Prompt the user to enter five numbers, being five people's weights. Store the numbers in an array of doubles. Output the array's numbers on one line, each number followed by one space. (2 pts) (2) Also output the total weight, by summing the array's elements. (1 pt) (3) Also output the average of the array's elements. (1 pt) (4) Also output the max array element. (2 pts)

Answers

Answer 1

Answer:

import java.util.Scanner;

  public class PeopleWeights {

    public static void main(String[] args) {

    Scanner reader = new Scanner(System.in);  

    double weightOne = reader.nextDouble();

    System.out.println("Enter 1st weight:");

    double weightTwo = reader.nextDouble();

    System.out.println("Enter 2nd weight :");

    double weightThree = reader.nextDouble();

    System.out.println("Enter 3rd weight :");

    double weightFour = reader.nextDouble();

    System.out.println("Enter 4th weight :");

    double weightFive = reader.nextDouble();

    System.out.println("Enter 5th weight :");

     double sum = weightOne + weightTwo + weightThree + weightFour + weightFive;

     double[] MyArr = new double[5];

     MyArr[0] = weightOne;

     MyArr[1] = weightTwo;

     MyArr[2] = weightThree;

     MyArr[3] = weightFour;

     MyArr[4] = weightFive;

     System.out.printf("You entered: " + "%.1f %.1f %.1f %.1f %.1f ", weightOne, weightTwo, weightThree, weightFour, weightFive);

     double average = sum / 5;

     System.out.println();

     System.out.println();

     System.out.println("Total weight: " + sum);

     System.out.println("Average weight: " + average);

     double max = MyArr[0];

     for (int counter = 1; counter < MyArr.length; counter++){

        if (MyArr[counter] > max){

           max = MyArr[counter];

        }

     }

     System.out.println("Max weight: " + max);

  }

import java.util.Scanner;

  public class PeopleWeights {

    public static void main(String[] args) {

    Scanner reader = new Scanner(System.in);  

    double weightOne = reader.nextDouble();

    System.out.println("Enter 1st weight:");

    double weightTwo = reader.nextDouble();

    System.out.println("Enter 2nd weight :");

    double weightThree = reader.nextDouble();

    System.out.println("Enter 3rd weight :");

    double weightFour = reader.nextDouble();

    System.out.println("Enter 4th weight :");

    double weightFive = reader.nextDouble();

    System.out.println("Enter 5th weight :");

     double sum = weightOne + weightTwo + weightThree + weightFour + weightFive;

     double[] MyArr = new double[5];

     MyArr[0] = weightOne;

     MyArr[1] = weightTwo;

     MyArr[2] = weightThree;

     MyArr[3] = weightFour;

     MyArr[4] = weightFive;

     System.out.printf("You entered: " + "%.1f %.1f %.1f %.1f %.1f ", weightOne, weightTwo, weightThree, weightFour, weightFive);

     double average = sum / 5;

     System.out.println();

     System.out.println();

     System.out.println("Total weight: " + sum);

     System.out.println("Average weight: " + average);

     double max = MyArr[0];

     for (int counter = 1; counter < MyArr.length; counter++){

        if (MyArr[counter] > max){

           max = MyArr[counter];

        }

     }

     System.out.println("Max weight: " + max);

  }

Answer 2

Answer:

The source code file to this question has been attached to this response. Please download it and go through it. The file contains comments explaining significant sections of the code. Please go through the comments in the code.


Related Questions

Consider the generic state space model *(t)= Ax(t) + Bu(t) y(t) = Cx(t)+Du(t). Use the definition of Al to show that x(t)=1*[4=) Bu(t)dt is the state response under input u(t).

Answers

Answer:

Explanation:

[tex]\dot x (t) - ax(t)=bu(t)\\\\e^{-at}\dot x = e^{-at}ax = \frac{d}{dt} (e^{-at})=e^{-at}bu\\\\\int\limits^t_0 \frac{d}{d\tau}(e^{-a\tau}x(\tau))d\tau=e^{-at}x(t)-x(0)=\int\limits^t_0 e^{-a\tau}bu(\tau))d\tau\\\\x(t)=e^{at}x(0)+ \int\limits^t_0 e^{-a(t-\tau)}bu(\tau))d\tau[/tex]

Similarly,

[tex]e^{-At}\dot x(t) -e^{-At}Ax(t) = \frac{d}{dt} (e^{-At}x(t))=e^{-At}Bu(t)\\\\\int\limits^t_0 \frac{d}{d\tau}(e^{-A\tau}x(\tau))d\tau=e^{-At}x(t)-e^{-A.0}x(0)=\int\limits^t_0 e^{-A\tau}Bu(\tau))d\tau\\\\since\:\:\:e^{-A.0}=I \:\:\: and\:\:\:[e^{-At}]^{-1}=e^{At}\\\\x(t)=e^{At}x(0)+ e^{At}\int\limits^t_0 e^{-A\tau}Bu(\tau))d\tau\\\\x(t)=e^{At}x(0)+ \int\limits^t_0 e^{A(t-\tau)}Bu(\tau))d\tau[/tex]

For initial condition x(0) = 0

[tex]x(t)= \int\limits^t_0 e^{A(t-\tau)}Bu(\tau))d\tau[/tex]

The annual average insolation (energy of sunlight per unit area) striking a fixed solar panel in Buffalo, New York, is 200 W*m^−2, while in Phoenix, Arizona, it is 270 W*m^−2. In each location, the solar panel converts 15% of the incident energy into electricity. Average annual electricity use in Buffalo is 6000 kW*h at an average cost of $0.15 kW*h, while in Phoenix it is 11,000 kW*h at a cost of $0.09 kW*h.
1. In each city, what area of solar panel is needed to meet the average electrical needs of a residence?

