Ne (g) effuses at a rate that is [tex]\boxed{{\text{2}}{\text{.6}}}[/tex] times that of Xe (g) under the same conditions.
Further Explanation:
Graham’s law of effusion:
Effusion is the process by which molecules of gas travel through a small hole from high pressure to the low pressure. According to Graham’s law, the effusion rate of a gas is inversely proportional to the square root of the molar mass of gas.
The expression for Graham’s law is as follows:
[tex]\boxed{{\text{R}}\propto\dfrac{1}{{\sqrt {{\mu }} }}}[/tex]
Here,
R is the rate of effusion of gas.
[tex]{{\mu }}[/tex] is the molar mass of gas.
Higher the molar mass of the gas, smaller will be the rate of effusion and vice-versa.
The rate of effusion of Ne is expressed as follows:
[tex]{{\text{R}}_{{\text{Ne}}}} \propto \dfrac{1}{{\sqrt {{{{\mu }}_{{\text{Ne}}}}} }}[/tex]
......(1)
Here,
[tex]{{\text{R}}_{{\text{Ne}}}}[/tex] is the rate of effusion of Ne.
[tex]{{{\mu }}_{{\text{Ne}}}}[/tex] is the molar mass of Ne.
The rate of effusion of Xe is expressed as follows:
[tex]{{\text{R}}_{{\text{Xe}}}}\propto\dfrac{1}{{\sqrt{{{{\mu }}_{{\text{Xe}}}}}}}[/tex]
......(2)
Here,
[tex]{{\text{R}}_{{\text{Xe}}}}[/tex] is the rate of effusion of Xe.
[tex]{{{\mu }}_{{\text{Xe}}}}[/tex] is the molar mass of Xe.
On dividing equation (1) by equation (2),
[tex]\dfrac{{{{\text{R}}_{{\text{Ne}}}}}}{{{{\text{R}}_{{\text{Xe}}}}}}=\sqrt {\dfrac{{{{{\mu }}_{{\text{Xe}}}}}}{{{{{\mu }}_{{\text{Ne}}}}}}}[/tex] ......(3)
Rearrange equation (3) to calculate [tex]{{\text{R}}_{{\text{Ne}}}}[/tex].
[tex]{{\text{R}}_{{\text{Ne}}}}=\left( {\sqrt {\dfrac{{{{{\mu }}_{{\text{Xe}}}}}}{{{{{\mu }}_{{\text{Ne}}}}}}} } \right){{\text{R}}_{{\text{Xe}}}}[/tex] ......(4)
The molar mass of Ne is 20.17 g/mol.
The molar mass of Xe is 131.29 g/mol.
Substitute these values in equation (4).
[tex]\begin{aligned}{{\text{R}}_{{\text{Ne}}}}&= \left({\sqrt {\frac{{{\text{131}}{\text{.29}}}}{{{\text{20}}{\text{.17}}}}} } \right){{\text{R}}_{{\text{Xe}}}}\\&= \left( {\sqrt {6.50917} } \right){{\text{R}}_{{\text{Xe}}}}\\&= 2.5513{{\text{R}}_{{\text{Xe}}}}\\&\approx 2.6{{\text{R}}_{{\text{Xe}}}}\\\end{aligned}[/tex]
Therefore the rate of effusion of Ne is 2.6 times the rate of effusion of Xe.
Learn more:
1. Which statement is true for Boyle’s law: https://brainly.com/question/1158880
2. Calculation of volume of gas: https://brainly.com/question/3636135
Answer details:
Grade: Senior School
Subject: Chemistry
Chapter: Ideal gas equation
Keywords: Effusion, rate of effusion, molar mass, Ne, Xe, 2.6 times, Graham’s law, inversely proportional, square root.
Neon effuses faster than xenon due to its lighter molar mass, and the effusion rate for neon will be larger than that for xenon, resulting in a smaller effusion time for neon.
Explanation:The student's question pertains to the comparison of the effusion rates of neon (Ne) and xenon (Xe) gases under the same conditions. The effusion rate of a gas is inversely proportional to the square root of its molar mass, according to Graham's law of effusion. Given that neon is lighter than xenon, it will effuse at a faster rate. Using the provided effusion time calculations, if it takes 243 seconds for xenon to effuse, then by solving for the time it would take for the same amount of neon to effuse using the ratio of the square roots of their molar masses, we determine the time for neon to be approximately 95.3 seconds.
