Answer:
Energy stored in inductor will be 20.797 J
Explanation:
We have given inductance L = 3.54 H
And resistance R = 7.76 ohm
Battery voltage V = 26.6 VOLT
After very long time means at steady state inductor behaves as short circuit
So current [tex]i=\frac{V}{R}=\frac{26.6}{7.76}=3.427Amp[/tex]
Now energy stored in inductor [tex]E=\frac{1}{2}Li^2=\frac{1}{2}\times 3.54\times 3.427^2=20.797J[/tex]
So energy stored in inductor will be 20.797 J
To find the energy stored in an inductor in an RL circuit at equilibrium, use Ohm's law to calculate the steady current, and then apply the energy formula E = (1/2)LI^2.
Explanation:When the switch in an RL series circuit is closed for a long time, the current in the circuit reaches an equilibrium value due to the voltage provided by the battery. The current, I, can be calculated using Ohm's law, I = V/R, where V is the voltage of the battery and R is the resistance in the circuit. In this case, with a 26.6 V battery and a 7.76 Ω resistor, the current would be I = 26.6 V / 7.76 Ω. After calculating the current, the energy stored in the inductor at equilibrium can be found using the formula for energy stored in an inductor, which is E = (1/2)LI^2, where L is the inductance and I is the current.
The corresponding energy stored in the inductor after a long time can be determined using these calculations.
Learn more about Energy Stored in Inductor here:https://brainly.com/question/32674859
#SPJ3
In the fabrication of an electrical extension cord, the manufacturer wants to reduce the overall resistance of the wires in the extension cord.
Which of the following changes would result in the lowest resistance?
A) decrease the diameter of the wiresB) increase the diameter of the wiresC) choose a metal wire with a larger value of resistivityD) increase the length of the extension cord
Answer:
Option B is correct.
Explanation:
The resistance of a material or wire is represented by the formula below.
R=(ρL)/A
where
R is resistance of wireρ is the resistivity of the materialA is the cross sectional area of wireL is length of wireResistance increases with increase in length and resistivity which means options C and D are wrong.
A=(π[tex]d^{2}[/tex])/4
An increase in diameter will result in a proportional increase in area
From the resistance formula, an increase in area will cause a reduction in the resistance of the material.Thus increased diameter of wire will lower the resistance of wire. Option B is correct
Have a great day
A flat plate is oriented parallel to a 45 m/s airflow at 20°C and atmospheric pressure. The plate is L = 1 m in the flow direction and 0.5 m wide. On one side of the plate, the boundary layer is tripped at the leading edge, and on the other side there is no tripping device. Find the total drag force on the plate.
Answer:
4.192 N
Explanation:
Step 1: Identify the given parameters
Velocity of airflow = 45m/s
air temperature = 20⁰
plate length and width = 1m and 0.5m respectively.
Step 2: calculate drag force due to shear stress, [tex]F_{s}[/tex]
[tex]F_{s} = C_{f} \frac{1}{2} (\rho{U_{o}}WL)[/tex]
Note: The density and kinematic viscosity of air at 20⁰ at 1 atm, is 1.2 kg/m³ and 1.5 X 10⁻⁵ N.s/m²
⇒The Reynolds number ([tex]R_{eL}[/tex]) based on the length of the plate is
[tex]R_{eL} =\frac{VXL}{U}[/tex]
[tex]R_{eL} =\frac{45X1}{1.5 X 10^{-5}}[/tex]
[tex]R_{eL}[/tex] = 3 X10⁶ (flow is turbulent, Re ≥ 500,000)
⇒The average shear stress coefficient ([tex]C_{f}[/tex]) on the "tripped" side of the plate is
[tex]C_{f} = \frac{0.074}{(R_{e})^\frac{1}{5}}[/tex]
[tex]C_{f} = \frac{0.074}{(3 X10^6)^\frac{1}{5}}[/tex]
[tex]C_{f}[/tex] = 0.0038
⇒The average shear stress coefficient ([tex]C_{f}[/tex]) on the "untripped" side of the plate is
[tex]C_{f} = \frac{0.523}{in^2(0.06XR_{e})} -\frac{1520}{R_{e}}[/tex]
[tex]C_{f} = \frac{0.523}{in^2(0.06 X 3X10^6)} -\frac{1520}{3X10^6}[/tex]
[tex]C_{f}[/tex] = 0.0031
The total drag force = [tex]\frac{1}{2}(1.2 X 45^2 X 1 X 0.5 (0.0038 +0.0031)[/tex]
The total drag force is 4.192 N
Isolating a variable in two equations is easiest when one of them has a coefficient of 1. Let's say we have the two equations 3A−B=5 2A+3B=−4 and want to isolate one of the variables, such that it appears by itself on one side of the equation. Which of the following is an equation with one of the above variables isolated?
Answer:
[tex]B=3A-5[/tex]
Explanation:
Variable Isolation
It's a common practice when dealing with equations that we have to isolate one variable in terms of other variables and/or constants. The isolation of the variable usually implies adding, subtracting, multiplying or dividing by constants. The following example shows how to isolate the A:
[tex]2A+3B=-4\\\\2A=-4-3B\\\\\displaystyle A=\frac{-4-3B}{2}[/tex]
We are required to find the equation where the variable has a coefficient of 1 and isolate it. The following equation fits into the description:
[tex]3A-B=5[/tex]
Isolating B:
[tex]B=3A-5[/tex]
A rocket burns fuel at a rate of 264 kg/s and
exhausts the gas at a relative speed of 8 km/s.
Find the thrust of the rocket.
Answer in units of MN.
Answer:
2.112 MN
Explanation:
Force = mass × acceleration. Each second, 264 kg of gas is accelerated from 0 to 8 km/s.
F = ma
F = m Δv / Δt
F = 264 kg × (8000 m/s − 0 m/s) / 1 s
F = 2,112,000 kg m/s²
F = 2.112 MN
Round as needed.
The thrust of the rocket, calculated using the formula - Thrust = mass rate of exhaust x exhaust velocity, is 2.112 Mega Newtons.
