Submarine canyons were most likely formed by:Select one:a. scouring by glaciers during the last ice age.b. deposition of terrestrial sediment.c. earthquake activity.d. erosion by turbidity currents.e. erosion by major rivers in the past.

Answers

Answer 1

Answer:

Submarine canyons were most likely formed by erosion by major rivers in the past (option e)

Explanation:

A submarine canyon is a deep, relatively narrow, V-shaped depression whose bottom generally has a continuous slope. It can extend from the continental shelf to the great ocean depths.

Submarine canyons are habitats that appear interrupting the apparent homogeneity of the continental shelf. They play an important role in channeling organic matter. They transport sediments from the continental shelf to the deep ocean. Submarine canyons are usually found at the mouths of the rivers and are formed by the gigantic erosive power of the water that is slowly sculpting it from the continent, to the abysmal depths.

Submarine canyons were most likely formed by erosion by major rivers in the past (option e)


Related Questions

A network engineer is subnetting the 10.0.240.0/20 network into smaller subnets. Each new subnet will contain between a minimum of 20 hosts and a maximum of 30 hosts. Which subnet mask will meet these requirements?

a. 255.255.224.0

b. 255.255.240.0

c. 255.255.255.224

d. 255.255.255.240

Answers

Answer:255.255.255.224

Explanation:

/20 has a subnet mask of 255.255.240.0

We have 20 on bits for the network and 16 off bits for the host. Since the designer wants 20 to 30 hosts in each subnet we will be having 5 off bits for the host. Therefore we will be having a /27..

Which will be 255.255.255.224

Final answer:

The suitable subnet mask for creating subnets with 20-30 hosts within the 10.0.240.0/20 network is 255.255.255.224 or /27, which allows for 32 IP addresses, 30 of which can be used for hosts.

Explanation:

The correct subnet mask to meet the requirement for new subnets that support between a minimum of 20 hosts and a maximum of 30 hosts within the 10.0.240.0/20 network is 255.255.255.224 or /27. This subnet mask allows for 32 IP addresses per subnet, with 30 usable addresses for hosts when excluding the network and broadcast addresses. Subnet masks 255.255.224.0 and 255.255.240.0 provide too many hosts per subnet, and subnet mask 255.255.255.240 or /28 provides only 16 IP addresses, which would be insufficient for the required minimum of 20 hosts.

A pelican flying along a horizontal path drops a fish from a height of 4.7 m. The fish travels 9.3 m horizontally before it hits the water below. What was the pelican’s initial speed? The acceleration of gravity is 9.81 m/s 2 . Answer in units of m/s. If the pelican was traveling at the same speed but was only 1.5 m above the water, how far would the fish travel horizontally before hitting the water below?

Answers

Answer:

(A) 9.5 m/s

(B) 5.225 m

Explanation:

vertical height (h) = 4.7 m

horizontal distance (d) = 9.3 m

acceleration due to gravity (g) = 9.8 m/s^{2}

initial speed of the fish (u) = 0 m/s

(A) what is the pelicans initial speed ?

lets first calculate the time it took the fish to fall

s = ut + [tex](\frac{1}{2}) at^{2}[/tex]

since u = 0

s =  [tex](\frac{1}{2}) at^{2}[/tex]

t = [tex]\sqrt{\frac{2s}{a} }[/tex]

where a = acceleration due to gravity and s = vertical height

t = [tex]\sqrt{\frac{2 x 4.7 }{9.8} }[/tex] = 0.98 s

pelicans initial speed = speed of the fish

speed of the fish = distance / time = 9.3 / 0.98 = 9.5 m/s

initial speed of the pelican = 9.5 m/s

(B) If the pelican was traveling at the same speed but was only 1.5 m above the water, how far would the fish travel horizontally before hitting the water below?

vertical height = 1.5 m

pelican's speed = 9.5 m/s

lets also calculate the time it will take the fish to fall

s = ut + [tex](\frac{1}{2}) at^{2}[/tex]

since u = 0

s =  [tex](\frac{1}{2}) at^{2}[/tex]

t = [tex]\sqrt{\frac{2s}{a} }[/tex]

where a = acceleration due to gravity and s = vertical height

t = [tex]\sqrt{\frac{2 x 1.5 }{9.8} }[/tex] = 0.55 s

 

distance traveled by the fish = speed x time = 9.5 x 0.55 = 5.225 m

Final answer:

The initial speed of the pelican is 9.6 m/s. If the pelican is flying at the same speed but only 1.5 m above the water, the fish will travel approximately 5.3m horizontally before it hits the water.