Answers

Answer:

The area of solar panel needed in Buffalo is 22.83 m²

The area of solar panel needed in Phoenix is 31 m²

Explanation:

FOR BUFFALO:

First we, calculate the the annual power requirement by dividing the energy by the time of 1 year.

Therefore,

Power Requirement = P = 6000 KWhr/(1 yr)(365 days/yr)(24 hr/day)

P = 684.93 W

Now, to calculate the area we use the formula:

Area = A = P/(Annual Insolation)(Conversion Factor)

A = 684.93 W/(200 W/m²)(0.15)

A = 22.83 m²

FOR PHOENIX:

First we, calculate the the annual power requirement by dividing the energy by the time of 1 year.

Therefore,

Power Requirement = P = 11000 KWhr/(1 yr)(365 days/yr)(24 hr/day)

P = 1255.7 W

Now, to calculate the area we use the formula:

Area = A = P/(Annual Insolation)(Conversion Factor)

A = 1255.7 W/(270 W/m²)(0.15)

A = 31 m²

A particle, originally at rest and located at point (3 ft, 2 ft, 5 ft), is subjected to an acceleration a = {6ti + 12t^2k} ft/s^2. Determine the particle’s position (x, y, z) when t = 2 s.

Answers

The particle's position at t = 2 s is (11 ft, 2 ft, 21 ft).

To determine the particle's position at t = 2 s, we need to integrate the acceleration function twice. First, we'll find the velocity function:

[tex]\[ \mathbf{v}(t) =\int \mathbf{a}(t) \, dt \][/tex]

[tex]\[ \int (6t\mathbf{i} + 12t^2 \mathbf{k}) \, dt \\= 3t^2 \mathbf{i} + 4t^3 \mathbf{k} + \mathbf{C} \][/tex]

where C₁ is the constant of integration.

Next, we'll find the position function:

[tex]\[ \mathbf{v}(t) = \int (3t^2 \mathbf{i} + 4t^3 \mathbf{k} + \mathbf{C}_1) \, dt \\= t^3 \mathbf{i} + t^4 \mathbf{k} + \mathbf{C}_1 t + \mathbf{C}_2 \][/tex]

where C₂ is the constant of integration.

Given the initial conditions, we know that at t = 0, the particle is at rest (v = 0) and located at point (3 ft, 2 ft, 5 ft). We can use these conditions to find the values of C₁ and C₂:

[tex]c_{1} = (0 i + 0 j + 0 k) - (3(0^{2} i + 4(0^{4} k) = 0[/tex]

[tex]c_{2}[/tex][tex]= (3 i + 2 j + 5 k)[/tex] - ([tex]i + 0^{4}k[/tex] )

[tex]= (3 i + 2 j + 5 k)[/tex]

Now we can find the position at t = 2 s:

= [tex]2^{3}[/tex][tex]i[/tex] + [tex]2^{4}[/tex][tex]k + (0)(2) + (3 i + 2 j + 5 k)[/tex]

[tex]= (8 i + 16 k) + (3 i + 2 j + 5 k)[/tex]

[tex]= (11 i + 2 j + 21 k)[/tex]

So the particle's position at t = 2 s is (11 ft, 2 ft, 21 ft).

All brake lights are dimmer than normal. Technician A says that bad bulbs could be the cause. Technician B says that high resistance in the brake switch could be the cause. Which technician is correct?a. Technician A onlyb. Technician B onlyc. Both Technician A and Bd. Neither Technician A nor B

Answers

Answer:

All Brake lights are dimmer than normal because high resistance in the brake switch could be the cause according to Technician B.

Explanation:

According to Technician A

When the bulb is faulty then no current will flow through bulb and it will be open circuit.So no light will produce in bulb .

According to Technician B

When a high resistance inserted in series  circuit the voltage across each resistance is reduced and this cause the light glow dimly.

Formula of resistance in series circuit

Rt=r1+r2+r3......

Write a static method called quadrant that takes as parameters a pair of real numbers representing an (x, y) point and that returns the quadrant number for that point. Recall that quadrants are numbered as integers from 1 to 4 with the upper-right quadrant numbered 1 and the subsequent quadrants numbered in a counter-clockwise fashion:

Answers

Full Question

Write a static method called quadrant that takes as parameters a pair of real numbers representing an (x, y) point and that returns the quadrant number for that point.

Recall that quadrants are numbered as integers from 1 to 4 with the upper-right quadrant numbered 1 and the subsequent quadrants numbered in a counter-clockwise fashion. Notice that the quadrant is determined by whether the x and y coordinates are positive or negative numbers. If a point falls on the x-axis or the y-axis, then the method should return 0.

Answer

public int quadrant(double x, double y) // Line 1

{

if(x > 0 && y > 0){ //Line 2

return 1;

}

if(x < 0 && y > 0){ // Line 3

return 2;

}

if(x < 0 && y < 0) {// Line 4

return 3;

}

if(x > 0 && y < 0) {// Line 5

return 4;

}

return 0;

}

Explanation:

Line 1 defines the static method.

The method is named quadrant and its of type integer.

Along with the method definition, two variables x and y of type double are also declared

Line 2 checks if x and y are greater than 0.