This result is expected because the lighter a gas is, the faster it should effuse, making the effusion rate for neon larger than that for xenon, and consequently, the time for effusion is smaller for neon than xenon as presented in the example calculation.
The process that makes ice cubes shrink as they sit in a freezer is called:
A- Sublimation
B- Condensation
C- Freezing
D- Boiling
Combustion of 25.0 g of a hydrocarbon produces 86.5 g of co2. what is the empirical formula of the compound?
The empirical formula of the hydrocarbon is [tex]\boxed{{{\text{C}}_7}{{\text{H}}_5}}[/tex].
Further explanation:
Empirical formula:
It is atom’s simplest positive integer ratio in the compound. It may or may not be same as that of molecular formula. For example, empirical formula of sulfur dioxide is SO.
Combustion reactions:
These are the reactions that take place when hydrocarbons are burnt in the presence of oxygen to form carbon dioxide and water. These are also referred to as burning.
Example of combustion reactions are as follows:
(a) [tex]{\text{C}}{{\text{H}}_4}+{{\text{O}}_2}\to{\text{C}}{{\text{O}}_2}+{{\text{H}}_2}{\text{O}}[/tex]
(b) [tex]{{\text{C}}_{10}}{{\text{H}}_{14}}+12{{\text{O}}_2}\to10{\text{C}}{{\text{O}}_2}+ 4{{\text{H}}_2}{\text{O}}[/tex]
[tex]{\text{C}}{{\text{O}}_2}[/tex] is formed as a product during combustion reactions.
Step 1: [tex]{\text{C}}{{\text{O}}_2}[/tex] is formed as a product during combustion reactions. Initially, we have to calculate the moles of [tex]{\text{C}}{{\text{O}}_2}[/tex] . The formula to calculate moles of [tex]{\text{C}}{{\text{O}}_2}[/tex] is as follows:
[tex]{\text{Moles of C}}{{\text{O}}_2}=\dfrac{{{\text{Given mass of C}}{{\text{O}}_2}}}{{{\text{Molar mass of C}}{{\text{O}}_2}}}[/tex] ...... (1)
The given mass of [tex]{\text{C}}{{\text{O}}_2}[/tex] is 86.5 g.
The molar mass of [tex]{\text{C}}{{\text{O}}_2}[/tex] is 44 g/mol.
Substitute these values in equation (1).
[tex]\begin{aligned}{\text{Moles of C}}{{\text{O}}_2}&=\left( {{\text{86}}{\text{.5 g}}} \right)\left( {\frac{{{\text{1 mol}}}}{{{\text{44 g}}}}} \right)\\&={\text{1}}{\text{.9659 mol}}\\ &\approx{\text{1}}{\text{.966 mol}}\\\end{aligned}[/tex]
Step 2: During combustion, one mole of carbon reacts to form one mole of [tex]{\text{C}}{{\text{O}}_2}[/tex] .So the mass of C in the hydrocarbon is calculated as follows:
[tex]{\text{Mass of C}}=\left( {{\text{Moles of C}}{{\text{O}}_{\text{2}}}}\right)\left( {\dfrac{{{\text{Moles of C}}}}{{{\text{Moles of C}{{\text{O}}_{\text{2}}}}}}\right)\left( {{\text{Molar mass of C}}}\right)[/tex] ...... (2)
The moles of [tex]{\text{C}}{{\text{O}}_2}[/tex] is 1.966 mol.
The molar mass of C is 12 g/mol.
The mole of C is 1 mol.
The moles of [tex]{\text{C}}{{\text{O}}_2}[/tex] is 1 mol.
Substitute these values in equation (2).
[tex]\begin{aligned}{\text{Mass of C}}&=\left( {{\text{1}}{\text{.966 mol}}} \right)\left( {\frac{{{\text{1 mol of C}}}}{{{\text{1 mol of C}}{{\text{O}}_{\text{2}}}}}} \right)\left( {\frac{{{\text{12 g}}}}{{{\text{1 mol}}}}} \right)\\&= {\text{23}}{\text{.592 g}}\\&\approx{\text{23}}{\text{.59 g}}\\\end{aligned}\\[/tex]
Step 3: Since the hydrocarbon consists of only carbon and hydrogen. The mass of hydrogen is calculated as follows:
[tex]{\text{Mass of H}}={\text{Mass of hydrocarbon}}-{\text{Mass of C}}[/tex] ...... (3)
The mass of hydrocarbon is 25 g.
The mass of carbon is 23.59 g.
Substitute these values in equation (3).