Explanation:

We can begin by solving for the time the fish takes to hit the water. Using the equation of motion, h = 0.5gt², where h represents height and g represents the acceleration due to gravity, we find it takes approximately 0.97 seconds for the fish to hit the water. During this time, the fish has traveled 9.3m horizontally. Therefore, the initial speed of the pelican can be determined by v = d/t, which gives us a value of 9.6 m/s.

Next, if the initial speed remained the same, but the height was reduced to 1.5 meters, we can use the same process. The time it would take for the fish to hit the water would be approximately 0.55 seconds (obtained from the equation h = 0.5gt²), and using this time in the equation v = d/t, we find the fish would travel approximately 5.3m horizontally before it hits the water.

Learn more about Initial Speed and Trajectory here:

https://brainly.com/question/34925037

#SPJ3

According to the second law of thermodynamics, the disorder of a system always decreases. 1. True 2. False

Answers

Answer:

2. False

Explanation:

Entropy can be interpreted as a measure of the random distribution of a system. According to the second law of thermodynamics a system in an unlikely condition will have a natural tendency to reorganize itself to a more probable condition, this reorganization will result in an increase in entropy (disorder).

"According to the Navigation Rules, what factor should be considered in determining a safe speed?

Answers

Answer:

Visibility conditions.

Explanation:

Safe speed is a speed at which the operator of the boat can take effective action to avoid stops within the distance. To calculate the safe speed visibility conditions (fog, rain, mist, and darkness) should be included. We should also include some other factors given below:

i) Traffic density

ii) Type of vessels in the area

iii) Wind

iv) Water conditions  

Final answer:

The Navigation Rules dictate that a safe speed is determined by factors such as visibility, traffic density, vessel maneuverability, weather conditions, and proximity to navigational hazards.

Explanation:

According to the Navigation Rules, several factors should be taken into account in determining a safe speed. These include the visibility, the traffic density, the maneuverability of the vessel in immediate circumstances, the state of wind, sea, and current, and the proximity of navigational hazards. For example, on a clear day with sparse traffic and calm seas, higher speeds might be safe. However, in heavy traffic or poor visibility, the navigation rules would call for lower speeds to ensure safety.

Learn more about Navigation Rules here:

https://brainly.com/question/32157646

#SPJ11

Bird bones have air pockets in them to reduce their weight–this also gives them an average density significantly less than that of the bones of other animals. suppose an ornithologist weighs a bird bone in air and in water and finds its mass is 43.0 g and its apparent mass when submerged is 3.60 g (the bone is watertight).a. what mass of water is displaced? b. what is the volume of the bone? c. what is its average density?

Answers

Answer:

39.4 g

39.4 cm³

1.09137 g/cm³

Explanation:

[tex]\rho[/tex] = Density of water = 1 g/cm³

Mass of water displaced will be the difference of the

[tex]m=43-3.6\\\Rightarrow m=39.4\ g[/tex]

Mass of water displaced is 39.4 g

Density is given by

[tex]\rho=\dfrac{m}{v}\\\Rightarrow v=\dfrac{m}{\rho}\\\Rightarrow v=\dfrac{39.4}{1}\\\Rightarrow v=39.4\ cm^3[/tex]

So, volume of bone is 39.4 cm³

Average density of the bird is given by

[tex]\rho=\dfrac{43}{39.4}\\\Rightarrow \rho=1.09137\ g/cm^3[/tex]

The average density is 1.09137 g/cm³

A stubborn 130 kg pig sits down and refuses to move. To drag the pig to the barn, the exasperated farmer ties a rope around the pig and pulls with his maximum force of 800 NN. The coefficients of friction between the pig and the ground are μs=0.80μs=0.80 and μk=0.50μk=0.50.