If yes then the program returns 1

Line 3 checks if x is less than 0 and y is greater than 0

If yes then the program returns 2

Line 4 checks if x and y are less than 0

If yes then the program returns 3

Line 5 checks is x is greater than 0 and y is less than 0

If yes then the program returns 4

Please write the command(s) you should use to achieve the following tasks in GDB. 1. Show the value of variable "test" in hex format. 2. Show the top four bytes on your stack word-by-word, e.g. it should look something like this "0x0102 0x0304", NOT "0x01020304". 3. Check all register values. 4. Set a breakpoint at "ece.c" line 391

Answers

Final answer:

You can use a series of commands to accomplish various tasks in GDB: 'print /x test' to view a variable in hex format, 'x/4wx $sp' to read the top four bytes on your stack by word, 'info registers' to check all register values, and 'break ece.c:391' to set a breakpoint at a specific line.

Explanation:

To achieve the tasks in GDB, you will need to use the following commands:

To show the value of variable "test" in hexadecimal format, use the command: 'print/x test'.Read the top four bytes on your stack word-by-word with the command: 'x/4wx $sp'.Check all register values with the command: 'info registers'.To set a breakpoint at "ece.c" line 391, use the command: 'break ece.c:391'.

Learn more about GDB Commands here:

https://brainly.com/question/33364038

#SPJ2

Automobiles must be able to sustain a frontal impact. Specifically, the design must allow low speed impacts with little damage, while allowing the vehicle front end structure to deform and absorb impact energy at higher speeds. Consider a frontal impact test of a vehicle with a mass of 1000 kg. a. For a low speed test (v = 2.5 m/s), compute the energy in the vehicle just prior to impact. If the bumper is a pure elastic element, what is the effective design stiffness required to limit the bumper maximum deflection during impact to 4 cm? b. At a higher speed impact of v = 25 m/s, considerable deformation occurs. To absorb the energy, the front end of a vehicle is designed to deform while providing a nearly constant force. For this condition, what is the amount of energy that must be absorbed by the deformation [neglecting the energy stored in the elastic deformation in (a)? If it is desired to limit the deformation to 10 cm, what level of resistance force is required? What is the deacceleration of the vehicle in this condition?

Answers

Answer:

Explanation:

The concept of Hooke's law was applied as it relates to deformation.

The detailed steps and appropriate substitution is as shown in the attached file.

Maintaining an optimistic attitude, building self-efficacy, strengthening stress inoculation, experiencing secure personal relationships, and practicing spirituality or religiosity are factors to help individuals thrive in the face of _____.

Answers

Final answer:

Optimistic attitude, self-efficacy, stress inoculation, secure relationships, and spirituality are factors that help individuals cope with adversity. These elements foster hardiness and stress-related growth, allowing individuals to manage chronic and acute stressors more effectively and pursue personal development.

Explanation:

Maintaining an optimistic attitude, building self-efficacy, strengthening stress inoculation, experiencing secure personal relationships, and practicing spirituality or religiosity are factors to help individuals thrive in the face of adversity.

Adversity can include both chronic stressors, such as long-term unemployment, and acute stressors, like illnesses or loss. These stressors require coping mechanisms and personal strengths for an individual to manage effectively. Optimism is a general tendency to expect positive outcomes and it contributes to less stress and happier dispositions. Self-efficacy, defined by Albert Bandura, is the belief in one's abilities to reach goals, which empowers a proactive response to stressors. The concept of hardiness, which relates to optimism and self-efficacy, describes those who are less affected by life's stressors and use effective coping strategies.

Furthermore, stress-related growth or thriving describes the ability of individuals to exceed previous performances and show increased strength in the face of adversity. The nurturing of secure personal relationships provides social support that can aid in increasing positive affect and reducing the number of physical symptoms during stressful times.

Calculate the molar heat capacity of a monatomic non-metallic solid at 500K which is characterized by an Einstein temperature of 300K. Express your result as a multiple of 3R.

Answers

Answer:

Explanation:

Given

Temperature of solid [tex]T=500\ K[/tex]

Einstein Temperature [tex]T_E=300\ K[/tex]

Heat Capacity in the Einstein model is given by

[tex]C_v=3R\left [ \frac{T_E}{T}\right ]^2\frac{e^{\frac{T_E}{T}}}{\left ( e^{\frac{T_E}{T}}-1\right )^2}[/tex]

[tex]e^{\frac{3}{5}}=1.822[/tex]

Substitute the values

[tex]C_v=3R\times (\frac{300}{500})^2\times (\frac{1.822}{(1.822-1)^2})[/tex]

[tex]C_v=3R\times \frac{9}{25}\times \frac{1.822}{(0.822)^2}[/tex]

[tex]C_v=0.97\times (3R)[/tex]            

Do you think the mining process is faster when you know in advance that the land must be restored? Explain.

Answers

Answer: No, the mining process isn't faster when you know in advance that the land must be restored.

Explanation:

The mining process would be slower when mining companies know in advance that the land must be restored because they have to be more careful about their impact on the environment & avoid taking unnecessary damage to ruin the land which they know they must restore.

So, it's evident how this would slow down the mining process. If there were no obligations to restore land, the mining companies would just come at the mining space and run their mining process fast without big concerns for the consequences.

But the caution definitely slows them down.

People often have different points of view. If I think mining process is faster when you know in advance that the land must be restored, My answer is No.

This is because even without miners been aware that the land had to be restored before mining, they still carelessly remove minerals without taking into cognizant the damage it will do to the land.

There are different processes of mining. They include;

UndergroundSurfacePlacer In-situ

The type of mining method used is usually based on the kind of resource that is needed, the deposit's location etc.

Learn more about Mining from

https://brainly.com/question/1278689

Define a function pyramid_volume with parameters base_length, base_width, and pyramid_height, that returns the volume of a pyramid with a rectangular base. Sample output with inputs: 4.5 2.1 3.0 Volume for 4.5, 2.1, 3.0 is: 9.45 Relevant geometry equations: Volume

Answers

Hi, you haven't provided the programing language in which you need the code, I'll just explain how to do it using Python, and you can apply a similar method for any programming language.