[tex]\begin{aligned}{\text{Mass of H}}&={\text{25 g}}-{\text{23}}{\text{.59 g}}\\&= {\text{1}}{\text{.41 g}}\\\end{aligned}[/tex]
The formula to calculate moles of H is as follows:[tex]{\text{Moles of H}}=\dfrac{{{\text{Given mass of H}}}}{{{\text{Molar mass of H}}}}[/tex] ...... (4)
The given mass of H is 1.41 g.
The molar mass of H is 1.01 g/mol.
Substitute these values in equation (4).
[tex]\begin{aligned}{\text{Moles of H}}&=\left({{\text{1}}{\text{.41 g}}}\right)\left( {\frac{{{\text{1 mol}}}}{{{\text{1}}{\text{.01 g}}}}}\right)\\&={\text{1}}{\text{.396 mol}}\\ \end{aligned}[/tex]
The moles of carbon and hydrogen present in hydrocarbon are to be written with their corresponding subscripts. So the preliminary formula becomes,
[tex]{\text{Preliminary formula of hydrocarbon}}={{\text{C}}_{1.966}}{{\text{H}}_{1.396}}[/tex]
Step 4: Each of the subscripts is divided by the smallest subscript to get the empirical formula. In this case, the smallest one is 1.39. So the empirical formula of hydrocarbon is written as follows:
[tex]\begin{aligned}{\text{Empirical formula of hydrocarbon}}&={{\text{C}}_{\dfrac{{1.966}}{{1.396}}}}{{\text{H}}_{\dfrac{{1.396}}{{1.396}}}}\\&= {{\text{C}}_{1.408}}{{\text{H}}_1}\\\end{aligned}[/tex]
Step 5: Multiply each subscript of the empirical formula by 5, we get the final empirical formula as follows:
[tex]\begin{aligned}{\text{Empirical formula of hydrocarbon}}&={{\text{C}}_{5\left( {1.408} \right)}}{{\text{H}}_{5\left( 1 \right)}}\\&={{\text{C}}_7}{{\text{H}}_5}\\\end{aligned}[/tex]
Therefore, the empirical formula of hydrocarbon is [tex]{{\mathbf{C}}_{\mathbf{7}}}{{\mathbf{H}}_{\mathbf{5}}}[/tex] .
Learn more:
1. Calculate the moles of ions in the solution: https://brainly.com/question/5950133
2. Calculate the moles of chlorine in 8 moles of carbon tetrachloride: https://brainly.com/question/3064603
Answer details:
Grade: Senior School
Subject: Chemistry
Chapter: Stoichiometry of formulas and equations
Keywords: empirical formula, C, H, C7H5, moles of CO2, C, H, 5, preliminary formula, whole number.
11. Which of the following accurately describes properties of valence? A. Nonmetallic elements tend to have a positive valence and tend to be electron borrowers. B. The smaller the number of electrons an atom has to borrow or to lend, the greater the activity of the atom. C. Metals tend to have a negative valence and tend to be electron borrowers. D. The greater the number of electrons an atom has to borrow or to lend, the greater the activity of the atom.
How many chloride ions are present in 0.100 mol of MgCl2
To identify the amount of chloride ions present in 0.1 mol of MgCl2, first know the amount of mols of Chloride. The answer is 0.2 mol since you just need to multiply 0.1 to 2 because there are 2 chloride in the compound. Then, multiply the mols to 6.02x10^23. The answer would be 1.204x10^23 chloride ions.
Answer : The number of chloride ions present in 0.100 mole of [tex]MgCl_2[/tex] are, [tex]1.2044\times 10^{23}[/tex]
Explanation : Given,
Moles of [tex]MgCl_2[/tex] = 0.100 mole
As we know that, 1 mole contains [tex]6.022\times 10^{23}[/tex] number of ions.
In [tex]MgCl_2[/tex], there are one magnesium ion and two chloride ions.
As, 1 mole [tex]MgCl_2[/tex] contains [tex]2\times (6.022\times 10^{23})[/tex] number of chloride ions.
So, 0.100 mole [tex]MgCl_2[/tex] contains [tex]0.100\times 2\times (6.022\times 10^{23})=1.2044\times 10^{23}[/tex] number of chloride ions.
Therefore, the number of chloride ions present in 0.100 mole of [tex]MgCl_2[/tex] are, [tex]1.2044\times 10^{23}[/tex]
Could you please help
When chlorine and magnesium react chemically, how many chlorine atoms will combine with one magnesium atom?