Answers

Answer:

Explanation:

Given

mass [tex]m=130 kg[/tex]

Force [tex]F=800 N[/tex]

coefficient of static friction [tex]\mu _s=0.8[/tex]

coefficient of static friction [tex]\mu _k=0.5[/tex]

maximum Static Friction will be given by

[tex]F_s=\mu _smg[/tex]

[tex]F_s=0.8\times 130\times 10=1040 N[/tex]

initially  we need to provide a force of 1040 N to move the Pig . As soon Pig starts moving kinetic friction will come into play.

But maximum force is less than Maximum static friction force so it is impossible to move pig.

                               

Answer:

C

Explanation:

The distance that the pig moves up will be less than the distance that the strongman pulls down.

Explanation: The strongman is further from the fulcrum than the pig is, so the distance that he pulls down will be greater than the distance that the pig moves up.

A stationary source S generates circular outgoing waves on a lake. The wave speed is 5.0 m/s and the crest-to-crest distance is 2.0 m. A person in a motorboat heads directly toward S at 3.0 m/s. To this person, the frequency of these waves is:

Answers

Answer:4 Hz

Explanation:

Speed of wave [tex]v=5 m/s[/tex]

crest to crest distance [tex]\lambda =2 m[/tex]

velocity of observer [tex]v_0=3 m/s[/tex]

actual frequency [tex]f=\frac{velocity}{\lambda }[/tex]

[tex]f=\frac{5}{2}=2.5 Hz[/tex]

Apparent frequency [tex]f'=f(\frac{v+v_0}{v})[/tex]

[tex]f'=2.5\times \frac{5+3}{5}[/tex]

[tex]f'=4 Hz[/tex]      

The frequency of these waves is 4hz.

Given information:

The wave speed is 5.0 m/s and the crest-to-crest distance is 2.0 m. Alo, A person in a motorboat head directly toward S at 3.0 m/s.

Calculation of wave frequency:

The actual frequency is [tex]= 5 \div 2[/tex] = 2.5Hz

Now

Apparent frequency is

[tex]= 2.5 \times (5 + 3) \div 5[/tex]

= 4hz

Hence, the frequency of these waves is 4hz.

Find out more information about the  Speed here ;brainly.com/question/7359669?referrer=searchResults

which cruising altitude is appropriate for vfr flight on a magnetic course of 135°

Answers

Answer:odd thousands plus 500 feet.

Explanation:

On a magnetic course of zero through 179 degrees, select an odd thousand foot cruising altitude plus 500 feet, such as 3,500, 5,500, up to and including 17,500. Even and odd thousands are reserved for those aircraft on an active instrument flight plan. Even thousands plus 500 feet are for aircraft flying between 180 and 359 degrees.

Two technicians are discussing oil leaks. Technician A says that an oil leak can be found using a fluorescent dye in the oil with a black light to check for leaks. Technician B says a white spray powder can be used to locate oil leaks. Which technician is correct?a. Technician A only
b. Technician B only
c. Both Technicians A and B
d. Neither Technician A nor B

Answers

Answer:

B

Explanation:

cause it makes the most sence

A train traveled from Station A to Station B at an average speed of 80 kilometers per hour and then from Station B to Station C at an average speed of 60 kilometers per hour. If the train did not stop at Station B, what was the average speed at which the train traveled from Station A to C?
(1) The distance that the train traveled from Station A to Station B was 4 times the distance that train traveled from Station B to Station C.
(2) The amount of time it took to the train to travel from Station A to Station B is 3 times the amount of time that it took the train to travel from Station B to Station C.