Answer:

1. def pyramid_volume(base_length, base_width, pyramid_height):

2.     volume = base_length*base_width*pyramid_height/3

3.     return(volume)

Explanation step by step:

In the first line of code, we define the function pyramid_volume and it's input parametersIn the second line, we perform operations with the input values to get the volume of the pyramid with a rectangular base, the formula is V = l*w*h/3In the last line of code, we return the volume  

In the image below you can see the result of calling the function with input 4.5, 2.1, 3.0.

Final answer:

The function 'pyramid_volume' can be used to compute the volume of a pyramid with a rectangular base. Its calculation uses the equation: V = (base_area * height) / 3, where base_area = base_length * base_width. Given the inputs 4.5, 2.1, and 3.0 for base_length, base_width, and pyramid_height respectively, the volume would be 9.45

Explanation:

The function pyramid_volume is best defined in the context of Mathematics, particularly, geometric formulas. To compute the volume of a pyramid with a rectangular base, you can utilize the formula: V = (base_area * height) / 3. Here, base_area is equal to base_length times base_width. Hence, the function pyramid_volume could be defined as follows:

Volume = lambda base_length, base_width, pyramid_height: (base_length * base_width * pyramid_height) / 3.

Thus, if you input 4.5, 2.1, and 3.0 as your base_length, base_width, pyramid_height respectively into the function, it will return the volume of the pyramid, which in this case is 9.45.

Learn more about Volume Computation here:

https://brainly.com/question/33636745

#SPJ3

From an email message sent to all employees of a law firm advising them to be alert for a new virus: This virus has been known to cause the destruction of files, and it is very important that you perform a search of your hard drive to try and attempt eradication of it using the search feature. Search for .EDT file extensions and delete them. Then the problem will be solved

Answers

Answer:true

Explanation: I’m fram wokonda

The email message you provided is advising law firm employees to be alert for a new virus that can destroy files.

How to explain the emails

The virus is associated with .EDT file extensions, so the email message suggests that employees search their hard drives for these files and delete them.

This advice is generally sound. .EDT files are associated with Adobe Digital Editions, a software program that is used to read eBooks. If a .EDT file is infected with a virus, it could potentially damage or destroy the eBook that it is associated with.

However, it is important to note that not all .EDT files are infected with viruses. It is possible that an employee may have a legitimate .EDT file that they need to keep. Therefore, before deleting any .EDT files, it is important to make sure that they are not infected.

Learn more about email

https://brainly.com/question/24688558

#SPJ2

Which of the following method header represents Function(true, 0, 2.6)? A. void Function( bool b, double d, int c ) B. void Function( bool b, double d, double e ) C. void Function( bool b, int c, double d ) D. b and c

Answers

Answer:

(d) b and c

Explanation:

Given;

Function (true, 0, 2.6)

From the above, the function Function receives three arguments;

=>First argument (i.e true), is of type boolean

=>Second argument (i.e 0), is of type int, float or double since integers are inherently floating point numbers. Therefore 0 can be int, float or double.

=>Third argument (i.e 2.6), is a floating point number and could be of type float or double.

Therefore the method header for the function Function could be any of the following;

i). void Function (bool b, double d, double e)

ii). void Function (bool b, int c, double d)

iii). void Function (bool b, int d, float e)

iv). void Function (bool b, float d, double e)

v). void Function (bool b, double d, float e)

vi). void Function (bool b, float d, float e)

Note:

i. The ordered list above has ii and v in bold form to show that they are part of the options specified in the question.

ii. The letters b, c, d and e specified in the method declaration variations do not matter. Since they are just dummy variables, they can be any letter.

Therefore b and c are a correct representation for the method header.

A section of highway has a free-flow speed of 55 mph and a capacity of 3300 veh/hr. In a given hour, 2100 vehicles were counted at a specified point along this highway section. If the linear speed density relationship applies, what would you estimate the space-mean speed of the vehicles to be?

Answers

Answer:

Space mean speed = 44 mi/h

Explanation:

Using Greenshield's linear model

q = Uf ( D - [tex]D^{2}[/tex]/Dj )

qcap = capacity flow that gives Dcap

Dcap = Dj/2

qcap = Uf. Dj/4

Where

U = space mean speed

Uf =  free flow speed

D = density

Dj = jam density

now,

Dj = 4 × 3300/55

    = 240v/h

q = Dj ( U - [tex]U^{2}[/tex]/Uf)

2100 = 240 ( U - [tex]U^{2}[/tex]/55)

Solve for U

U = 44m/h

An ant starts at one edge of a long strip of paper that is 34.2 cm wide. She travels at 1.3 cm/s at an angle of 61◦ with the long edge. How long will it take her to get across? Answer in units of s.

Answers

Answer:

t = 30.1 sec

Explanation:

If the ant is moving at a constant speed, the velocity vector will have the same magnitude at any point, and can be decomposed in two vectors, along directions perpendicular each other.

If we choose these directions coincident with the long edge of the paper, and the other perpendicular to it, the components of the velocity vector, along these axes, can be calculated as the projections of this vector along these axes.

We are only interested in the component of the velocity across the paper, that can be calculated as follows:

vₓ = v* sin θ, where v is the magnitude of the velocity, and θ the angle that forms v with the long edge.