Write the chemical formula of the compound that is formed
A 31.1 g wafer of pure gold, initially at 69.3 _c, is submerged into 64.2 g of water at 27.8 _c in an insulated container. what is the final temperature of both substances at thermal equilibrium?
The final temperature at thermal equilibrium can be calculated using the concept of conservation of energy and the specific heat capacities of gold and water.
Explanation:To find the final temperature of the gold and water system when they reach thermal equilibrium, we need to apply the concept of conservation of energy. This concept suggests that in an isolated system, the heat lost by the hot object (the gold) will be equal to the heat gained by the cold object (the water). Since the system is at equilibrium, the heat lost is equal to the heat gained, hence the formula: Cgold × mgold × (Tinitial, gold - Tfinal) = -Cwater × mwater × (Tfinal - Tinitial, water), where Cgold and Cwater are the specific heat capacities of gold and water, T is the temperature and m is the mass.
We also need to know the specific heat capacities of gold and water. The specific heat capacity of gold is 0.129 J/g °C and for water, it's 4.18 J/g °C. Substituting those values along with the original temperatures and masses, we can solve for the final temperature, Tfinal.
Learn more about Thermal Equilibrium here:https://brainly.com/question/29419074
#SPJ11
How many kilojoules of energy are released when .1.60 kg of water cools from 80.0 ºC to 60.0 ºC?
Explain how the determination of the rate law equation significantly differs from the determination of the equilibrium constant keq expression.
The scattering of light by a colloidal suspension is called the
Answer: The correct answer is Tyndall effect.
Explanation:
Colloids are defined as the mixtures where the size of the particle is within the range of 2nm to 1000 nm. In these mixtures, physical boundary is seen between the dispersed phase and dispersed medium.
Tyndall effect is defined as the effect in which scattering of light takes place by the particles present in a colloid or in very fine suspension.
For Example: Scattering of sunlight by clouds
Thus, the correct answer is Tyndall effect.
The scattering of light by a colloidal suspension is known as the Tyndall effect.
What does this mean?When a beam of light passes through a colloidal solution or a suspension, the suspended particles disperse and scatter the light.
This scattering is more pronounced when the suspended particles are larger in size compared to the wavelength of the light. The scattered light becomes visible, creating a cone or beam of light that is observable in the direction of the incident light. The Tyndall effect is often used to study and characterize colloidal systems, as it provides valuable information about particle size, concentration, and overall dispersion.
Read more about Tyndall effect. here:
https://brainly.com/question/23487849
#SPJ6
Caffeine (c8h10n4o2) is a weak base with a pkb of 10.4. part a calculate the ph of a solution containing a caffeine concentration of 430 mg/l .
Concentration of caffeine
is 430 mg/L = 0.43g/L
The molar mass of caffeine is 194.19 g/mol
Therefore the molarity is:
Molarity = (0.43/194.19)
mol/L
Molarity = 0.002214 mol/L
Molarity = 0.002214 M
Given pKb = 10.4:
Kb = 10^-pKb = 10^ -10.4 = 3.981 x 10^ -11
Kb is equivalent to:
Kb = [caffeine H+][OH-] / [caffeine]
3.981 x 10^ -11 = [caffeine H+][OH-] / (0.002214)
[caffeineH+][OH-] = 8.815 x 10^ -14
But since:
[caffeineH+] = [OH-]
Hence,
[OH-]^2 = 8.815 x 10^ -14
[OH-] = 2.969 x 10^ -7
The formula for pH is:
pH = 14 + log [OH-]
pH = 7.47The pH of a solution containing a caffeine concentration of 430 mg/L is 4.75.
Explanation:To calculate the pH of a caffeine solution, we can first use the provided pKb (10.4) to find the Kb, using the equation Kb = 10^(-pKb). We can then use the Kb to find the concentration of OH-, represented by the equilibrium C8H10N4O₂ (aq) + H₂O(1) ⇒ C8H10N4O₂H+ (aq) + OH¯ (aq). By inserting the equilibrium concentrations into the Kb expression and solving, we can find the OH- concentration.
The pH of a solution containing a caffeine concentration of 430 mg/L can be calculated using the equilibrium constant expression for caffeine. The equilibrium equation is: C8H10N4O2(aq) + H2O(l) ⇌ C8H10N4O2H+(aq) + OH-(aq). By substituting the given concentrations into the expression, the pH can be determined. The equation gives a pH of 4.75 for the solution.
Learn more about pH of a solution containing caffeine here:https://brainly.com/question/6125764
#SPJ3
How many milliliters of 0.150 m h2so4 are required to react with 2.05 g of sodium hydrogen cabronate?