Answers

Answer:

1)

75 kmh⁻¹

2)

75 kmh⁻¹

Explanation:

1)

[tex]v_{ab}[/tex] = Speed of train from station A to station B = 80 kmh⁻¹

[tex]d_{ab}[/tex] = distance traveled from station A to station B

[tex]t_{ab}[/tex] = time of travel between station A to station B

we know that

[tex]Time = \frac{distance}{speed}[/tex]

[tex]t_{ab} = \frac{d_{ab}}{v_{ab}} = \frac{d_{ab}}{80}[/tex]

[tex]d_{bc}[/tex] = distance traveled from station B to station C

[tex]v_{bc}[/tex] = Speed of train from station B to station C = 60 kmh⁻¹

[tex]t_{bc} = \frac{d_{bc}}{v_{bc}} = \frac{d_{bc}}{60}[/tex]

Total distance traveled is given as

[tex]d = d_{ab} + d_{bc}[/tex]

Total time of travel is given as

[tex]t = t_{ab} + t_{bc}[/tex]

Average speed is given as

[tex]v_{avg} = \frac{d}{t} \\v_{avg} = \frac{d_{ab} + d_{bc}}{t_{ab} + t_{bc}}\\v_{avg} = \frac{d_{ab} + d_{bc}}{(\frac{d_{ab}}{80} ) + (\frac{d_{bc}}{60} ) }[/tex]

Given that :

[tex]d_{ab} = 4 d_{bc}[/tex]

So

[tex]v_{avg} = \frac{4 d_{bc} + d_{bc}}{(\frac{4 d_{bc}}{80} ) + (\frac{d_{bc}}{60} ) }\\v_{avg} = \frac{4 + 1}{(\frac{4 }{80} ) + (\frac{1}{60} ) }\\v_{avg} = 75 kmh^{-1}[/tex]

2)

[tex]v_{ab}[/tex] = Speed of train from station A to station B = 80 kmh⁻¹

[tex]t_{ab}[/tex] = time of travel between station A to station B

[tex]d_{ab}[/tex] = distance traveled from station A to station B

we know that

[tex]distance = (speed) (time)[/tex]

[tex]d_{ab} = v_{ab} t_{ab}\\d_{ab} = 80 t_{ab}[/tex]

[tex]d_{bc}[/tex] = distance traveled from station B to station C

[tex]v_{bc}[/tex] = Speed of train from station B to station C = 60 kmh⁻¹

[tex]t_{bc}[/tex] = time of travel for train from station B to station C

we know that

[tex]distance = (speed) (time)[/tex]

[tex]d_{bc} = v_{bc} t_{bc}\\d_{bc} = 60 t_{bc}[/tex]

Total distance traveled is given as

[tex]d = d_{ab} + d_{bc}\\d = 80 t_{ab} + 60 t_{bc}[/tex]

Total time of travel is given as

[tex]t = t_{ab} + t_{bc}[/tex]

Average speed is given as

[tex]v_{avg} = \frac{d}{t} \\v_{avg} = \frac{d_{ab} + d_{bc}}{t_{ab} + t_{bc}}\\v_{avg} = \frac{80 t_{ab} + 60 t_{bc}}{t_{ab} + t_{bc}}[/tex]

Given that :

[tex]t_{ab} = 3 t_{bc}[/tex]

So

[tex]v_{avg} = \frac{80 t_{ab} + 60 t_{bc}}{t_{ab} + t_{bc}}\\v_{avg} = \frac{80 (3) t_{bc} + 60 t_{bc}}{(3) t_{bc} + t_{bc}}\\v_{avg} = \frac{(300) t_{bc}}{(4) t_{bc}}\\v_{avg} = 75 kmh^{-1}[/tex]

A rock that has deformed ____ under stress keeps its new shape when the stress is released.

Answers

Answer:

Elastically

Explanation:

A rock that has deformed Elastically under stress keeps its new shape when the stress is released.

In elastic deformation the original shape of the object is regained when the stress is removed. Whereas in plastic deformation the original shape is parmanently deformed with the application of stress.

Final answer:

A rock that deforms plastically under stress will retain its new shape when the stress is released, indicating it has surpassed its yield point.

Explanation:

A rock that has deformed plastically under stress will keep its new shape when stress is released. When rocks are subjected to stress, they can undergo elastic, brittle, or plastic deformation. In the elastic state, rocks, like a rubber band, will return to their original shape once the imposed stress is removed, provided the stress does not exceed the elastic limit of the rocks. Beyond this limit, the material will experience plastic deformation, leading to a permanent change in shape as mineral bonds break, shift, and reform.

