. Each PO4, or phosphate ion, is a tetrahedral molecule, containing a central phosphorous atom that has a double bonded oxygen and three negatively charged oxygen attached.Therefore, each phosphate ion has a 3- charge. For tin (IV) phosphate, the sum of all positive and negative charges equal zero.
The chemical formula for Tin(IV)Phosphate is Sn₃(PO₄)₄ as the valencies of tin and phosphate ion are 4 and 3 respectively.
Chemical formula is a way of representing the number of atoms present in a compound or molecule.It is written with the help of symbols of elements. It also makes use of brackets and subscripts.
Subscripts are used to denote number of atoms of each element and brackets indicate presence of group of atoms. Chemical formula does not contain words. Chemical formula in the simplest form is called empirical formula.
Learn more about chemical formula,here:
https://brainly.com/question/32228478
#SPJ6
Decane (C10H22) used to produce poly(ethene). what conditions are needed?
Cracking of hydrocarbons involves thermal decomposition.
This means that large hydrocarbon molecules break into
smaller molecules when they are heated. The hydrocarbons
are boiled and the hydrocarbon gases are either
mixed with steam and heated to a very high temperature or
passed over a hot powdered aluminium oxide catalyst.
The catalyst works by providing the hydrocarbon gases
with a convenient surface for the cracking to take place.
For example, decane (an alkane with 10 carbons)
can be cracked to produce octane and ethene.
decane octane + ethene.
C10H22(g) C8H18(g) + C2H4(g)
Octane is used as petrol.
Ethene is used in the manufacture of polymers.
Cracking an alkane produces a smaller alkane plus an alkene.
If you add up the number of hydrogen atoms in the
above reaction, you will see that there are 22 on each side.
An alkene is produced because the original alkane does
not have enough hydrogen atoms to produce two more alkanes.
hope this helps
Decane (C₁₀H₂₂) is not typically used to produce polyethylene (poly(ethene)). Polyethylene is produced from ethylene (C₂H₄) monomers.
Polyethylene, a widely used plastic, is produced through a polymerization process using ethylene monomers. The process typically involves the use of a catalyst, such as a Ziegler-Natta catalyst or a metallocene catalyst, along with specific reaction conditions.
These conditions include elevated temperatures, typically ranging from 150 to 300 degrees Celsius, and high pressures, typically ranging from 1000 to 3000 atmospheres.
These conditions are necessary to initiate and facilitate the polymerization reaction, allowing the ethylene monomers to join together and form the long chains characteristic of polyethylene. Decane (C₁₀H₂₂), which is an alkane, is not commonly used as a raw material for polyethylene production.
To learn more about Decane here
https://brainly.com/question/24745133
#SPJ2
According to newtons third law forces always occur in equal but____ pairs?
Convert 0.0547 hectograms to ounces
Find all solutions in the interval [0, 2π).
7 tan3x - 21 tan x = 0
Hence, all the solutions in the interval [0,2π) are:
[tex]0\ ,\pi\ ,\dfrac{\pi}{3}\ ,\dfrac{2\pi}{3}\ ,\dfrac{4\pi}{3}\ ,\dfrac{5\pi}{3}[/tex]
Explanation:We are asked to find the solution of the trignometric identity which is given by:
[tex]7\tan^3x-21\tan x=0[/tex]
On dividing both side by 7 we get:
[tex]\tan^3x-3\tanx=0\\\\i.e.\\\\\tan x(\tan^2 x-3)=0[/tex]
i.e.
Either
[tex]\tan x=0[/tex]
i.e.
[tex]x=0,\pi[/tex]
or
[tex]\tan^2x-3=0\\\\i.e.\\\\\tan^2x=3\\\\i.e.\\\\\tan x=\pm \sqrt{3}[/tex]
If
[tex]\tan x=\sqrt{3}\\\\Then\\\\x=\dfrac{\pi}{3},\dfrac{4\pi}{3}[/tex]
and if
[tex]\tan x=-\sqrt{3}\\\\Then\\\\x=\pi-\dfrac{\pi}{3}=\dfrac{2\pi}{3}\\\\and\\\\x=2\pi-\dfrac{\pi}{3}\\\\i.e.\\\\x=\dfrac{5\pi}{3}[/tex]
Hence, all solutions are:
[tex]0\ ,\pi\ ,\dfrac{\pi}{3}\ ,\dfrac{2\pi}{3}\ ,\dfrac{4\pi}{3}\ ,\dfrac{5\pi}{3}[/tex]
Milk of magnesia is a base. What happens when you drink milk of magnesia for an upset stomach?