We know that v= 1.3 cm/s, and θ = 61º, so we can find vₓ as follows:

vₓ = 1.3 cm/s * sin 61º = 1.3 cm/s * 0.875 = 1.14 cm/s

Applying the definition of average velocity, we can solve for t:

t =[tex]\frac{x}{vx}[/tex] = [tex]\frac{34.2 cm}{1.14 cm/s} =30.1 sec[/tex]

t = 30.1 sec

Determine the values of the lumped parasitic capacitor and inductor in a 5 ft long two-wire transmission line with air dielectric (See Chapter 7 in the Stanley and Harrington textbook). Each wire has a diameter of 1 mm and the separation between the wires is 1 inch. Show your calculations and the equations used.

Answers

Answer: See attachment below

Explanation:

Calculate the link parameter and channel utilization efficiency (in error-free channels) for a system with the following parameters, if the simplex stop and wait protocol is used. a) Bitrate: R=12 Mbps, Modulation: BPSK, distance between the transmitter and receiver: d-6 miles, propagation velocity:v3 x 108 m/s and the length of each frame: L-500 bits. b) Symbolrate: Rs.10 Msps, Modulation: QPSK, distance between the transmitter and receiver: d=15 km, propagation velocity: v 3 x 108 m/s and the length of each frame: L- 256 bits.

Answers

Answer: a) 0.77 and 0.39 b) 3.9 and 0.20

Explanation:

We have to find two things here i.e link parameter and channel utilization efficiency.

a)

We are given

Bitrate= 12 Mbps,

Distance= 6 miles

Propagation Velocity= 3 x 10⁸ m/s

Length of frame= 500 bits

We know that The link parameter is related to propagation time and frame time

Where Propagation time= Bitrate x Distance= 12 Mbps x 6 miles

and Frame time= Propagation velocity x length of frame= 3 x 10⁸ x 500

So,

Link parameter= [tex]\frac{12*10^6*6*1609.34}{3*10^8*500}[/tex]

Link parameter= 0.77

Channel utilization efficiency= [tex]\frac{1}{1+2* link parameter}[/tex]

Channel utilization efficiency= 0.39

b)

We are given

Bitrate= 10 Mbps,

Distance= 15 km

Propagation Velocity= 3 x 10⁸ m/s

Length of frame= 256 bits

We know that The link parameter is related to propagation time and frame time, Here QPSK is used so bitrate is multiplied by 2,

Where Propagation time= Bitrate x Distance= 2 x 10 Mbps x 15 km

and Frame time= Propagation velocity x length of frame= 3 x 10⁸ x 256

So,

Link parameter= [tex]\frac{2*10*10^6*15*1000}{3*10^8*256}[/tex]

Link parameter= 3.9

Channel utilization efficiency= [tex]\frac{1}{1+2* link parameter}[/tex]

Channel utilization efficiency= 0.20

What does a blueprint slide do? Check all that apply. Provides a review of your key points near the end of your presentation Provides transitions as you move from point to point Provides an overview of your points Provides a clear explanation of one main point Provides a template for your presentation outline

Answers

Answer:

- Provides an overview of your points

Provides a review of your key points near the end of your presentation

Provides transitions as you move from point to point

Explanation:

What does a blueprint slide do? Check all that apply. Provides a review of your key points near the end of your presentation Provides transitions as you move from point to point Provides an overview of your points Provides a clear explanation of one main point Provides a template for your presentation outline

- Provides an overview of your points

Provides a review of your key points near the end of your presentation

Provides transitions as you move from point to point

. A blueprint slide would not be useful for a clear explanation of one point or as a template for your outline. You would have to use a different slide layouts.

Blueprints slide establishes how you are going to work through your presentation. it is on the introductory part of your presentation.

Contains a description of your statements, a recap of your important points after your presentations, and transitioning as you get further from source to destination.

A blueprint presentation does indeed have a uniform appearance and might even be utilized throughout a variety of methods throughout the presentation.An aesthetically compelling blueprint slideshow should, for illustration, provide an introduction of your arguments, certain transitioning to allow you to proceed between one aspect to the next one, or maybe even a summary of your essential aspects towards the end of the session.

Thus the response above is correct.

Learn more about blueprint here:

https://brainly.com/question/12139184

Problem 4: The built-in function clock returns a row vector that contains 6 elements: the first three are the current date (year, month, day) and the last three represent the current time in hours (24 hour clock), minutes, and seconds. The seconds is a real number, but all others are integers. Use function sprintf to accomplish the following formatting exercises. a) Get the current date and time and store them in p4a. The current date and time should be the date and time when the grader calls your script. b) Using the format 'YYYY:MM:DD', write the current date to string p4b. Here, YYYY, MM, and DD correspond to 4-digit year, 2-digit month, and 2-digit day, respectively. c) Using the format 'HH:MM:SS.SSSS', write the current time to string p4c. Here, HH, MM, and SS.SSSS correspond to 2-digit hour, 2-digit minute and 7-character second (2 digits before the decimal point and 4 digits after the decimal points), respectively. d) Remove the last 5 characters from the string in part (c) so that the format is now 'HH:MM:SS'. Put the answer into string p4d. e) Combine the strings in part (b) and part (d) together separated by a single space. Put theanswer in string p4e

Answers

Answer is 77 because

How many electrons move past a fixed reference point every t = 2.55 ps if the current is i = 7.3 μA ? Express your answer as an integer.

Answers

Final answer:

The number of electrons that move past a fixed reference point in 2.55 ps when the current is 7.3  extmu A is approximately 116, after calculating the total charge and then dividing it by the charge of an electron.