Explanation:The thrust produced by a rocket is typically calculated using the formula: Thrust = mass rate of exhaust x exhaust velocity. In this scenario, the rocket is burning fuel at a rate of 264 kg/s (mass rate of exhaust), and the exhaust gas is ejected at a relative speed of 8 km/s.
However, to ensure the units are consistent, we have to convert the relative speed from km/s to m/s, which results in 8000 m/s (exhaust velocity).
Substituting these values into the formula, we get: Thrust = 264 kg/s x 8000 m/s = 2,112,000 N = 2.112 MN.
Therefore, the thrust of the rocket is 2.112 Mega Newtons.
Learn more about Rocket Thrust here:https://brainly.com/question/34194990
#SPJ3
The total volume in milliliters of a glucose-water solution is given by the equation below: V = 1001.93 + 111.5282m + 0.64698m2 where m is the molality of the solution. The partial molar volume of glucose ?glucose, is the slope of a V versus m curve, (?V/?m). Find the partial molar volume of glucose in a 0.100m solution of glucose in water
Answer:
111.657596
Explanation:
The expression of volume is given by
[tex]V=1001.93+111.5282+0.64698m^2[/tex]
Partially differentiating the term we get
[tex]\dfrac{\partial V}{\partial x}=\dfrac{\partial (1001.93+111.5282+0.64698m^2)}{\partial x}\\\Rightarrow \dfrac{\partial V}{\partial x}=111.5282+2\times 0.64698m\\\Rightarrow \dfrac{\partial V}{\partial x}=111.5282+1.29396m[/tex]
m = 0.100
[tex]\dfrac{\partial V}{\partial x}=111.5282+1.29396\times 0.100\\\Rightarrow \dfrac{\partial V}{\partial x}=111.657596[/tex]
The partial molar volume of glucose is 111.657596
A loop-the-loop has a circular arc, with a marble that can run along a track and traverse the entire inside of the loop. When the marble is precisely at the top of the inside loop, it has its minimum speed. ~v What do we know about the direction of the net force on the marble at this point, the top of the loop? a. The net force is instantaneously in the direction of the marble’s velocity b. The net force is instantaneously in the opposite direction to the marble’s velocity ~v. c. The net force is vertically downward. d. The net force is vertically upward
Answer:
c. The net force is vertically downward.
Explanation:
At the top of the loop, the only external force that keeps the ball moving around the loop, is the centripetal force.
Now, this centripetal force, is not a " new" force, it's just the vector sum of the two external forces (neglecting friction) , that act simultaneously on the marble, making it to change its speed, in magnitude and direction: the gravity force (which it is always downward), and the normal force(which is always perpendicular to the contact surface, preventing that the marble comes trough the surface), in this case between the marble and the track, which, at the top of the loop, points down too.
So, the net force, exactly at the top of the loop, is vertically downward.
PART ONE
A jet aircraft is traveling at 281 m/s in horizontal flight. The engine takes in air at a
rate of 107 kg/s and burns fuel at a rate of
4.23 kg/s. The exhaust gases are ejected at
679 m/s relative to the aircraft.
Find the thrust of the jet engine.
Answer in units of N.
PART TWO
Find the delivered power.
Answer in units of W
Answer:
1. F = 45,458.17 N
2. P = 12,800,000 W
Explanation:
Part 1. The thrust force is the sum of the forces on the air and on the fuel.
For the air, 107 kg of air is accelerated from 281 m/s to 679 m/s in 1 second.
F = ma
F = (107 kg) (679 m/s − 281 m/s) / (1 s)
F = 42,586 N
For the fuel, 4.23 kg of fuel is accelerated from 0 m/s to 679 m/s in 1 second.
F = ma
F = (4.23 kg) (679 m/s − 0 m/s) / (1 s)
F = 2,872.17 N
So the thrust on the jet is:
F = 42,586 N + 2,872.17 N
F = 45,458.17 N
Rounded to three significant figures, the force is 45,500 N.
Part 2. Power = work / time, and work = force × distance, so:
Power = force × distance / time
Power = force × velocity
P = (45,458.17 N) (281 m/s)
P = 12,773,745.77 W
Rounded to three significant figures, the power is 12,800,000 W.
You are using a Geiger counter to measure the activity of a radioactive substance over the course of several minutes. If the reading of 400. counts has diminished to 100. counts after 90.3 minutes, what is the half-life of this substance?
Answer : The half-life of this substance will be, 45 minutes.
Explanation :
First we have to calculate the value of rate constant.
Expression for rate law for first order kinetics is given by:
[tex]k=\frac{2.303}{t}\log\frac{a}{a-x}[/tex]
where,
k = rate constant = ?
t = time passed by the sample = 90.3 min
a = initial amount of the reactant = 400
a - x = amount left after decay process = 100
Now put all the given values in above equation, we get
[tex]k=\frac{2.303}{90.3min}\log\frac{400}{100}[/tex]
[tex]k=1.54\times 10^{-2}\text{ min}^{-1}[/tex]
Now we have to calculate the half-life of substance, we use the formula :
[tex]k=\frac{0.693}{t_{1/2}}[/tex]
[tex]1.54\times 10^{-2}\text{ min}^{-1}=\frac{0.693}{t_{1/2}}[/tex]
[tex]t_{1/2}=45min[/tex]
Therefore, the half-life of this substance will be, 45 minutes.
A piccolo and a flute can be approximated as cylindrical tubes with both ends open. The lowest fundamental frequency produced by one kind of piccolo is 516.1 Hz, and that produced by one kind of flute is 257.0 Hz. What is the ratio of the piccolo's length to the flute's length?