This behavior depends on several factors, including stress type, rock type, depth, and environmental conditions (pressure and temperature). At greater depths, where the conditions are high pressure and temperature, rocks are more likely to deform plastically. Furthermore, when rocks exhibit plastic deformation, it indicates they have gone past their yield point and will not revert to their original form even if the stress is no longer applied.

A ball is dropped from rest and falls to the floor. The initial gravitational potential energy of the ball-Earth-floor system is 10 J. The ball then bounces back up to a height where the gravitational potential energy is 7 J. What was the mechanical energy of the ball-Earth-floor system the instant the ball left the floor?

Answers

The mechanical energy of the ball-Earth-floor system at the instant when the ball left the floor is of 7 J.

What is Mechanical Energy?

At any instant, the energy of an object by virtue of its motion or position is known as the mechanical energy of the object. In other words, mechanical energy is either the potential energy or the kinetic energy at any time instant.

Given data -

The initial gravitational potential energy is, U = 10 J.

The final gravitational potential energy is, U' = 7 J.

Now, considering the given case when the ball loses energy in the rebound due to ball deformation, heat loss from the bounce. The total mechanical energy is not conserved so mechanical energy as it bounces off the floor is equal to transformed potential energy at a maximum height of second bounce which is 7 J.

Thus, we can conclude that the mechanical energy of the ball-Earth-floor system at the instant when the ball left the floor is of 7 J.

Learn more about the gravitational potential energy here:

https://brainly.com/question/10188030

how do the wavelengths of electromagnetic energy absorbed by materials on earth compare?

Answers

Explanation:

The shorter wavelength electromagnetic waves from sun are absorbed by earth material in form of short wavelength and the radiated wavelength are longer ones. Also higher energy waves are of shorter wavelength and lower energy waves have longer wavelength. So, they are absorbed as short wavelength and radiated back as long wavelength.

The temperature inside a vehicle can rise ____ degrees higher than the outside temperature.

Answers

Answer:

Generally, 40 to 50 degrees

Explanation:

About the heat-up over time, whether the windows of a vehicle are locked or partially open makes very little difference. In both situations, in an internal temperature of a vehicle, even at an outside temperature of only 72 ° F, it may exceed approximately 40 ° F within one hour. This happens mainly due to the greenhouse effect that is the heat inside the car is trapped and not allowed to escape. Thus, raising the temperature of the vehicle.

Final answer:

The greenhouse effect causes the temperature inside a parked car to be much higher than outside, sometimes 20 to 30 degrees higher, due to sunlight being trapped as heat.

Explanation:

The temperature inside a vehicle can rise significantly higher than the outside temperature due to a phenomenon known as the greenhouse effect. When a car is parked in the sun with windows closed, the sunlight passes through the glass and is absorbed by interior surfaces such as dashboard and seats. These surfaces then emit infrared radiation, which cannot escape back through the glass, and consequently, the trapped heat raises the temperature of the air inside the car. This effect can cause interior temperatures to be much higher—often 20 to 30 degrees higher—than the external air temperature.

The drawing shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.70 m², while surface (2) has an area of 4.00 m². The electric field in the drawing is uniform and has a magnitude of 210 N/C. Find the magnitude of the electric flux through surface (1) if the angle θ made between the electric field with surface (2) is 34.0°.

Answers

Answer:

Ф1=295.96Nm^2/C

 Ф2=469.73Nm^2/C

Explanation:

The drawing shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.70 m², while surface (2) has an area of 4.00 m². The electric field in the drawing is uniform and has a magnitude of 210 N/C. Find the magnitude of the electric flux through surface (1) if the angle θ made between the electric field with surface (2) is 34.0

 we have two surfaces where we know angle of surface 1 lets call it

s1= 34.

Therefore to find s2

s2 (the angle from surface 2) we have that

s2=180-(90+s1),

so s2=180-(90+34),

thus s2=56 degrees.

Flux equation reads as Φ=ΕΑ,

where Φ is the flux,

E is the electric field and

A is the surface area.

So with respect to the angles and the figure provided,

we have Φ=EAcos(s).

So we can solve further by writing

. For Surface 1 we have

Φ1=EAcos(s1)=210 x 1.7 x cos 34,

so Φ1=295.96,

approximately to an whole number

Φ1=296 Nm^2/c.