Explanation:

The number of electrons moving past a fixed reference point in a given time interval when the electric current is known can be calculated by first determining the total charge that passes through the reference point and then dividing that by the charge per electron. The total charge ( extit{Q}) that moves through a fixed point is the product of the current ( extit{I}) and the time interval ( extit{t}), which is expressed by the formula  extit{Q} =  extit{I}  imes  extit{t}. Given that the charge of an electron is approximately -1.60  imes 10^{-19} C (coulombs), one can calculate the number of electrons by dividing the total charge by the electronic charge.



In this case, the current is 7.3  extmu A (microamperes), which is equal to 7.3  imes 10^{-6} A (amperes), and the time interval is 2.55 ps (picoseconds), or 2.55  imes 10^{-12} s (seconds). Using the formula  extit{Q} =  extit{I}  imes  extit{t}, the total charge moved past the reference point is calculated as follows:



Q = 7.3  imes 10^{-6} A  imes 2.55  imes 10^{-12} s = 1.8615  imes 10^{-17} C



Next, to find the number of electrons that move past the reference point, we divide the total charge by the charge of an electron:



Number of electrons =  rac{Q}{e} =  rac{1.8615  imes 10^{-17} C}{1.60  imes 10^{-19} C/e^-}



This yields approximately 116.34 electrons. Since the question asks for an integer value, we round this to 116 electrons as the number of electrons that move past a fixed reference point every 2.55 ps if the current is 7.3  extmu A.

To find the number of electrons moving past a fixed reference point with a given current, you can use the formula: Current (i) = Charge (q) / Time (t). By substituting the known values and calculating, you can determine the number of electrons passing the point at a specific time.

To find the number of electrons moving past a fixed reference point with given current:

Given: Current (i) = 7.3 μA = 7.3 x 10^-6 A

Formula: Current (i) = Charge (q) / Time (t)

Calculation: Number of electrons = (Current x Time) / Charge of an electron

Substitute values and calculate.

The passageway between the riser and the main cavity must have a small cross-sectional area to minimize waste of casting metal: True or False

Answers

Answer:

True

Explanation:

The passageway between the riser and the main cavity must have a small cross-sectional area to reduce waste of material in metal casting.

The velocity components u and v in a two-dimensional flow field are given by: u = 4yt ft./s, v = 4xt ft./s, where t is time. What is the time rate of change of the velocity vector V (i.e., the acceleration vector) for a fluid particle at x = 1 ft. and y = 1 ft. at time t = 1 second?

Answers

Answer:

vec(a) = 16 i + 16 j

mag(a) = 22.63 ft/s^2

Explanation:

Given,

- The two components of velocity are given for fluid flow:

                                       u = 4*y ft/s

                                       v = 4*x ft/s

Find:

What is the time rate of change of the velocity vector V (i.e., the acceleration vector) for a fluid particle at x = 1 ft. and y = 1 ft. at time t = 1 second?

Solution:

- The rate of change of velocity is given to be acceleration. We will take derivative of each components of velocity with respect to time t:

                                      a_x = du / dt

                                      a_x = 4*dy/dt

                                      a_y = dv/dt

                                      a_y = 4*dx/dt

- The expressions dx/dt is the velocity component u and dy/dt is the velocity component v:

                                     a_x = 4*(4*y) = 16y

                                     a_y = 4*(4*x) = 16x

- The acceleration vector can be expressed by:

                                     vec(a) = 16y i + 16x j

- Evaluate vector (a) at x = 1 and y = 1:

                                     vec(a) = 16*1 i + 16*1 j = 16 i + 16 j

- The magnitude of acceleration is given by:

                                     mag(a) = sqrt ( a^2_x + a^2_y )

                                     mag(a) = sqrt ( 16^2 + 16^2 )

                                     mag(a) = 22.63 ft/s^2

An open tank contains brine to a depth of 2 m and a 3-m-layer of oil on top of the brine. Density of brine is 1,030 kg/m3 and the density of oil is 880 kg/m3. What is the gage pressure (kPa) at the bottom of the tank?

Answers

Answer:

Gage pressure at the bottom of the tank = 46.1kP

Explanation:

Note that it is required to expressed the gage pressure ,pressure at the free surface=0 gage

Pressure due to the oil layer= (3m)*((800kg/m^3)(9.81m/s^2))/1000=25.9kpa

Pressure due to the brine layer=(2m)*((1030kg/m^3)(9.81m/s^2))/1000=20.2ka

Therefore, the pressure at the bottom=25.9+20.2=46.1kP

Compute the estimated actual endurance limit for SAE 4130 WQT 1300 steel bar with a rectangular cross section of 20.0 mm by 60 mm. It is to be machined and subjected to repeated and reversed bending stress. A reliability of 99% is desired

Answers

Answer:

estimated actual endurance strength = 183.22 MPa

Explanation:

given data

actual endurance limit for SAE 4130 WQT 1300

cross section = 20.0 mm by 60 mm

reliability = 99%

solution

we use here table for get some value for AISI 4130 WQT 1300 steel

Sut = 676 MPa

Sn = 260 MPa

and here

stress factor Cst = 1

and wrought steel Cm = 1

and reliability factor Cr is = 0.81

so here equivalent diameter will be

equivalent diameter = 0.808 [tex]\sqrt{bh}[/tex]    ...........1

equivalent diameter = 0. 808 [tex]\sqrt{20*60}[/tex]  

equivalent diameter = 28 mm

so here size factor will be = 0.87 by the table

so now we can get estimated actual endurance strength will be

actual endurance strength = Sn × Cm × Cst × Cr × Cs ...............2

put here value

actual endurance strength = 260 × 1 × 1 × 0.81 × 0.87

actual endurance strength = 183.22 MPa

An 80-percent-efficient pump with a power input of 20 hp is pumping water from a lake to a nearby pool at a page 101rate of 1.5 ft3/s through a constant-diameter pipe. The free surface of the pool is 80 ft above that of the lake. Determine the mechanical power used to overcome frictional effects in piping. Answer: 2.37 hp

Answers

Final answer:

To calculate the mechanical power used to overcome friction in piping for the described pump operation, calculate the hydraulic power needed, then subtract the pump's output power (based on its efficiency) from its total input.