Answer:
0.49806
Explanation:
v = Velocity of wave
L = Length of tube
p denotes piccolo
f denotes flute
The fundamental frequency with both ends open is given by
[tex]f=\dfrac{v}{2L}\\\Rightarrow L=\dfrac{v}{2f}[/tex]
It can be seen that
[tex]L\propto \dfrac{1}{f}[/tex]
So,
[tex]\dfrac{L_p}{L_f}=\dfrac{f_f}{f_p}\\\Rightarrow \dfrac{L_p}{L_f}=\dfrac{257}{516} \\\Rightarrow \dfrac{L_p}{L_f}=0.49806[/tex]
The ratio of the piccolo's length to the flute's length is 0.49806
Water is pumped from a lake to a storage tank 15 m above at a rate of 70 L/s while consuming 15.4 kW of electric power. Disregarding any frictional losses in the pipes and any changes in kinetic energy, determine (a) the overall efficiency of the pump-motor unit and (b) the pressure difference between the inlet and the exit of the pump.
Answer:
(a) 66.9%
(b) 147.14 kPa
Explanation:
Given:
Elevation of the water tank z = 15 m
Water volume flow rate V = 70 L/s = 0.07 m³/s
Input electric power consumption by the pump, Welec, in = 15.4 kW
Assuming there are no frictional losses in the pipes and changes in kinetic energy, the efficiency of the pump-motor will be;
η = ΔEmech ÷ Welec,
Where;
η is the overall efficiency
ΔEmech is the workdone to move the water pumped from the lake to a storage tank 15m above
Welec is the Input electric power consumption by the pump
Solving for ΔEmech ;
ΔEmech = mgh
mass, m = density × volume
Density of water = 1000 kg/m³
m = 1000 kg/m³ × 0.07 m³/s
m = 70 kg/s
∴ ΔEmech = 70 × 9.8 × 15
= 10.3 kW
Substituting the values of ΔEmech and Welec to calculate the overall efficiency
η = (10.3 kW ÷ 15.4 kW) × 100 %
= 0.6688 × 100 %
= 66.88 %
= 66.9 %
The overall efficiency of the pump-motor unit is = 66.9 %
(b) The pressure difference between the inlet and the exit of the pump is calculated to be;
Pressure = ΔEmech ÷ V
= 10.3 ÷ 0.07
= 147.14 kPa
This question involves the concept of potential energy, pressure difference, and electrical work.
(a) Efficiency of pump-motor unit is "66.9 %".
(b) The pressure difference between the inlet and the exit of the pump is "147.15 KPa".
(a) Pump EfficiencyThe efficiency of the pump-motor unit can be given by the following formula:
[tex]\eta = \frac{W_{P.E}}{W_{elect}}[/tex]
where,
[tex]\eta[/tex] = efficiency = ?P.E = power due to potential energy = [tex]\frac{mgh}{t}=\frac{\rho Vgh}{t}[/tex][tex]\rho[/tex] = density of water = 1000 kg/m³g = 9.81 m/s²h = height = 15 m[tex]\frac{V}{t}[/tex] = volume flow rate = 70 L/s = 0.07 m³/s[tex]W_{elect}[/tex] = electrical power input = 15.4 KW = 15400 WTherefore,
[tex]\eta = \frac{\rho Vgh}{t\ W_{elect}}\\\\\eta=\frac{(1000\ kg/m^3)(0.07\ m^3/s)(9.81\ m/s^2)(15\ m)}{15400\ W}\\\\\eta =0.669 = 66.9\ \%[/tex]
(b) PRESSURE DIFFERENCEThe pressure difference between inlet and outlet of the pump can be found using the following equation:
[tex]\Delta P = \rho gh\\\\\Delta P = (1000\ kg/m^3)(9.81\ m/s^2)(15\ m)[/tex]
[tex]\Delta P = 147150\ Pa = 147.15\ KPa[/tex]
Learn more about the pressure difference here:
https://brainly.com/question/124508
In braking an automobile, the friction between the brake drums and brake shoes converts the car's kinetic energy into heat. If a 1 500-kg automobile traveling at 30 m/s brakes to a halt, how much does the temperature rise in each of the four 8.0-kg brake drums in °C? (The specific heat of each iron brake drum is 448 J/kg⋅°C).
To solve this problem it is necessary to apply the concepts related to energy conservation.
In this case the kinetic energy is given as
[tex]KE = \frac{1}{2} mv^2[/tex]
Where,
m = mass
v= Velocity
In the case of heat lost energy (for all 4 wheels) we have to
[tex]Q = mC_p \Delta T \rightarrow 4Q = 4mC_p \Delta T[/tex]
m = mass
[tex]C_p =[/tex] Specific Heat
[tex]\Delta T[/tex]= Change at temperature
For conservation we have to
[tex]KE = Q[/tex]
[tex]\frac{1}{2} mv^2 = 4mC_p \Delta T[/tex]
[tex]\Delta T = \frac{1}{2}\frac{mv^2}{4mC_p}[/tex]
[tex]\Delta T = \frac{1}{2}\frac{(1500)(30)^2}{4(8)(448)}[/tex]
[tex]\Delta T = 47.084\°C \approx 47\°C[/tex]
Therefore the temperature rises in each of the four brake drums around to 47°C
Intelligent beings in a distant galaxy send a signal to earth in the form of an electromagnetic wave. The frequency of the signal observed on earth is 1.1% greater than the frequency emitted by the source in the distant galaxy. What is the speed vrel of the galaxy relative to the earth?
Answer:
3900000 m/s
Explanation:
c = Speed of light = [tex]3\times 10^8\ m/s[/tex]
v = Speed of the galaxy relative to the earth
Observed frequency is
[tex]f'=(1+0.013)f\\\Rightarrow \dfrac{f'}{f}=1.013[/tex]
Here the Doppler relation must be used.
So, observed frequency is given by
[tex]f'=f\dfrac{v+c}{c}\\\Rightarrow \dfrac{f'}{f}=\dfrac{v+c}{c}\\\Rightarrow v=\dfrac{f'c}{f}-c\\\Rightarrow v=(1.013\times 3\times 10^8)-3\times 10^8\\\Rightarrow v=3900000\ m/s[/tex]
The speed of the galaxy relative to the earth is 3900000 m/s
Consider two different rods. The greatest thermal conductivity will be in the rod with:
a. electrons that are freer to move from atom to atom.
b. the greater specific heat.
c. the greater cross-sectional area.
d. the greater length.