A)
It raises the pH of your stomach.
Eliminate
B)
It lowers the pH of your stomach.
C)
It cleanses the stomach of harmful, painful bacteria.
D)
It coats the walls of your stomach with a protective layer.
Answer:
A)
It raises the pH of your stomach.
Explanation:
Milk of magnesia raises the pH of your stomach. This is because the pH of your acidic stomach is well below 7. Adding something with a high pH (a base) will raise the pH back to where it should be.
Milk of magnesia is a basic substance that neutralizes excess stomach acid by raising the pH of the stomach, thus relieving symptoms like heartburn and indigestion, hence option A is correct.
When you drink milk of magnesia for an upset stomach, it acts as an antacid. The chemical formula for milk of magnesia is Mg(OH)2. Being a base with a pH greater than 7, milk of magnesia reacts with the hydrochloric acid (HCl) in your stomach, which is part of the gastric juice involved in digestion. This is a neutralization reaction where the base (milk of magnesia) neutralizes the excess stomach acid, thus effectively raising the pH of your stomach, and relieving symptoms like heartburn and indigestion.
This neutralization reaction can be represented as:
Mg(OH)2(s) + 2HCl(aq) → 2H2O(l) + MgCl2(aq).
The correct answer to the student's question is A) It raises the pH of your stomach.
The teacher prepares 2.50 liters (L) of a salt solution for a class experiment. How many quarts (qt) are in 2.50 L? (1 quart =0.943 liters)
For the answer to the question above, we must use the given conversion factor which is
1 quart = 0.943 liters
Now let us solve,
2.50L×(1 quart / 0.943L)
So the answer to this problem is,
=2.65quarts
What characterizes a heterogeneous mixture?
A. The substances are dissolved in the mixture.
B. The substances are evenly mixed throughout.
C. The mixture is made up of different consistencies.
D. The mixture is made up of a single consistency.
Answer: C. The mixture is made up of different consistencies.
Explanation:
A heterogenous mixture is substance constituted by two or more pure substances (elements or compounds) in any proportion, where each pure substance keeps its individual properties, the mixture does not have uniform properties, and each pure substance remains separated, in different phases, which is what the term consistencies means.
Some examples of heterogeneous mixtrures are: sand and water, oil and water.
For better visualization think on this: i) pure water is a pure substance (a compound with definite composition), ii) sea water is a homogeneous mixture (sal and water keep their individual properties, may be in any proportion one respect each other, and are intimimated mixed forming a solution), and iii) water with sand form a heterogeneous mixture (you can observe clearly two phases).
Describe how two of the human organ systems interact( work together) to help maintain homeostasis.
Body systems work together to maintain homeostasis by sharing the work of regulating balances of nutrients and other physiological values. For example, the circulatory system delivers oxygen-rich blood to your bones. Meanwhile, your bones are busy making new blood cells.
Homeostasis refers to the ability of an organism to maintain the internal environment of the body within limits that allow it to survive. is a self-regulating process by which biological systems maintain stability while adjusting to changing external conditions.
One of the common example is the physical response to overheating that is sweating, which cools the body by making more moisture on the skin available for evaporation. Whereas, the body reduces heat-loss in cold surroundings by sweating less and reducing blood circulation to the skin. Thus, any change in the normal temperature automatically triggers an opposite feedback.
Learn more about Homeostasis, here:
https://brainly.com/question/28270473
#SPJ2
Describe the hybrid orbitals used by the central atom and the types of bonds formed in o3
In ozone, the central oxygen atom uses sp² hybridization, forming sigma bonds and also forms a pi bond through an unhybridized p orbital.