Similarly for Φ2, we have

Φ2=EAcos(s2)

=210 x 4 x cos34=469.7,

thus Φ2=469.7Nm^2/c.

 

 

A mass resting on a shelf 10.0 meters above the floor has a gravitational potential energy of 980. joules with respect to the floor. The mass is moved to a shelf 8.00 meters above the floor. What is the new gravitational potential energy of the mass?
a. 960. J
b. 784 J
c. 490. J
d. 196 J

Answers

Answer:

New potential energy will be 784 J

So option (b) will be correct answer

Explanation:

We have given height of the shelf h = 10 m

Potential energy E = 980 J

Acceleration due to gravity [tex]g=9.8m/sec^2[/tex]

We know that potential energy [tex]E=mgh[/tex]

So [tex]980=m\times 9.8\times 10[/tex]

m = 10 kg

Now new height h = 8 m

So new potential energy [tex]E=mgh=10\times 9.8\times 8=784J[/tex]

So option (B) will be the correct answer

Answer:

option (b) is correct.

Explanation:

h1 = 10 m

U 1 = 980 J

Let mg be weight of mass.

U1 = m x g x h1

980 = mg x 10

mg = 98

Now h = 8 m

U2 = mg x h = 98 x 8

U2 = 784 J

thus, the potential energy is 784 J.

The rumble feature on a video game controller is driven by a device that turns electrical energy into mechanical energy. This device is best referred to as

Answers

Answer:

MOTOR

Explanation:

The device which changes electrical energy into mechanical energy is known as motor

Loops of wire in a magnetic field make up motors. The magnetic field produces a torque on the loops when current flows through them, turning a shaft as a result.

What is electric motor?

Electrical energy is transformed into mechanical energy by electric motors. When we turn on the fan, for instance, the electric motor begins to transform the electrical energy into mechanical energy.

The fan blades then begin whirling as a result of the mechanical energy, giving them the capacity to perform work.

On either side of the controller, there is a motor. This engine has an uneven weight linked to it.

This indicates that one side of it is heavier than the other. The imbalance of the weight causes the controller to vibrate when the motor turns.

Therefore, Mechanical work is created as a result of the conversion of electrical energy.

Learn more about electric motor here:

https://brainly.com/question/8974674

#SPJ2

A sample of a gas (5.0 mol) at 1.0 atm is expanded at constant temperature from 10 L to 15 L. The final pressure is __________ atm. A sample of a gas (5.0 mol) at 1.0 atm is expanded at constant temperature from 10 L to 15 L. The final pressure is __________ atm. 1.5 7.5 0.67 3.3 15

Answers

Answer:

The final pressure will be 0.67 atm.

Explanation:

Using Boyle's law  

[tex] {P_1}\times {V_1}={P_2}\times {V_2}[/tex]

Given ,  

V₁ = 10 L

V₂ = 15 L

P₁ = 1.0 atm

P₂ = ?

Using above equation as:

[tex]{P_1}\times {V_1}={P_2}\times {V_2}[/tex]

[tex]{1.0}\times {10}={P_2}\times {15} atm[/tex]

[tex]{P_2}=\frac{{1.0}\times {10}}{15} atm[/tex]

[tex]{P_2}=0.67\ atm[/tex]

The final pressure will be 0.67 atm.

Answer:

A sample of a gas (5.0 mol) at 1.0 atm is expanded at constant temperature from 10 L to 15 L. The final pressure is 0.67 atm.

Explanation:

Boyle's law states that in constant temperature the  variation volume of gas is inversely proportional to the applied pressure.

The formula is,

[tex]\rm \bold{ P_1\times V_1= P_2\times V_2}[/tex]

Where,

[tex]\rm \bold P_1[/tex] is initial pressure = 1 atm

[tex]\rm \bold P_2[/tex] is final pressure =  ? (Not Known)

[tex]\rm \bold V_1[/tex] is initial volume  = 10 L

[tex]\rm \bold V_2[/tex] is final volume = 15 L

Now put the values in the formula,

[tex]\rm 1\times 10 = P_2\times 15\\\\\rm P_2 = \frac{10}{15\\} \\\\\rm P_2 = 0.67[/tex]

Therefore, the answer is 0.67 atm.