Answer:
Options A and D are correct
Explanation:
The thermal conductivity of a metal is the property of a metal to allow heat flow through it. conductivity is higher in conductors and low in insulators. Thermal conductivity is high in metals due to the metallic bonds that exist in metals and the presence of free electrons within the metal which allow easy flow of heat from one atom to another.From the problem the rod which contains freer electrons will allow more heat to flow easily hence have a higher thermal conductivity.
Thermal conductivity has the formula below;
[tex]k= \frac{QL}{AΔT}[/tex]
k is thermal conductivity,A is cross sectional area L is length of rod Q is quantity of heat transferred to material. ΔT is temperature change.From the above equation we can see that thermal conductivity is inversely proportional to A and directly proportional to L. This mean the rod with less area will have a higher thermal conductivity and the rod with a higher length will have higher k. Hence option C i wrong and option D is correct.
For specific heat, its very much different from thermal conductivity. Specific heat is the ability of a material to hold heat while thermal conductivity is the ability of heat to flow through a material.
A woman of mass 44 kg jumps off the bow of
a 49 kg canoe that is intially at rest.
If her velocity is 2.5 m/s to the right, what
is the velocity of the canoe after she jumps?
Answer in units of m/sˆı.
Answer:
2.2 m/s to the left
Explanation:
Momentum is conserved, so:
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂
0 = (44 kg) (2.5 m/s) + (49 kg) v
v = -2.2 m/s
The canoe will move in the opposite direction of the woman with a velocity of approximately 2.24 m/s.
The velocity of the canoe after the woman jumps off can be determined by using the principle of conservation of momentum, which states that the total momentum before an event must equal the total momentum after the event when no external forces act on the system. In this scenario, the system consists of the woman and the canoe.
Before the woman jumps, the system is at rest, so its initial momentum is zero. When the woman jumps off the canoe to the right with a velocity of 2.5 m/s, by conservation of momentum, the canoe must move in the opposite direction to maintain the total momentum at zero.
The momentum possessed by the woman is given by the product of her mass and velocity (mw×vw).
Similarly, the momentum of the canoe is the product of its mass and its velocity in the opposite direction (mc×vc).
Momenta are equal in magnitude and opposite in direction:
mw ×vw = mc ×vc
Therefore, vc = (mw ×vw) / mc
Substituting the given values:
vc = (44 kg ×2.5 m/s) / 49 kg
= 2.24 m/s
The canoe will move to the left (opposite to the woman's direction) with a velocity of approximately 2.24 m/s.
A water wave traveling in a straight line on a lake is described by the equation:y(x,t)=(2.75cm)cos(0.410rad/cm x+6.20rad/s t)Where y is the displacement perpendicular to the undisturbed surface of the lake. a. How much time does it take for one complete wave pattern to go past a fisherman in a boat at anchor, and what horizontal distance does the wave crest travel in that time? b. What are the wave number and the number of waves per second that pass the fisherman? c. How fast does a wave crest travel past the fisherman, and what is the maximum speed of his cork floater as the wave causes it to bob up and down?
Answer:
A) The wave equation is defined as
[tex]y(x,t) = A\cos(kx + \omega t)=0.0275\cos(0.0041x + 6.2t)\\[/tex]
Using the wave equation we can deduce the wave number and the angular velocity. k = 0.0041 and ω = 6.2.
The time it takes for one complete wave pattern to go past a fisherman is period.
[tex]\omega = 2\pi f\\ f = 1/ T[/tex]
T = 1.01 s.
The horizontal distance the wave crest traveled in one period is
[tex]\lambda = 2\pi / k = 2\pi / 0.0041 = 1.53\times 10^3~m[/tex]
[tex]y(x = \lambda,t = T) = 0.0275\cos(0.0041*1.53*\10^3 + 6.2*1.01) = 0.0275~m[/tex]
B) The wave number, k = 0.0041 . The number of waves per second is the frequency, so f = 0.987.
C) A wave crest travels past the fisherman with the following speed
[tex]v = \lambda f = 1.53\times 10^3 * 0.987 = 1.51\times 10^3~m/s[/tex]
The maximum speed of the cork floater can be calculated as follows.
The velocity of the wave crest is the derivative of the position with respect to time.
[tex]v(x,t) = \frac{dy(x,t)}{dt} = -(6.2\times 0.0275)\sin(0.0041x + 6.2t)[/tex]
The maximum velocity can be found by setting the derivative of the velocity to zero.
[tex]\frac{dv_y(x,t)}{dt} = -(6.2)^2(0.0275)\cos(0.0041*1.53\times 10^3 + 6.2t) = 0[/tex]
In order this to be zero, cosine term must be equal to zero.
[tex]0.0041*1.53\times 10^3 + 6.2t = 5\pi /2\\t = 0.255~s[/tex]
The reason that cosine term is set to be 5π/2 is that time cannot be zero. For π/2 and 3π/2, t<0.
[tex]v(x=\lambda, t = 0.255) = -(6.2\times0.0275)\sin(0.0041\times 1.53\times 10^3 + 6.2\times 0.255) = -0.17~m/s[/tex]
(a) The time taken "1.013 s".
(b) Number of waves "0.987 Hz".
(c) Maximum speed "0.1750 m/s".
A further explanation is below.
Given:
[tex]y(x,t) = (2.75 \ cm) Cos [(0.41 \ rad/cm)x+(6.20 \ rad/s)t][/tex](a)
The time taken will be:
→ [tex]T = \frac{2 \pi}{W}[/tex]
[tex]= \frac{2 \pi}{6.20}[/tex]
[tex]= 1.013 \ s[/tex]
The covered horizontal distance will be:
→ [tex]\lambda = \frac{2 \pi}{K}[/tex]
[tex]= \frac{2 \pi}{0.410}[/tex]
[tex]= 15.3 \ cm[/tex]
(b)
Wave number,
[tex]K = 0.410 \ rad/cm[/tex]The number of waves per second will be:
→ [tex]f = \frac{1}{T}[/tex]
[tex]= \frac{1}{1.013}[/tex]
[tex]= 0.987 \ Hz[/tex]
(c)
The speed in which the wave crest travel will be:
→ [tex]v = f \lambda[/tex]
[tex]= 15.3\times 0.987[/tex]
[tex]= 15.1 \ cm/s \ or \ 0.151 \ m/s[/tex]
and,
The maximum speed of the cork floater will be:
→ [tex]v_1 = AW[/tex]
[tex]=2.75\times 6.20[/tex]
[tex]= 0.1750 \ m/s[/tex]
Thus the above answers are correct.