Explanation:In ozone (O3), the central oxygen atom uses sp² hybrid orbitals. This hybridization occurs due to mixing one s orbital and two p orbitals, producing three identical hybrid orbitals arranged in a trigonal planar geometry. This bonding arrangement allows the formation of σ (sigma) bonds through orbital overlap.
Besides, ozone is noted for its resonance structure, leading to the formation of single and double bonds between the oxygen atoms. The double bond consists of one σ bond and one π (pi) bond. The sigma bond results from the overlap of hybrid orbitals, while the pi bond comes from the side-by-side overlap of the remaining unhybridized p orbital.
In summary, the central atom in ozone (O3) undergoes sp² hybridization, forming sigma bonds and one pi bond due to unhybridized p orbital.
Learn more about Ozone Hybridization and Bonding here:https://brainly.com/question/32297427
#SPJ3
Final answer:
In ozone (O3), the central oxygen atom uses sp² hybrid orbitals to form sigma (σ) bonds and has a delocalized pi (π) bond due to resonance. This results in a trigonal planar electron-pair geometry.
Explanation:
Ozone (O3) Hybridization and Bond Types
The central atom in ozone (O3) uses sp2 hybrid orbitals. The reason for this is that there are three regions of electron density around the central oxygen atom, which form a trigonal planar electron-pair geometry, as predicted by the VSEPR theory. The oxygen atom forms two sigma (σ) bonds with the other oxygen atoms using the sp2 hybrid orbitals. The delocalized pi (π) bond present in ozone, which is a characteristic of resonance structures, is formed by the side-by-side overlap of the remaining unhybridized p orbitals from each oxygen atom. This configuration allows for the distribution of the double bond character over the three oxygen atoms.
Multiple bonds in a molecule, such as the bonds in ozone, consist of a σ bond and one or two π bonds. In the case of O3, there is one σ bond between the central oxygen and each of the other two oxygens and one π bond that is delocalized across the molecule, contributing to the resonance structure.
Thus, hybrid orbitals are vital for the formation of covalent bonds in molecular compounds, where they allow for the correct prediction of molecule shapes and bond types.
How many moles are in 5.96 g KOH ?
Answer:
0.106 moles
Explanation:
weight of substance = 5.96 g
molar mass of KOH = 39 + 16 + 1
= 56 g
number of moles = weight of substance/ molar mass of substance
= 5.96/56
= 0.106 moles
Answer:
0.106
Explanation:
what activity best demonstrates the use of creativity of j.j. thomson's work
Which of the following elements is a noble gas?
a. rb
b. mn
c. cl
d. kr
Among the options, Kr, representing krypton, is the noble gas. Noble gases are found in the right-most column of the periodic table.
Explanation:The question asks which of the given elements is a noble gas. Noble gases are a group of chemical elements with similar properties on the rightmost column of the periodic table. These gases are helium, neon, argon, krypton, xenon, and radon. In relation to your options, the correct answer is (d) Kr, which represents krypton. Krypton is indeed a noble gas, while rb (rubidium), mn (manganese), and cl (chlorine) are not.
Learn more about Noble GasesA non-stoichiometric compound is a compound that cannot be represented by a small whole-number ratio of atoms, usually because of point defects in the crystal lattice. What is the average oxidation state of vanadium in ? What is the average state of vanadium in VO 1.19? If each vanadium atom has either a 2 or 3 oxidation state in this compound, what percentage of the vanadium atoms are in the lower oxidation state? ...?
Answer:
Part A:
Average oxidation state of vanadium is 2.38.
Part B:
Percentage of the vanadium atoms are in the lower oxidation state=62%
Explanation:
Part A:
1 atom vanadium(V) combines with 1.19 atoms of O to form [tex]VO_{1.19[/tex].