For more details, you can refer to the link:

https://brainly.com/question/4109864?referrer=searchResults

You must dim your high beams for oncoming vehicles by the time they are within 500 feet of your vehicle.

Answers

Answer:

True

Explanation:

when oncoming vehicle driver is at a distance of 500 feet from you, then it is advisable to dim your high beam light so that it cannot blind oncoming vehicle driver. However, of the oncoming driver is at 200 to 300 ft then you must use low beam light so to pass the oncoming driver safely from your side. Hence the statement is true.

A sample of radiosodium () has a half-life of 15 hr. If the sampleâs activity is 100 millicuries after 24 hr, approximately what must its original activity have been?

Answers

Answer : The original activity will be, 303 millicuries.

Explanation :

Half-life = 15 hr

First we have to calculate the rate constant, we use the formula :

[tex]k=\frac{0.693}{t_{1/2}}[/tex]

[tex]k=\frac{0.693}{15hr}[/tex]

[tex]k=4.62\times 10^{-2}\text{ hr}^{-1}[/tex]

Now we have to calculate the time passed.

Expression for rate law for first order kinetics is given by:

[tex]t=\frac{2.303}{k}\log\frac{a}{a-x}[/tex]

where,

k = rate constant  = [tex]4.62\times 10^{-2}\text{ hr}^{-1}[/tex]

t = time passed by the sample  = 24 hr

a = initial amount of the reactant  = ?

a - x = amount left after decay process = 100 millicuries

Now put all the given values in above equation, we get

[tex]24=\frac{2.303}{4.62\times 10^{-2}}\log\frac{a}{100}[/tex]

[tex]a=302.97\text{ millicuries}\approx 303\text{ millicuries}[/tex]

Therefore, the original activity will be, 303 millicuries.

When testing an PNP transistor with an ohmmeter, what are the high or low resistance values expected for a good transistor?

Answers

Answer:

0.45 V and 0.9 V.

Explanation:

To test a PNP transistor with an ohmmeter,

Plug the positive lead from the multimeter to the transistor EMITTER (E). Plug the negative meter into the transistor BASE (B). If you are using a PNP resistor you must watch OL that is over limit, the voltage decrease will indicate between 0.45V and 0.9V if you are measuring it.

Final answer:

Testing a PNP transistor with an ohmmeter should yield high resistance values when the base is negative relative to the emitter or collector, and low resistance values when the base is positive relative to the emitter or collector.

Explanation:

When testing a PNP transistor with an ohmmeter, the high or low resistance values that are expected for a good transistor are as follows: When you measure between the base and the emitter or collector, you should see a high resistance value (in the range of megaohms) if the base is negative with respect to the emitter or collector. Conversely, you should see a low resistance value (in the range of a few hundred Ohms) when the base is positive with respect to the emitter or collector.

Learn more about PNP Transistor Testing here:

https://brainly.com/question/37173137

#SPJ3

When the following equation is balanced, the sum of all the coefficients is ____________. CO + NO → CO2 + N2.

Answers

Answer:

7

Explanation:

The balanced reaction is as follows:

[tex]2CO+2NO \rightarrow 2CO_2 + N_2[/tex]

Coefficient of CO = 2

Coefficient of NO = 2

Coefficient of CO2 = 2

Coefficient of N2 = 1

Sum of all coefficient = 2 + 2+ 2+ 1

                                    = 7

A child pushes horizontally on a box of mass m which moves with constant speed v across a horizontal floor. The coefficient of friction between the box and the floor is μ. At what rate does the child do work on the box?

Answers

Answer:

Rate of child doing work on box = μmgv (Unit is Watt)

Explanation:

Rate of child doing work on box = Work done / time = Power  

Power = Horizontal force x Velocity

We are aware that the Velocity in this case is v.