Learn more:
https://brainly.com/question/14313611
When you drive a car in a circle at a constant speed you are accelerating towards the center of your circular motion.
Answer:True
Explanation:
The given statement is true because when we drive a car in a circle with constant speed , the car experiences the centripetal acceleration towards the center.
But acceleration is change in velocity of object in a given time, here direction of velocity is constantly changing to give rise to acceleration.
If the magnitude of velocity is changing with time then the car would have experiences the tangential acceleration .
For small amplitudes of oscillation the motion of a pendulum is simple harmonic. Consider a pendulum with a period of 0.550 s Find the ground-level energy. Express your result in joules Find the ground-level energy. Express your result in election volts
To solve this problem we will use the concepts related to the expression of energy for harmonic oscillator. From our given values we have that the period is equivalent to
[tex]T = 0.55s[/tex]
Therefore the frequency will be the inverse of the period and would be given as
[tex]f= \frac{1}{T}[/tex]
[tex]f = \frac{1}{0.55}[/tex]
[tex]f = 1.82s^{-1}[/tex]
The ground state energy of the pendulum is,
[tex]E = \frac{1}{2} hv[/tex]
[tex]E = \frac{1}{2}(6.626*10^{-34}J\cdot s)(1.82s^{-1})[/tex]
[tex]E = 6.03*10^{-34}J[/tex]
The ground state energy in eV,
[tex]E = 6.03 * 10^{-34}J(\frac{1eV}{1.6*10^{-19}J})[/tex]
[tex]E = 3.8*10^{-15}eV[/tex]
The energy difference between adjacent energy levels,
[tex]\Delta E = hv[/tex]
[tex]\Delta E = (6.626*10^{-34}J\cdot s)(1.82s)[/tex]
[tex]\Delta E = 12.1*10^{-34}J[/tex]
A counter attendant in a diner shoves a ketchup bottle with a mass 0.30 kg along a smooth, level lunch counter. The bottle leaves her hand with an initial velocity 2.8 m/s. As it slides, it slows down because of the horizontal friction force exerted on it by the countertop. The bottle slides a distance of 1.0 m before
coming to rest. What are the magnitude and direction of the friction force acting on it?
The magnitude of the friction force acting on the ketchup bottle is 0.84 N, and it is directed opposite to the initial velocity of the bottle.
Explanation:The friction force acting on the ketchup bottle can be determined using the equation:
Friction force = Mass x Acceleration
Since the bottle comes to rest, its final velocity is 0 m/s and the acceleration can be calculated using the equation:
Acceleration = (Final Velocity - Initial Velocity) / Time
By substituting the given values, we find that the friction force acting on the bottle is 0.30 kg x (-2.8 m/s) / (1.0 m/s^2) = -0.84 N. The negative sign indicates that the friction force is acting in the opposite direction of the initial velocity, which is in the direction of the attendant's hand.
https://brainly.com/question/34015822
#SPJ3
You need to determine the density of a ceramic statue. If you suspend it from a spring scale, the scale reads 28.4 N. If you then lower the statue into a tub of water so that it is completely submerged, the scale reads 17.0 N. For the steps and strategies involved in solving a similar problem, you may view a Video Tutor Solution.
Answer:
[tex]2491 kg/m^3[/tex]
Explanation:
Suppose g = 9.8 m/s2. When the statue is suspended from the spring scale, the scale reads 28.4 N. This means the mass of that statue is:
[tex]m = N/g = 28.4 / 9.8 = 2.9 kg[/tex]
When the tub is lowered and submerged in water, the scale reads 17N. So the statue is subjected to a force that make the difference of 28.4 - 17 = 11.4N. This equals to the gravity force of water displaced.
[tex]\rho_wVg = 11.4[/tex]
Let water density [tex]\rho_w = 1000kg/m^3[/tex], we can calculate the volume of the water displaced, which is also the volume of the statue:
[tex]V = \frac{11.4}{g\rho_w} = \frac{11.4}{9.8*1000} = 0.00116 m^3[/tex]
The density of the statue is mass divided by its volume:
[tex]\rho = \frac{m}{V} = \frac{2.9}{0.00116} = 2491 kg/m^3[/tex]
This question involves the concepts of density, weight, volume, and buoyant force.
The density of the ceramic statue is "2495.5 kg/m³".
First, we will find out the mass of the statue:
[tex]W = mg\\m=\frac{w}{g}[/tex]
where,
W = hanging weight of statue = 28.4 N
g = acceleration due to gravity = 9.81 m/s²
Therefore,
[tex]m =\frac{28.4\ N}{9.81\ m/s^2}\\[/tex]
m = 2.9 kg
Now, we will find out the volume of the statue. The difference, in weight of the statue upon submerging, must be equal to the buoyant force applied by the water. This buoyant force is equal to the weight of the volume of water displaced, which is equal to the volume of the statue.
[tex]Difference\ in\ weight\ of\ statue=(Density\ of\ water)(Volume\ of\ Statue)g\\28.4\ N-17\ N=(1000\ kg/m^3)(V)(9.81\ m/s^2)\\\\V=\frac{11.4\ N}{(1000\ kg/m^3)(9.81\ m/s^2)}[/tex]
V = 1.16 x 10⁻³ m³
Now, the density of the ceramic is given as follows:
[tex]\rho = \frac{m}{V} = \frac{2.9\ kg}{1.16\ x\ 10^{-3}\ m^3}\\\\\rho=2495.5\ kg/m^3[/tex]
Learn more about buoyant force here:
https://brainly.com/question/21990136?referrer=searchResults
The attached picture illustrates the buoyant force.