What is the density (g/mL) of an object that has a mass of 0.03 kg and occupies a volume of 25 mL?
Answer : The density of an object is 1.2 g/mL
Explanation :
Density : It is defined as the mass contained per unit volume.
Formula used :
[tex]Density=\frac{Mass}{Volume}[/tex]
Given :
Mass of object = 0.03 kg = 30 g
conversion used : (1 kg = 1000 g)
Volume occupied by object = 25 mL
Now put all the given values in the above formula, we get :
[tex]Density=\frac{30g}{25mL}=1.2g/mL[/tex]
Therefore, the density of an object is 1.2 g/mL
The acceleration due to gravity on the surface of Mars is about one third the acceleration due to gravity on Earth’s surface. The weight of a space probe on the surface of Mars is about
Final answer:
On Mars, the acceleration due to gravity is about one-third of that on Earth, which means an object weighs significantly less on Mars compared to its weight on Earth.
Explanation:
The question pertains to the acceleration due to gravity on the surface of Mars compared to Earth. On Mars, the acceleration due to gravity is about one-third of that on Earth. Specifically, the gravitational acceleration on Mars is approximately 3.71 m/s², while on Earth, it is about 9.81 m/s². Thus, an object on Mars weighs significantly less than it does on Earth. For example, if a space probe weighs 100 pounds on Earth, on Mars, it would weigh roughly 38 pounds because the acceleration due to gravity on Mars is 0.38 that of Earth's gravity. This difference significantly impacts how objects move and respond to forces on Mars compared to Earth.
WILL MARK BRAINLIEST FOR THE BEST ANSWER~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If the caffeine concentration in a particular brand of soda is 4.05 mg/oz, drinking how many cans of soda would be lethal? Assume 10.0 grams of caffeine is a lethal dose, and there are 12 oz in a can.
Please explain the steps you used.
The pH of a vinegar solution is 4.15. What is the H+ concentration of the solution
The [tex]{{\text{H}}^+}[/tex] concentration of vinegar solution is [tex]\boxed{{\text{0}}{\text{.0000708 M}}}[/tex]
Further Explanation:
An acid is a substance that has the ability to donate [tex]{{\mathbf{H}}^{\mathbf{+}}}[/tex]ions or can accept electrons from the electron-rich species. The general dissociation reaction of acid is as follows:
[tex]{\text{HA}}\to{{\text{H}}^+}+{{\text{A}}^-}[/tex]
Here, HA is an acid.
The acidic strength of an acid can be determined by pH value. The negative logarithm of hydronium ion concentration is defined as pH of the solution. Lower the pH value of an acid, the stronger will be the acid. Acidic solutions are likely to have pH less than 7. Basic or alkaline solutions have pH more than 7. Neutral solutions have pH equal to 7.
Vinegar contains acetic acid [tex]\left({{\text{C}}{{\text{H}}_3}{\text{COOH}}}\right)[/tex], water and some traces of other chemicals and flavors.
The formula to calculate pH is as follows:
[tex]{\text{pH}}=-{\text{log}}\left[{{{\text{H}}^+}}\right][/tex] …… (1)
Here,
[tex]\left[{{{\text{H}}^+}}\right][/tex] is hydrogen ion concentration.
On rearranging equation (1), we get:
[tex]\left[{{{\text{H}}^+}}\right]={10^{-{\text{pH}}}}[/tex] …… (2)
The pH of vinegar is 4.15.
Substitute 4.15 for pH in equation (2)
[tex]\begin{gathered}\left[{{{\text{H}}^+}}\right]={10^{-4.15}}\\=0.0000707946\\\approx0.0000708\;{\text{M}}\\\end{gathered}[/tex]
So the concentration of [tex]{{\mathbf{H}}^{\mathbf{+}}}[/tex] ion in vinegar is 0.0000708 M.
Learn more:
1. The reason for the acidity of water https://brainly.com/question/1550328
2. Reason for the acidic and basic nature of amino acid. https://brainly.com/question/5050077
Answer details:
Grade: High School
Subject: Chemistry
Chapter: Acid, base and salts.
Keywords: pH, neutral, acidic, basic, alkaline, 4.15, vinegar, acetic acid, water, chemicals, negative logarithm, H+, 0.0000708 M, pH more than 7, pH less than 7, pH equal to 7.
What is the most common type of climate/ecosystem found in the Congo River basin?