Formula:
[tex]\sum(Oxidation\ number\ of\ atoms\ in\ molecule* Number\ of\ atoms)=Oxidation\ number\of\ molecule[/tex]
In our Case:
Note: Oxidation number of O is always -2
[tex](Oxidation\ number\ of\ V* Number\ of\ atoms\ of\ vanadium)+(Oxidation\ number\ of\ O* Number\ of\ atoms\ of\ Oxygen)=Oxidation\ Number\ of\ VO_{1.19}\\\\(Oxidation\ number\ of\ V* 1)+(-2* 1.19)=Oxidation\ Number\ of\ VO_{1.19}\\\\\\Since, Oxidation\ Number\ of\ VO_{1.19}\ is\ 0\ as\ it\ is\ neutral\ molecule.\\(Oxidation\ number\ of\ V* 1)+(-2* 1.19)=0\\Oxidation\ number\ of\ V=2.38[/tex]
Average oxidation state of vanadium is 2.38.
Part B:
Let's say we have total 100 atoms of vanadium, a will show +2 oxidation state while (100-a) will show +3 oxidation state.
Now:
[tex]Total\ Atoms* Average\ oxidation\ number\ of\ Vanadium=(Oxidation\ number* Number\ of\ atoms\ of\ with\ +2\ oxidation\ number )+(Oxidation\ number* Number\ of\ atoms\ of\ +3\ oxidation\ number)\\\\100*\ Average\ oxidation\ number\ of\ Vanadium\ = \ (+2*a)+[+3*(100-a)]\\100*2.38=2a+300-3a\\\\a= 62 atoms (+2\ oxidation\ state)[/tex]
[tex]Percentage=\frac{62}{100}*100\ =62\%[/tex]
Percentage of the vanadium atoms are in the lower oxidation state=62%
Calculate the average atomic mass of carbon if 98.90% of the atoms are C-12 (12.000000 amu) and 1.100% are C-13 atoms (13.003354 amu). Give your answer to the correct number of significant figures.
The average atomic mass of carbon is calculated using the abundances and atomic masses of its isotopes. In this case, it sums up to approximately 12.01 amu.
Explanation:The average atomic mass of carbon is calculated by using the relative abundances and atomic masses of its isotopes. In this case, we consider C-12 and C-13 isotopes for our calculation. The formula to calculate the average atomic mass is:
Multiply the relative abundance of each isotope by its atomic massSum the values obtainedThus, the calculation would look like this:
(0.9890 * 12.000000 amu) + (0.0110 * 13.003354 amu)
This gives an average atomic mass of approximately 12.01 amu for carbon, which aligns with the value listed on the periodic table. Remember to respect the rules of significant figures in your calculation.
Learn more about Average Atomic Mass here:https://brainly.com/question/13753702
#SPJ2
Which of the following solutes will lower the freezing point of water the most?
A) the molecular compound sucrose (C₁₂H₂₂22O₁₁)
B) the iconic compound magnesium sulfate (MgSO₄4)
C)the iconic lithium chloride (LiCI)
D)the iconic compound calcium fluoride(CaF₂2)
Answer: D) the iconic compound calcium fluoride (CaF₂)
Explanation:
[tex]\Delta T_f=i\times k_f\times m[/tex]
where,
[tex]\DeltaT_f[/tex] = change in freezing point
i= vant hoff factor
[tex]k_f[/tex] = freezing point constant
m = molality
A) the molecular compound sucrose (C₁₂H₂₂O₁₁)
: For non electrolytes like sucrose, vant hoff factor is 1.
B) the iconic compound magnesium sulfate (MgSO₄): For electrolytes, vant hoff factor is equal to the number of ions it produce on dissociation.
[tex]MgSO_4\rightarrow Mg^{2+}+SO_4^{2-}[/tex] Thus i= 2
C) the iconic lithium chloride (LiCI):
[tex]LiCl\rightarrow Li^++Cl^-[/tex], thus i=2.
Thus 1% produces most ions and thus lowers the freezing point to maximum.
D) the iconic compound calcium fluoride(CaF₂):
[tex]CaF_2\rightarrow Ca^{2+}+2F^-[/tex], thus i=3.
Thus the compound with highest value of i, will depress the freezing point to maximum.
2 CuCl2 + 2 NaNO3 ---> Cu(NO3)2 + 2 NaCl
If 15 grams of copper (II) chloride react with 20 grams of sodium nitrate, Which is the limiting reagent
In the reaction between copper chloride and sodium nitrate, copper chloride will be the limiting reagent as it has less number of moles.