A geneticist looks through a microscope to determine the phenotype of a fruit fly. The microscope is set to an overall magnification of 400x with an objective lens that has a focal length of 0.40 cm. The distance between the eyepiece and objective lenses is 12 cm. 1) Find the focal length of the eyepiece lens assuming a near point of 25 cm (the closest an object can be and still be seen in focus). Do not neglect any values in your calculation. (Express your answer to two significant figures.)
Answer:
[tex]f_{e}[/tex] = 1.9 cm
Explanation:
The magnification of a microscope is the product of the magnification of the eyepiece by the magnifier with the objective
M = M₀ [tex]m_{e}[/tex]
Where M₀ is the magnification of the objective and [tex]m_{e}[/tex] is the magnification of the eyepiece.
The eyepiece is focused to the near vision point (d = 25 cm)
[tex]m_{e}[/tex] = 25 / [tex]f_{e}[/tex]
The objective is focused on the distances of the tube (L)
M₀ = -L / f₀
Substituting
M = - L/f₀ 25/[tex]f_{e}[/tex]
1) Let's look for the focal length of the eyepiece (faith)
[tex]f_{e}[/tex] = - L 25 / f₀ M
M = 400X = -400
[tex]f_{e}[/tex] = - 12 25 /0.40 (-400)
[tex]f_{e}[/tex] = 1.875 cm
Let's approximate two significant figures
[tex]f_{e}[/tex] = 1.9 cm
Final answer:
The focal length of the eyepiece lens in the microscope is approximately -0.01 mm.
Explanation:
To find the focal length of the eyepiece lens, we can use the formula for the magnification of a compound microscope, which is given by:
M = -fobjective/feyepiece
Where M is the overall magnification, fobjective is the focal length of the objective lens, and feyepiece is the focal length of the eyepiece lens.
Given that the overall magnification is 400x and the focal length of the objective lens is 0.40 cm, we can rearrange the formula to solve for the focal length of the eyepiece lens:
feyepiece = -fobjective/M = -0.40 cm/400 = -0.001 cm = -0.01 mm.
Therefore, the focal length of the eyepiece lens is approximately -0.01 mm.
The specific heat capacity of aluminum is about twice that of iron. Consider two blocks of equal mass, one made of aluminum and the other one made of iron, initially in thermal equilibrium.
Heat is added to each block at the same constant rate until it reaches a temperature of 500 K. Which of the following statements is true?
a. The iron takes less time than the aluminum to reach the final temperature.
b. The aluminum takes less time than the iron to reach the final temperature.
c. The two blocks take the same amount of time to reach the final temperature.
Answer:a
Explanation:
Given
Specific heat capacity of aluminium is twice that of iron.
[tex]c_{Al}=2c_{iron}[/tex]
Also mass of two blocks is equal
Rate of heat added is also same
[tex]\dot{Q_{Al}}=\dot{Q_{iron}}[/tex]
[tex]\frac{Q_{Al}}{t_{Al}}=\frac{Q_{iron}}{t_{iron}}[/tex]
[tex]\frac{mc_{Al}\Delta T}{t_{Al}}=\frac{mc_{iron}\Delta T}{t_{iron}}[/tex]
[tex]\frac{2c_{iron}}{t_{Al}}=\frac{c_{iron}}{t_{iron}}[/tex]
[tex]t_{Al}=2t_{iron}[/tex]
Thus Time taken by aluminium block will be more
An object is suspended from a spring with force constant 10 N/m. (c) Find the mass suspended from this spring that would result in a period of 2.4 s on Earth. 0.142 Incorrect: Your answer is incorrect. Use the expression for the period of oscillation for a mass attached to a spring to find the mass of the object. kg (d) Find the mass suspended from this spring that would result in a period of 2.4 s on Mars. 0.142 Incorrect: Your answer is incorrect.
To solve this problem we must use the perioricity equations given as a function of the mass and spring constant. Mathematically this can be expressed as:
[tex]T = 2\pi \sqrt{\frac{m}{k}}[/tex]
m = mass
k = Spring constant
Re-arrange to find the mass we have
[tex]m = \frac{T^2k}{4\pi^2 }[/tex]
Replacing with our values we have that
[tex]m = \frac{2.4^2*10}{4\pi^2}[/tex]
[tex]m = 1.459kg[/tex]
D) Mass is independent of acceleration due to gravity (as you can see at the equation previously given) for this reason the mass suspended on mars is given as the same found. Therefore the mass would be
m = 1.459kg
Final answer:
The mass suspended from the spring that would result in a period of 2.4 s is 0.142 kg.
Explanation:
To find the mass suspended from the spring that would result in a period of 2.4 s, we can use the formula for the period of oscillation:
T = 2π √(m/k)
Where T is the period, m is the mass, and k is the force constant of the spring.
Let's rearrange the formula to solve for m:
m = (T^2 · k) / (4π^2)
Substituting the given values:
m = (2.4^2 · 10) / (4π^2)
m = 0.142 kg
A 30 gram bullet is shot upward at a wooden block. The bullet is launched at the speed vi. It travels up 0.40 m to strike the wooden block. The wooden block is 20 cm wide and 10 cm high and its thickness gives it a mass of 500 g. The center of mass of the wooden block with the bullet in it travels up a distance of 0.60 m before reaching its maximum height.