If 8.800 g of c6h6 is burned and the heat produced from the burning is added to 5691 g of water at 21 °c, what is the final temperature of the water?
the final temperature of the water is approximately [tex]\(4.009 C\)[/tex].
To find the final temperature of the water after adding the heat produced from burning 8.800 g of [tex]\(C_6H_6\)[/tex] (benzene), we'll use the concept of heat transfer and the specific heat capacity of water.
The heat released from the combustion of [tex]\(C_6H_6\)[/tex] will be transferred to the water, causing its temperature to increase. We'll use the equation:
Q = mcΔT
Where:
- Q is the heat transferred (in Joules)
- m is the mass of the water (in grams)
- c is the specific heat capacity of water (4.18 J/g°C)
- ΔT is the change in temperature of the water (in °C)
First, we need to calculate the heat released from burning [tex]\(C_6H_6\)[/tex].
Given:
- Mass of [tex]\(C_6H_6\)[/tex] burned, [tex]\(m_{C_6H_6} = 8.800 \, g\)[/tex]
- Heat of combustion of [tex]\(C_6H_6\)[/tex], [tex]\(ΔH_{comb} = -3263 \, kJ/mol\)[/tex]
Using the molar mass of [tex]\(C_6H_6\) (\(M_{C_6H_6} = 78.11 \, g/mol\))[/tex], we can find the number of moles of [tex]\(C_6H_6\)[/tex] burned and then calculate the heat released.
Next, we'll use the equation for heat transfer to find the change in temperature of the water, and then add this change to the initial temperature of the water to get the final temperature.
Let's calculate step by step.
Step 1: Calculate the heat released from burning [tex]\(C_6H_6\)[/tex].
1. Find the number of moles of [tex]\(C_6H_6\)[/tex]:
[tex]\[n_{C_6H_6} = \frac{m_{C_6H_6}}{M_{C_6H_6}} = \frac{8.800 \, g}{78.11 \, g/mol} \approx 0.1128 \, mol\][/tex]
2. Calculate the heat released from burning [tex]\(C_6H_6\)[/tex] using its molar enthalpy of combustion:
[tex]\[Q_{comb} = n_{C_6H_6} \times ΔH_{comb} = 0.1128 \, mol \times (-3263 \, kJ/mol)\][/tex]
[tex]\[Q_{comb} = -368.112 \, kJ\][/tex]
Step 2: Calculate the change in temperature of the water.
1. Use the equation for heat transfer:
[tex]\[Q_{water} = mcΔT\][/tex]
Where [tex]\(Q_{water}\)[/tex] is the heat absorbed by water, \(m\) is the mass of water, c is the specific heat capacity of water, and \(ΔT\) is the change in temperature of water.
2. Rearrange the equation to solve for [tex]\(ΔT\)[/tex]:
[tex]\[ΔT = \frac{Q_{comb}}{mc}\][/tex]
Given:
- [tex]\(m_{water} = 5691 \, g\)[/tex]
- [tex]\(c_{water} = 4.18 \, J/g°C\)[/tex]
3. Substitute the values and calculate \(ΔT\):
[tex]\[ΔT = \frac{-368.112 \times 10^3 \, J}{(5691 \, g) \times (4.18 \, J/g°C)}\][/tex]
[tex]\[ΔT \approx -16.991°C\][/tex]
Step 3: Find the final temperature of the water.
Given:
- Initial temperature of water, [tex]\(T_{initial} = 21°C\)[/tex]
The final temperature [tex](\(T_{final}\))[/tex] of the water can be found by adding the change in temperature [tex](\(ΔT\))[/tex] to the initial temperature [tex](\(T_{initial}\))[/tex]:
[tex]\[T_{final} = T_{initial} + ΔT\][/tex]
[tex]\[T_{final} = 21°C - 16.991°C\][/tex]
[tex]\[T_{final} \approx 4.009°C\][/tex]
Therefore, the final temperature of the water is approximately [tex]\(4.009 C\)[/tex].
Calculate the number of Li atoms in 5.1 moles of Li
The number of Li atoms in 5.1 moles of Li is 3.07 x 10²⁴ atoms.
What are atoms?Atoms are defined as the smallest piece of matter that can be separated without sending electrically charged particles flying.
It can also be defined as the smallest piece that carries an element's characteristics. Subatomic particles, which make up an atom, are uncreatable.
There are various types of atoms.
DescriptionStableIsotopesRadioactive IonsAntimatterIn a chemical reaction, atoms cannot be formed or destroyed since they are indivisible units. The mass and chemical characteristics of each atom of a specific element are the same. Different elements' atoms have varying weight and chemical characteristics. Compounds are created when atoms combine in ratios of small whole numbers.