What are limiting reagents?Limiting reagents are the chemical species that are present in less amount compared to another and get consumed 100 % hence limiting the product formation.
CuCl₂ + 2NaNO₃ → Cu(NO₃)₂ + 2NaCl
Moles of copper chloride: n = 15 ÷ 134.5 = 0.11 moles
Moles of sodium nitrate: n = 20 ÷ 85 = 0.23 moles
From the above reaction, it is seen that 1 mole of copper chloride requires 2 moles of sodium nitrate. So, 0.11 moles will need 0.22 moles of sodium nitrate.
From this, it can be concluded that sodium nitrate is in excess and copper chloride is within the limit.
Therefore, copper chloride will be the limiting reagent and will be consumed first.
Learn more about limiting reagents here:
https://brainly.com/question/4132891
#SPJ2
which substance contains metallic bonds (1)Hg (2)H2O (3) NaCL (4)C6H12O6
Answer:
The answer is (1) Hg
Explanation:
Hg is mercury. It is a metal, so the elemental substance have Hg atoms that interact each other by metallic bonds.
The other options do not contain metallic bonds:
(2) H₂O is water, and contains covalent bonds
(3) NaCl is sodium chloride and is a ionic compound (ionic bonds)
(4) C₆H₁₂O₆ is glucose, and the atoms are covalently bonded.
Answer: (1) [tex]Hg[/tex]
Explanation:
A covalent bond is formed when an element shares its valence electron with another element. This bond is formed between two non metals. Example: [tex]H_2O[/tex] and [tex]C_6H_{12}O_6[/tex]
An ionic bond is formed when an element completely transfers its valence electron to another element. The element which donates the electron is known as electropositive element and the element which accepts the electrons is known as electronegative element. This bond is formed between a metal and an non-metal. Example: [tex]NaCl[/tex]
Metallic bond is defined as the bond which is formed between positively charged atoms having free electrons and are shared among a lattice of cations. This is usually formed between metals. Example: [tex]Hg[/tex]
Help I will give brainliest answer!
1. Calculate the number of moles of one level teaspoon of salt (NaCl). Repeat for all the other compounds (Hint: 1000mg = 1g). Fill in the appropriate boxes on the Data Table. Show your work.
2. Calculate the number of moles of each element in one level teaspoon of salt (NaCl). Repeat for all the other compounds. Fill in the appropriate boxes on the Data Table. Show your work.
3. Calculate the atoms of each element for one level teaspoon of salt (NaCl). Repeat for all the other compounds. Fill in the appropriate boxes on the Data Table. Show your work.
4. You measured equal volumes for each of the different compounds. Which of the compounds has the greatest number of moles in one teaspoon?
5. Which of the compounds has the greatest total number of atoms?
6. Why can you use the technique of measuring volume as a means of counting.
Calculate moles of salt by dividing its mass by molecular weight. Atomic moles can be calculated the same way. To calculate number of atoms, multiply moles by Avogadro's number. The compound with greatest moles or atoms in equal volume would be one with lowest molecular weight. Avogadro's law allows counting by volume.
Explanation:To calculate the number of moles of salt (NaCl), you need to know its molecular weight, which is approximately 58.44 g/mol. An average teaspoon of salt weights about 5 grams. So, the number of moles would be mass/molecular weight = 5 g / 58.44 g/mol = 0.086 moles.
NaCl consists of Sodium (Na) and Chlorine (Cl). So, in one mole of NaCl, there is one mole of Na and one mole of Cl. Hence, one teaspoon of salt would contain 0.086 moles of Na and 0.086 moles of Cl.
To calculate the number of atoms, note that 1 mole contains Avogadro's number (6.022 x 1023) of particles. Therefore, one teaspoon of salt contains 0.086 moles x (6.022 x 1023) atoms/mole = 5.18 x 1022 atoms of Na and an equal number of atoms of Cl.
The compound with the greatest number of moles or atoms in one teaspoon would be the one with the smallest molecular weight, assuming all compounds are measured in equal volumes.