Answer
Mass of bullet (m) = .03 kg
Mass of wooden block M = 0.5 kg
Since the center of mass of the wooden block with the bullet in it travels up a distance of 0.60 m before reaching its maximum height
finding the launch speed of bullet
Velocity of wooden block + bullet just after impact
= [\tex]\sqrt{2gh}[/tex]
=[\tex]\sqrt{2\times 9.8 \times 0.6}[/tex]
= 3.43 m/s
v₁ be the launch velocity
Applying law of conservation of momentum
0.03 x v₂ = 0.530 x 3.43
v₂ = 60.6 m /s
if v₁ be initial velocity
v₂² = v₁² + 2 g h
v₁² = v₂² - 2 gh
v₁² = 60.6 ² - 2 x (-9.8 )x 0.4
v₁ = 60.65 m /s this is launch speed
Halley's comet has an elliptical orbit with the sun at one focus. Its orbit shown below is given approximately by 10.71 r - 1 + 0.883 sin θIn the formula, r is measured in astronomical units. (One astronomical unit is the average distance from Earth to the sun, approximately 93 million miles.) Find the distance from Halley's comet to the sun at its greatest distance from the sun. Round to the nearest hundredth of an astronomical unit and the nearest million miles.
A. 12.13 astronomical units; 1128 million miles
B. 91.54 astronomical units; 8513 million miles
C. 5.69 astronomical units; 529 million miles
D. 6.06 astronomical units; 564 million miles
The formula of an elliptical orbit is given by
[tex]r = \frac{A}{1+Bsin\theta}[/tex]
Assuming the given expression that was wrongly typed and whose true function is
[tex]r = \frac{10.71}{1+0.883sin\theta}[/tex]
We could start by deducing that the greatest distance from the sun would be given at the angle
[tex]\theta = \frac{3\pi}{2}[/tex]
For that value the value of [tex]sin\theta=-1[/tex]
[tex]r = \frac{10.71}{1+0.883(-1)}[/tex]
[tex]r = 91.538 AU[/tex]
That is equal to
[tex]r = 91.54Au* (\frac{93*10^6milles}{1AU})[/tex]
[tex]r = 8513[/tex] million miles
Therefore the correct option is B.
As a parallel-plate capacitor with circular plates 24 cm in diameter is being charged, the current density of the displacement current in the region between the plates is uniform and has a magnitude of 20 A/m2.
(a) Calculate the magnitude B of the magnetic field at a distance r = 87 mm from the axis of symmetry of this region.
(b) Calculate dE/dt in this region.
Answer:
Explanation:
a.)
The magnitude field
[tex]B=\frac{\mu _0I_{enclosed}}{2\pi r}\\\\=\frac{\mu _0(J_ar^2)}{2\pi r}\\\\=\frac{1}{2}(\mu _0J_ar)\\\\(0.5)(4\pi \times 10^{-7})(20A/m^2)(87\times 10^{-3})\\\\=1.0933\times 10^{-6}T[/tex]
b.)
The displacement current
[tex]i_d=\epsilon_0A\frac{dE}{dt}[/tex]
then [tex]\frac{dE}{dt}=\frac{i_d}{\epsilon_0A}\\\\=\frac{J_d}{\epsilon_0}\\\\=\frac{20}{8.85\times 10^{-12}}\\\\=2.26\times 10^{12}V/ms[/tex]
will a flying bird have more kinetic energy than a sitting elephant
Answer:
Yes.
Explanation:
A sitting elephant has zero kinetic energy. A flying bird have some kinetic energy due to its motion. Regardless of their size, a moving object has always more kinetic energy than an object at rest.
Fluid flows over a smooth cylinder. The diameter of the cylinder is D and the length normal to the flow direction is L. The drag coefficient is defined as: The drag coefficient is essentially constant with a value of 1.1 in the range of Reynolds numbers of 103 to 105. In this range, at a velocity of 2 m/s the drag force is 3 N. When the velocity is doubled to 4 m/s the drag force is:
Answer:
Explanation:
Given
Coefficient of drag [tex]C_d=1.1[/tex]
Reynolds number [tex]Re.no.=103 to 105[/tex]
velocity [tex]v=2 m/s [/tex]
[tex]F_d=3 N[/tex]
if velocity if 2v i.e. [tex]4 m/s [/tex]
[tex]F_d=\frac{1}{2}C_d\rho A v^2----1[/tex]
keeping other factors as constant
[tex]F'_d=\frac{1}{2}C_d\rho A (2v)^2----2[/tex]
dividing 1 and 2
[tex]\frac{F_d}{F'_d}=\frac{v^2}{2v^2}[/tex]
[tex]F'_d=4F_d[/tex]
[tex]F'_d=4\times 3=12 N[/tex]
The viewing screen in a double-slit experiment with monochromatic light. Fringe C is the central maximum. The fringe separation is ?y.
Part A What will happen to the fringe spacing if the wavelength of the light is decreased?
a. Δy will decrease
b. Δy will increase
c. Δy will not change
Part B What will happen to the fringe spacing if the spacing between the slits is decreased?
a. Δy will decrease
b. Δy will increase
c. Δy will not change
Part C What will happen to the fringe spacing if the distance to the screen is decreased?
a. Δy will decrease
b. Δy will increase
c. Δy will not change
Part D Suppose the wavelength of the light is 460 nm . How much farther is it from the dot on the screen in the center of fringe E to the left slit than it is from the dot to the right slit?
Answer:
Part A:
a) If the wavelength of the light is decreased the fringe spacing Δy will decrease.
Part B:
b) If the spacing between the slits is decreased the fringe spacing Δy will increase.
Part C:
a) If the distance to the screen is decreased the fringe spacing will decrease.
Part D:
The dot in the center of fringe E is [tex]920\ x\ 10^{-9} m[/tex] farther from the left slit than from the right slit.
Explanation:
In the double-slit experiment there is a clear contrast between the dark and bright fringes, that indicate destructive and constructive interference respectively, in the central peak and then is less so at either side.