Moles of Li = 5.1 x 6.022 x 10²³
= 3.07 x 10²⁴ atoms.
Thus, the number of Li atoms in 5.1 moles of Li is 3.07 x 10²⁴ atoms.
To learn more about atoms, refer to the link below:
https://brainly.com/question/1566330
#SPJ2
Which of the following is a heterogeneous mixture?
A) vinegar and water
B) milk
C) Oil and vinegar
D) Air
The four isotopes of lead are shown below, each with its percent by mass abundance and the composition of its nucleus. using these data, calculate the approximate atomic mass of lead.
The average atomic mass of lead, will be approximately 207.2 g/mol.
To calculate the approximate atomic mass of lead using the isotopic masses and their relative abundances. The atomic mass is a weighted average based on the abundances of each isotope.
Identify the element using the atomic number (number of protons).Calculate the mass number (A) of each isotope by adding the number of protons to the number of neutrons.Write the symbol of each isotope, with the mass number as a superscript and the number of protons as a subscript, to the left of the element symbol.Multiply the mass number of each isotope by its percentage abundance and then sum the products.Divide the total by 100 to find the average atomic mass.For lead (Pb), the calculation using given isotopes would look like this:
(1.40% x 203.973) + (24.10% x 205.974) + (22.10% x 206.976) + (52.40% x 207.977)Sum of all products divided by 100 gives the approximate atomic mass.Thus, the approximate atomic mass of Pb is 207.2 g/mol.
The complete question is:
The four isotopes of lead are shown below, each with its percent by mass abundance and the composition of its nucleus. using these data, calculate the approximate atomic mass of lead. 82p 122n 1.37% 82p 124n 26.26% 125n 20.82 82p 126n 51.55% 24 Mass # 81 37 6.
88.5 mol of P4O10 contains how many moles of P?
Answer : The number of moles of phosphorous are 354 moles.
Explanation :
The formula of given compound is, [tex]P_4O_{10}[/tex]
In [tex]P_4O_{10}[/tex] compound, there 4 moles of phosphorus and 10 moles of oxygen.
As we are given that the moles of [tex]P_4O_{10}[/tex] is 88.5 mole. Now we have to determine the number of moles of phosphorous (P).
As, 1 mole of [tex]P_4O_{10}[/tex] has 4 moles of phosphorous
So, 88.5 mole of [tex]P_4O_{10}[/tex] has [tex]4\times 88.5=354moles[/tex] of phosphorous
Therefore, the number of moles of phosphorous are 354 moles.
88.5 mol of [tex]P_4O_{10}[/tex] contains 354 moles of P. A mole is a unit of measurement used in chemistry to represent how much of a substance is present.
In chemistry, a mole is a unit of measurement that is used to express how much a material is present. It is described as the quantity of a substance that has exactly the same number of atoms, molecules, or ions as there are in exactly 12 grammes of pure carbon-12. The mole idea is essential to chemistry because it enables researchers to connect a substance's mass to its particle count. The idea of molar mass, or the mass of one mole of a substance, is used to describe this relationship. The unit of molecular mass is grammes per mole (g/mol).
88.5 mol [tex]P_4O_{10}[/tex] × (4 mol P / 1 mol P4O10) = 354 mol P
88.5 mol of [tex]P_4O_{10}[/tex] contains 354 moles of P
To know more about mole, here:
https://brainly.com/question/29724957
#SPJ6
FeCl2 Express your answers as ions separated by a comma.
The ionic compound formed from Fe3+ and Cl- is FeCl3, called iron(III) chloride. For dissociation in water, FeCl2 separates into Fe2+ and Cl-. The complete ionic equation for the reaction between FeCl2 and AgNO3 includes all ions present with AgCl precipitating out, and the net ionic equation shows just the ions involved in the formation of the precipitate.
Naming the Ionic Compound Formed from Fe3+ and Each Anion
To name the ionic compound formed from Fe3+ and an anion, you follow a set of rules. Firstly, you write the name of the cation including the charge in roman numerals enclosed in small brackets, followed by the name of the anion. For Fe3+, we use the name Iron(III), and for a chloride ion (Cl-), the name is chloride. The compound's formula is FeCl3, which is called iron(III) chloride. Remember that the subscript in the chemical formula indicates the number of anions needed to balance the charge of the cation.