Explanation:

The question involves determining the mechanical power used to overcome frictional effects in piping for an 80-percent-efficient pump with a power input of 20 hp, which is pumping water at a rate of 1.5 ft3/s from a lake to a pool 80 ft above. Firstly, calculate the total hydraulic power required to move the water to the desired height, then calculate the power output of the pump based on its efficiency. Finally, subtract this value from the total input power to find the power used to overcome friction.

Steps to Solve:

Calculate the hydraulic power needed using the formula P = ρghQ, where ρ is the density of water, g is the acceleration due to gravity, h is the height difference, and Q is the flow rate.Calculate the efficient power output of the pump (Actual Power Output) using its efficiency and the input power.Subtract the pump's output power from its input to find the power lost to friction.

Through such calculations, one can find that the mechanical power used to overcome frictional effects in piping is 2.37 hp.

A signal is band-limited between 2 kHz and 2.1 kHz. If the signal is sampled at 1750 Hz, the baseband signal will lie between?a. 00 and 650 Hzb. 750 and 2000 Hzc. 100 and 110 Hzd. 250 and 350 Hz

Answers

Answer:

Explanation: 100 and 110 Hz

Here fL=2kHz, fH=2.1kHz, B=0.1kHz, fL=2kHz,  

n≤fH/(fH-fL)

n≤(2.1*1000)/((2.1-2)*1000)

n≤20

2fH/n  ≤ fs

(2*2.1*1000)/20 ≤ fs

210≤ fs

Two balanced Y-connected loads in parallel, one drawing 15kW at 0.6 power factor lagging and the other drawing 10kVA at 0.8 power factor leading, are supplied by a balanced, three-phase, 480-volt source. (a) Draw the power triangle for each load and for the combined load. (b) Determine the power factor of the combined load and state whether lagging or leading. (c) Determine the magnitude of the line current from the source. (d) Δ-connected capacitors are now installed in parallel with the combined load. What value of capacitive reactance is needed in each leg of the A to make the source power factor unity? Give your answer in Ω. (e) Compute the magnitude of the current in each capacitor and the line current from the source.

Answers

Answer:

(a) attached below

(b) [tex]pf_{C}=0.85[/tex] [tex]lagging[/tex]

(c) [tex]I_{C} =32.37 A[/tex]

(d) [tex]X_{C} =49.37[/tex] Ω

(e) [tex]I_{cap} =9.72 A[/tex] and [tex]I_{line} =27.66 A[/tex]

Explanation:

Given data:

[tex]P_{1}=15 kW[/tex]

[tex]S_{2} =10 kVA[/tex]

[tex]pf_{1} =0.6[/tex] [tex]lagging[/tex]

[tex]pf_{2}=0.8[/tex] [tex]leading[/tex]

[tex]V=480[/tex] [tex]Volts[/tex]

(a) Draw the power triangle for each load and for the combined load.

[tex]\alpha_{1}=cos^{-1} (0.6)=53.13[/tex]°

[tex]\alpha_{2}=cos^{-1} (0.8)=36.86[/tex]°

[tex]S_{1}=P_{1} /pf_{1} =15/0.6=25 kVA[/tex]

[tex]Q_{1}=P_{1} tan(\alpha_{1} )=15*tan(53.13)=19.99[/tex] ≅ [tex]20kVAR[/tex]

[tex]P_{2} =S_{2}*pf_{2} =10*0.8=8 kW[/tex]

[tex]Q_{2} =P_{2} tan(\alpha_{2} )=8*tan(-36.86)=-5.99[/tex] ≅ [tex]-6 kVAR[/tex]

The negative sign means that the load 2 is providing reactive power rather than consuming  

Then the combined load will be

[tex]P_{c} =P_{1} +P_{2} =15+8=23 kW[/tex]

[tex]Q_{c} =Q_{1} +Q_{2} =20-6=14 kVAR[/tex]

(b) Determine the power factor of the combined load and state whether lagging or leading.

[tex]S_{c} =P_{c} +jQ_{c} =23+14j[/tex]

or in the polar form

[tex]S_{c} =26.92<31.32[/tex]°

[tex]pf_{C}=cos(31.32) =0.85[/tex] [tex]lagging[/tex]

The relationship between Apparent power S and Current I is

[tex]S=VI^{*}[/tex]

Since there is conjugate of current I therefore, the angle will become negative and hence power factor will be lagging.

(c) Determine the magnitude of the line current from the source.

Current of the combined load can be found by

[tex]I_{C} =S_{C}/\sqrt{3}*V[/tex]

[tex]I_{C} =26.92*10^3/\sqrt{3}*480=32.37 A[/tex]

(d) Δ-connected capacitors are now installed in parallel with the combined load. What value of capacitive reactance is needed in each leg of the A to make the source power factor unity?Give your answer in Ω

[tex]Q_{C} =3*V^2/X_{C}[/tex]

[tex]X_{C} =3*V^2/Q_{C}[/tex]

[tex]X_{C} =3*(480)^2/14*10^3[/tex] Ω

(e) Compute the magnitude of the current in each capacitor and the line current from the source.