The position of bright fringes in the screen where the pattern is formed can be calculated with
[tex]\vartriangle y =\frac{m \lambda L}{d} [/tex]
[tex]m=0,\pm 1,\pm 2,\pm 3,.....[/tex]
m is the order number.[tex]\lambda[/tex] is the wavelength of the monochromatic light.L is the distance between the screen and the two slits.d is the distance between the slits.Part A: a) In the above equation for the position of bright fringes we can see that if the wavelength of the light [tex]\lambda[/tex] is decreased the overall effect will be that the fringes are going to be closer. That means that the fringe spacing Δy will decrease.Part B: b) In the above equation for the position of bright fringes we can see that if the spacing between the slits d is decreased the fringes are going to be wider apart. That means the fringe spacing Δy will increase.Part C: a) In the above equation we can see that if the distance to the screen L is decreased the fringes are going to be closer. That means the fringe spacing Δy will decrease.Part D: We are told that the central maximum is the fringe C that corresponds with m=0. That means that fringe E corresponds with the order number m=2 if we consider it to be the second maximum at the rigth of the central one. To calculate how much farther from the left slit than from the right slit is a dot located at the center of the fringe E in the screen we use the condition for constructive interference. That says that the path length difference Δr between rays coming from the left and right slit must be [tex]\vartriangle r=m \lambda[/tex]We simply replace the values in that equation :
[tex]\vartriangle r= m \lambda =2.\ 460\ nm[/tex]
[tex]\vartriangle r= 920\ x\ 10^{-9} m[/tex]
The dot in the center of fringe E is [tex]920\ x\ 10^{-9}m[/tex] farther from the left slit than from the right slit.
By using the general equation for the double-slit maximums, we will get
A) aB) bC) aD) Can't be done completely, but below there is a approach to it.What is the distance between consecutive maximums?The equation for the constructive interference in a double-slit experiment is given by:
[tex]y = \frac{m*\lambda*D}{d} [/tex]
Where:
m is the number of the maximum.λ is the wavelength.D is the distance between the double-slit and the screen.d is the distance between the slits.Now let's answer:
A) If the wavelength is decreased, then the numerator is decreased, meaning the separation between consecutive fringes will also be decreased, so the correct option is a.
B) If d is decreased then the denominator decreases, meaning that the distance between consecutive fringes increases, so the correct option is b.
C) is the distance D is decreased, similar like in case A, the numerator decreases, meaning that the correct option is a again.
D) Sadly, as we do not know:
Which fringe is E.The value of DThe value of d.We can't answer this question.
What we should do here, is to compare the distance between the fringe and each slit, that distance will be the hypotenuse of a right triangle with one cathetus equal to D, and the other cathetus equal to y ± d/2, where each sign corresponds to each slit.
Then the difference in the distance will just be:
[tex]\sqrt{(y - d/2)^2 + D^2} - \sqrt{(y + d)^2 + D^2} [/tex]
If you want to learn more about the double-slit experiment, you can read:
https://brainly.com/question/13111431
A monochromatic light passes through a narrow slit and forms a diffraction pattern on a screen behind the slit. As the wavelength of the light decreases, the diffraction pattern
a. spreads out with all the fringes getting wider.
b. becomes dimmer.
c. spreads out with all the fringes getting alternately wider and then narrower.
d. shrinks with all the fringes getting narrower.
e. remains unchanged.
We need to apply the definition of Young's double slit experiment. For fringe width of bright and dark fringe we have that
[tex]\beta = \frac{D\lambda}{d}[/tex]
Or expressed in terms of the wavelength we have that
[tex]\lambda = \frac{\beta d}{D}[/tex]
Where,
[tex]\lambda[/tex]= Wavelength
[tex]\beta[/tex]= Fringe width
d = Slit separation
D = Distance between slit and screen
From the ratios given in the equation, we have that as the wavelength decreases, the pattern determined for the diffraction pattern shrinks, which therefore causes all fringes to get narrower.
Final answer:
When the wavelength of monochromatic light decreases, the single-slit diffraction pattern shrinks with fringes getting narrower (option d). A decrease in slit width results in a wider diffraction pattern. More lines per centimeter on a diffraction grating cause bands to spread farther from the central maximum.
Explanation:
When a monochromatic light passes through a narrow slit, it forms a diffraction pattern due to the phenomenon of diffraction. The pattern consists of a series of bright and dark bands. The bright areas are known as maxima, while the dark areas are known as minima.
If the wavelength of the light decreases, the diffraction pattern shrinks, with all the fringes getting narrower (answer choice d). This is because the angle of diffraction is directly related to the wavelength, and as the wavelength becomes shorter, the angle at which light is bent decreases, causing the fringes to become narrower and the overall pattern to shrink.
Similarly, if the width of the slit producing a single-slit diffraction pattern is reduced, the pattern produced changes as well, with the bands spreading out and becoming wider. This is due to the inverse relationship between slit width and the angle of diffraction. A smaller slit width results in a larger spread of the diffraction pattern.
Lastly, if pure-wavelength light falls on a diffraction grating that has more lines per centimeter, the interference pattern will have bands that spread farther from the central maximum because a higher number of slits per unit area increases the diffractive effects.
A glass tea kettle containing 500 g of water is on the stove. The portion of the tea kettle that is in contact with the heating element has an area of 0.090 m2 and is 1.5 mm thick.
At a certain moment, the temperature of the water is 75°C, and it is rising at the rate of 3°C per minute.
What is the temperature of the outside surface of the bottom of the tea kettle?
Neglect the heat capacity of the kettle, and assume that the inner surface of the kettle is at the same temperature as the water inside.
Answer:
77.08 C
Explanation:
[tex]m[/tex] = mass of the water = 500 g = 0.5 kg
[tex]c[/tex] = specific heat of water = 4186 J/(kg °C)
[tex]\Delta T[/tex] = Rate of change of temperature = 3 °C /min = (3/60 ) °C /s = 0.05 °C /s
[tex]k[/tex] = thermal conductivity of glass = 0.84
[tex]A[/tex] = Area of the element = 0.090 m²
[tex]t[/tex] = thickness of the element = 1.5 mm = 0.0015 m
[tex]T_{i}[/tex] = Temperature inside = 75 °C
[tex]T_{o}[/tex] = Temperature outside = ?
Using conservation of energy
Heat gained by water = Heat transferred through glass
[tex]m c \Delta T = \frac{kA(T_{o} - T_{i})}{t} \\(0.5) (4186 (0.05) = \frac{(0.84)(0.090)(T_{o} - 75)}{0.0015} \\104.65 = (50.4)(T_{o} - 75)\\T_{o} = 77.08 C[/tex]