Compound Dissociation in Water
To write a balanced equation for how an ionic compound like FeCl2 dissociates in water, you would represent it as follows:
FeCl2(s) -> Fe2+(aq) + 2 Cl-(aq)
This shows the separation of the ionic compound into its individual ions when dissolved in water.
Complete Ionic Equation for FeCl2 and AgNO3
The complete ionic equation for the reaction between FeCl2(aq) and AgNO3(aq), consulting solubility rules, would look like this:
Fe2+(aq) + 2 Cl-(aq) + 2 Ag+(aq) + 2 NO3-(aq) -> 2 AgCl(s) + Fe2+(aq) + 2 NO3-(aq)
Net Ionic Equation for FeCl2 and AgNO3
The net ionic equation, after removing the spectator ions, for the same reaction would be:
2 Cl-(aq) + 2 Ag+(aq) -> 2 AgCl(s)
A sample of pure water has a hydronium concentration of 1.0 × 10-7 M. What is the pH of the water?
Answer:The pH of the water is 7.
Explanation;
The pH of the solution is defined as negative logarithm of [tex]H^+[/tex] or hydronium ions ions in the solution.
[tex]pH=-\log[H^+][/tex]
So, [tex]H^+[/tex] concentration of water = [tex]1.0\times 10^{-7} m[/tex]
[tex]pH=-\log[1.0\times 10^{-7}]=7[/tex]
The pH of the water is 7.
Consider the resonance structures of formate. the first lewis structure of formate has a central carbon atom. a hydrogen atom and two osygen atoms are bonded to the carbon atom. the bond between carbon and hydrogen is a single bond. one of the bonds between carbon and oxygen is a single bond and the other bond is a double bond. the single bonded oxygen has three lone pairs of electrons and a negative one charge. the double bonded oxygen has two lone pairs of electrons. the second lewis structure of formate has all of the same atom connectivities, but the double and single bonds between oxygen and carbon are switched from the first strucutre. select the true statements about the resonance structures. the actual structure of formate switches back and forth between the two resonance forms. each carbon–oxygen bond is somewhere between a single and double bond. each oxygen atom has a double bond 50% of the time. the actual structure of formate is an average of the two resonance forms.
The statement "each carbon-oxygen bond is somewhere between a single and double bond" and "the actual structure of formate is an average of the two resonance forms" are correct. The resonance structures represent an average distribution of electrons across all valid structures, not constant flipping between these structures.
Explanation:In regards to the resonance structures of formate, the statements "each carbon–oxygen bond is somewhere between a single and double bond" and "the actual structure of formate is an average of the two resonance forms" are both true.
Resonance describes the situation where more than one valid Lewis structure can be drawn for a particular molecule. The resonance structure is not a rapid equilibrium between the structures but rather an average of the different possible structures, called resonance forms.
In the case of formate, which has two resonance forms, the molecule doesn't constantly flip between these two structures. Instead, the electrons are distributed in a way that is an average of these two resonance forms. This is why each carbon-oxygen bond in formate is described as being somewhere between a single and a double bond, as the characteristics of the bond are shared across both resonance forms.
Learn more about Resonance Structures in Chemistry here:https://brainly.com/question/25204120
#SPJ11
A student makes observations when water is added to a blue solution of copper sulfate. The student makes only 1 observation: the solution changes to a lighter shade of blue. Is this an example of a chemical reaction? Explain your reasoning.
No, I believe this is not an example of a chemical reaction. What we actually see here is a physical change of the solution. Since we are adding more water to an aqueous solution which is also made up mostly of water, what we are simply basically doing is dilution. Since the solution is being diluted, so definitely the color turned lighter.
Why would gamma radiation be used in diagnostic imaging rather than alpha or beta radiation?
Name all of the alkene isomers, c6h12, that contain a methylene group.
Actually, a methylene group is simply any compound which contains a C=C double bond group and the rest are single bonded carbon groups. Some example of the isomers of C6H12 which contains methylene group is:
1-hexene
2,3-dimethyl-2-butene
2,3-dimethyl-1-butene
2-methyl-2-pentene
trans-2-hexene
4-methyl-1-pentene
cis-2-hexene
trans-3-hexene
2-ethyl-1-butene
2-methyl-1-pentene
3,3-dimethyl-1-butene
4-methyl-cis-2-pentene
cis-3-methyl-2-pentene
trans-3-methyl-2-pentene
There are ________ mol of bromide ions in 0.500 l of a 0.400 m solution of albr3.
How many calcium ions are in 0.3 mol of cacl2?