Volume measurement can be used to count atoms and moles because, under equal conditions of temperature and pressure, equal volumes of all gases contain the same number of moles (known as Avogadro's law).
Learn more about Moles and Atoms Calculation here:https://brainly.com/question/1553774
#SPJ11
There are approximately 0.0972 moles of NaCl in 1 teaspoon (5.69 grams) of table salt.
To calculate the number of moles of NaCl in 1 teaspoon (5.69 grams), we follow these steps:
Molar mass of NaCl: Sodium chloride (NaCl) has a molar mass of:
[tex]\[ \text{Molar mass of NaCl} = \text{atomic mass of Na} + \text{atomic mass of Cl} \][/tex]
[tex]\[ \text{Atomic mass of Na} = 22.99 \, \text{g/mol} \][/tex]
[tex]\[ \text{Atomic mass of Cl} = 35.45 \, \text{g/mol} \][/tex]
[tex]\[ \text{Molar mass of NaCl} = 22.99 \, \text{g/mol} + 35.45 \, \text{g/mol} = 58.44 \, \text{g/mol} \][/tex]
Calculate number of moles: Use the formula for moles:
[tex]\[ \text{Number of moles} = \frac{\text{Mass}}{\text{Molar mass}} \][/tex]
Given mass = 5.69 grams,
[tex]\[ \text{Number of moles of NaCl} = \frac{5.69 \, \text{g}}{58.44 \, \text{g/mol}} \][/tex]
[tex]\[ \text{Number of moles of NaCl} \approx 0.0972 \, \text{moles} \][/tex]
Express the answer with three significant figures:
[tex]\[ \text{Number of moles of NaCl} \approx 0.0972 \, \text{moles} \][/tex]
The complete question is
A teaspoon of table salt contains 5.69 grams of NaCl. Calculate the number of moles in 1 teaspoon. Express your answer with three significant figures.
SCIENCE!!! HAHA X'D : Which one of the following is an element?
Question 10 options:
salt water.
sugar
oxygen
chocolate chip cookies
Save
Oxygen is your answer
The hydrogen bomb uses the process of _____
-nuclear fusion
-nuclear fission
-hydrogen radioactivity
-spontaneous decay
Answer:
nuclear fusion
How many protons neutrons and electrons does an electrically neutral atom of nickel have?
In an electrically neutral atom of nickel there are 28 protons and 31 neutrons.
What is an atom?
An atom is defined as the smallest unit of matter which forms an element. Every form of matter whether solid,liquid , gas consists of atoms . Each atom has a nucleus which is composed of protons and neutrons and shells in which the electrons revolve.
The protons are positively charged and neutrons are neutral and hence the nucleus is positively charged. The electrons which revolve around the nucleus are negatively charged and hence the atom as a whole is neutral and stable due to presence of oppositely charged particles.
Atoms of the same element are similar as they have number of sub- atomic particles which on combination do not alter the chemical properties of the substances.
Learn more about atom,here:
https://brainly.com/question/13654549
#SPJ6
Nitrogen gas (N2) and hydrogen gas (H2) combine to form ammonia (NH3). Which equation correctly represents this reaction?
A.
N + H → NH
B.
2N2+ H2 → 3NH3
C.
2NH → N + 3H2
D.
N2+ 3H2 → 2NH3
B) 2n2 + h2 -> 3nh3 is your answer
Potassium and iodine have formed a bond. Prior to this the potassium gave up an electron. It became a _____.
positive ion
neutral atom
negative ion
shared ion
Answer: The correct answer is positive ion.
Explanation:
Ions are formed when an atom looses or gain electrons.
When an atom looses its electron, it results in the formation of a positive ion which is known as cation and when an atom gains electron, it results in the formation of a negative ion known as anion.
In the question, when potassium gave up an electron, it resulted in the formation of a positive ion which is [tex]K^+[/tex] ion.
Thus, the correct answer is positive ion.
Describe the number of solutions for the equation. 5(x-9)=5x A. No solution B. One solution C. Infinite solutions Is the answer B?
The equation 5(x-9)=5x has no solution as the simplified equation results in a statement that is not true (-45 does not equal 0). Therefore, the answer is 'No Solution'.