Current flowing in the capacitor is  

[tex]I_{cap} =V/X_{C} =480/49.37=9.72 A[/tex]

Line current flowing from the source is

[tex]I_{line} =P_{C} /3*V=23*10^3/3*480=27.66 A[/tex]

The specific volume of water vapor at 0.3 MPa, 160°C is 0.651 m3/kg. If the water vapor occupies a volume of 1.2 m3, determine the amount present, in kg.

Answers

The amount of water vapor present, we can use the relationship between specific volume, volume, and mass.

Specific volume= Volume/ Mass, (v) at a certain condition is 0.651 m³/kg and the volume (V) occupied by the water vapor is 1.2 m³, we can rearrange the formula to solve for mass (m):

Mass=  Specific volume/ Volume

           = 1.2/ 0.651

Mass= 1.2/ 0.651  

         = 1.844

Mass=1.844kg

Therefore,  the amount of water vapor present is approximately 1.844 kg.

Learn more about Mass, refer to the link:

https://brainly.com/question/11954533

#SPJ12

The two pond system is fed by a stream with flow rate 1.0 MGD (million gallons per day) and BOD (nonconservative pollutant) concentration of 20 mg/L. The rate of decay of BOD is 0.3/day. The volume of the first pond is 5 million gallons and the second is 3 million. Assuming complete mixing within the pond, find the BOD concentration leaving each pond.

Answers

Answer: First pond= 8.0 mg/L

second pond = 4.2 mg/L

Explanation:

Cn/Co = [ 1/ [ 1 + (k*t/n)]]

for the first pond

where Co into the first pond is 20mg/L,

Cn = 20*[ 1/ [ 1+ ((1 x 5)/0.3)]]

Cn = 8 mg/L

into the second pond we calculate the BOD leaving the pond of volume 3million liters

we have Cn = 4.2 mg/L

Write a linear equation expressing the number of t-shirts sold each month as a function of price per t-shirt. Please be explicit about what your chosen variables represent. Find the slope and intercepts of this equation (including their units). What real life meaning do these values have?

Answers

Answer:

slope of the equation = -0.006778 and the intercept = 27.11

Explanation:

The following details were also given ; They predict the monthly T shirts to be 1750 shirts, if you price them at $15.25 per shirt or 791 shirts if you price them at $21.75 per shirt.

The detailed steps and calculation is as shown in the attached file.

Other Questions
If you use a 95% confidence level in a two-tail hypothesis test, what will you decide about your Null Hypothesis if the computed value of the test statistic is Z = 2.57? Why? Your coin collection contains fifty 1949 silver dollars. Your grandparents purchased them for their face value when they were new. These coins have appreciated at a 7.6 percent annual rate. This rate is expected to continue. How much will your collection be worth when you retire in 2020 Problem 6-13 Pricing Consol Bonds (LO2) Perpetual Life Corp. has issued consol bonds with coupon payments of $60. (Consols pay interest forever and never mature. They are perpetuities.). If the required rate of return on these bonds at the time they were issued was 6%, at what price were they sold to the public? How do you do this question? What is the molality of aqueous nitric acid HNO3 (63 g/mol) that has a density of 1.42 g/mL and is 16.7 M? Report your answer to three significant figures. Do not include units. Select the correct answer.Which event most directly caused the Glorious Revolution? The Olympic Project was set up as an open source website to collect evidence for Bigfoot. Evidence collected was to be assessed by a team of researchers. Was this science or pseudoscience? A colony of bacteria originally contains 200 bacteria. It doubles in size every 30 minutes. How many hours will it take for the colony to contain 2,000 bacteria? (Round your answer to one decimal place.) Littlefield Industries purchased a bond on September 1 of the current year for $200,000 and classified the investment as trading debt. The market value of the trading debt investment at year-end is $196,000. The adjustment is ______. Use scalar projection to show that the distance from a point P1(x1,y1) to the line ax+by+c=0 is |ax1+by1+c|/underroot(a^2 +b^2)Use this formula to find the distance from the point (-2,3) to the line 3x-4y+5=0 review the details that are revealed about juvencio's crime prior to line 158. how does each new fact affect readers perception of his integrity and his character? explain what makes these revelations ironic Can someone help? Find: Number of H atoms in 6.047 x 10^23 molecules of H2. Does 27/8 equal 2 7/8 Sweat lodge ceremoniesa. may be used to purify the bodyb. may take place in many different cultural contextsc. may establish a bond between people who perform the ceremony togetherd. all of the above IF WERE ASAP!!!! 10 POINTS Wrasse fish eat parasites off the body of sea bass. What type of symbiotic relationship is this? A parasitism B commensalism C mutualism please answer this, and HURRY I am giving away 20points. Question: What is the measure of angle DBA? ____Degrees why did holocaust occur and why did so many turn their back or close their eyes to the reality of the holocaust? What do you think Tennyson is saying about the role of the artist and the connection of the artist to his or her society? Cite evidence from the poem to support your view. Your answer should be at least one hundred words. Find the proportion of observations (0.0001) from a standard Normal distribution that falls in each of the following regions. In each case, sketch a standard Normal curve and shade the area representing the region.(a) z gif.latex?%5Cleqslant ?2.34:(b) z gif.latex?%5Cgeqslant ?2.34:(c) z > 1.74:(d) ?2.34 < z < 1.74: What was the Mayflower Compact?A. the ship that transported the Pilgrims to AmericaB. the colonial legislature of VirginiaC. the agreement in which the Pilgrims agreed to make decisions collectivelyD. Benjamin Franklin's 1754 plan for uniting the coloniesE. the list of grievances against the King of England Steam Workshop Downloader