Explanation:The equation given is 5(x-9)=5x. To determine the number of solutions for this equation, we start by simplifying the given equation. Distributing 5 to the expression in the parentheses on the left side of the equation gives us 5x-45. When rewritten, the equation is: 5x-45=5x.
If we subtract 5x from both sides to solve for x, it results in -45=0. Since -45 does not equal 0, this equation has No Solution.
Therefore, answer A is correct.
Learn more about Equation Solutions here:https://brainly.com/question/28741857
#SPJ2
If you have 2 forces (10 N) and 15 (N) pushing an object the same direction in a one dimensional force vectors what is the resulting force?
The resulting force of the given two forces in the same direction is equal to 25N.
What is the resultant force?When an object is subject to many forces, the resultant force is the one that alone produces the same acceleration as all those forces. To determine the effect that various forces have on an object is only need one single force.
The mass 'm' of an object and the acceleration produced by the several forces that act on it, the resultant force using according to Newton's Second Law, the force F,
F = ma
and the resultant force, R = ma
When an object is subject to several forces, F₁, F₂,......., the resultant force R is the vector sum of all these forces:
R = F₁ + F₂ + F₃........
When two forces act in the same direction, the resultant force has a magnitude equal to the sum of the magnitudes of those two forces.
Given, F₁ = 10 N and F₂ = 15 N
The resultant force, F = F₁ + F₂ = 10 + 15 = 25 N
Learn more about the resultant force, here:
https://brainly.com/question/22260425
#SPJ5
balanced complete ionic and net ionic equations
HClO4(aq)+Ca(OH)2(aq)→
this is what i got but its wrong H+(aq)+SO32−(aq)→SO2(g)+H2O(l)
H2SO4(aq)+Li2SO3(aq)→
H+(aq)+SO42−(aq)+2Li+(aq)+SO32−(aq)→2Li+(aq)+SO42−(aq)+SO2(g)+H2O(l)
Answer :
(1) The net ionic equation will be,
[tex]H^+(aq)+2OH^-(aq)\rightarrow 2H_2O(l)[/tex]
(2) The net ionic equation will be,
[tex]2H^+(aq)+SO_3^{2-}(aq)\rightarrow H_2O(l)+SO_2(g)[/tex]
Explanation :
In the net ionic equations, we are not include the spectator ions in the equations.
Spectator ions : The ions present on reactant and product side which do not participate in a reactions. The same ions present on both the sides.
(1) The balanced ionic equation will be,
[tex]HClO_4(aq)+Ca(OH)_2(aq)\rightarrow Ca(ClO_4)_2(aq)+2H_2O(l)[/tex]
The ionic equation in separated aqueous solution will be,
[tex]H^+(aq)+ClO_4^-(aq)+Ca^{2+}(aq)+2OH^-(aq)\rightarrow Ca^{2+}(aq)+2ClO_4^-(aq)+2H_2O(l)[/tex]
In this equation, [tex]Ca^{2+}\text{ and }ClO_4^-[/tex] are the spectator ions.
By removing the spectator ions from the balanced ionic equation, we get the net ionic equation.
The net ionic equation will be,
[tex]H^+(aq)+2OH^-(aq)\rightarrow 2H_2O(l)[/tex]
(2) The balanced ionic equation will be,
[tex]H_2SO_4(aq)+Li_2SO_3(aq)\rightarrow Li_2SO_4(aq)+H_2O(l)+SO_2(g)[/tex]
The ionic equation in separated aqueous solution will be,
[tex]2H^+(aq)+SO_4^{2-}(aq)+2Li^+(aq)+SO_3^{2-}(aq)\rightarrow 2Li^+(aq)+SO_4^{2-}(aq)+H_2O(l)+SO_2(g)[/tex]
In this equation, [tex]Li^+\text{ and }SO_4^{2-}[/tex] are the spectator ions.
By removing the spectator ions from the balanced ionic equation, we get the net ionic equation.
The net ionic equation will be,
[tex]2H^+(aq)+SO_3^{2-}(aq)\rightarrow H_2O(l)+SO_2(g)[/tex]