As the object is moving with constant velocity, the acceleration would be zero and the applied horizontal force will be equal to friction force. So in our case,  

Horizontal force = friction force

We know that the coefficient of friction is the ratio of friction force to Normal force,

μ = friction force / Normal force

Normal Force = mg,  where m is the mass and g is the gravitational acceleration

Friction force = μ x Normal Force

Friction force = μmg

Power = μmgv (Unit of power is Watt)

Answer:

P = μ*mg*v

Explanation:

A child pushes horizontally on a box of mass m which moves with constant speed v across a horizontal floor. The coefficient of friction between the box and the floor is μ.  The rate at which the child works is calculated as shown below:

mass of the box = m; coefficient of friction is μ; speed = v.

In order to push the box, the child must exert a force equal to or more than the frictional force.

force = coefficient of friction*weight of the box

f = μ*mg

In addition, to calculate the rate of work (i.e. power). We have:

Power = force*velocity (or speed)

Therefore:

P = μ*mg*v

With each bounce off the floor, a tennis ball loses 11% of its mechanical energy due to friction. When the ball is released from a height of 3.4 m above the floor, what height will it reach after the third bounce?

240 mm

240 cm

24 cm

270 cm

Answers

Answer:

240 cm

Explanation:

Gradpoint

Poiseuille's law remains valid as long as the fluid flow is laminar. For sufficiently high speed, however, the flow becomes turbulent, even if the fluid is moving through a smooth pipe with no restrictions. It is found experimentally that the flow is laminar as long as the Reynolds Number Re is less than about 2000: Re = 2v Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 rhoR Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /η. Here Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 v, rho, and η are, respectively, the average speed, density, and viscosity of fluid, and R is the radius of the pipe. Calculate the highest average speed that blood (rho = 1060 kg/m3, η = 4.0 x 10-3 Pa.s) could have and still remain in laminar flow when it flows through the aorta (R = 8.0 x 10-3 m)


Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4

Answers

Answer: 0.471 m/s

Explanation:

We are given the followin equation:

[tex]Re=\frac{D v \rho}{\eta}[/tex] (1)

Where:

[tex]Re[/tex] is the Reynolds Number, which is adimensional and indicates if the flow is laminar or turbulent

When [tex]Re<2100[/tex] we have a laminar flow

When [tex]Re>4000[/tex] we have a turbulent flow

When [tex]2100<Re<4000[/tex] the flow is in the transition region

[tex]D=2R[/tex] is the diameter of the pipe. If the pipe ha a radius [tex]R=8(10)^{-3} m[/tex] its diameter is [tex]D=2(8(10)^{-3} m)=0.016 m[/tex]

[tex]v[/tex] is the average speed of the fluid

[tex]\rho=1060 kg/m^{3}[/tex] is the density of the fluid

[tex]\eta=4(10)^{-3} Pa.s[/tex] is the viscosity of the fluid

Isolating [tex]v[/tex]:

[tex]v=\frac{Re \eta}{D \rho}[/tex] (2)

Solving for [tex]Re=2000[/tex]

[tex]v=\frac{(2000)(4(10)^{-3} Pa.s)}{(0.016 m)(1060 kg/m^{3})}[/tex] (3)

Finally:

[tex]v=0.471 m/s[/tex]

Calculate the heat required when 2.50 mol of a reacts with excess b and a2b according to the reaction: 2a + b + a2b → 2ab + a2 given: 2a + b → a2b δh°

Answers

Answer:

Q = 12.5 kJ

Explanation:

The expression to use to calculate Heat is:

Q = H° * n

Where:

Q: heat (J or kJ)

H°: enthalpy of reaction (kJ/mol)

n: moles

Now, as it was stated in the comments, the question is incomplete, and here is the missing part:

Given:

2A + B  A2B (1)

H° = – 25.0 kJ/mol

2A2B  2AB + A2 (2)

H° = 35.0 kJ/mol

With these two reactions, we can calculate the heat.

Now, with the above two reactions, we need to get the general reaction (The one the question is giving), so, let's use (1) and (2) and do the sum of them:

2A + B -------> A2B   H°1 = -25 kJ/mol

2A2B --------> 2AB + A2   H°2 = 35 kJ/mol

Now, we sum both equations, we can see that one A2B cancels out with one A2B from equation 2, so, the equation gives:

2A + B + 2A2B -------> 2AB + A2

And the enthalpy, it's just summed:

H°3 = -25 + 35 = 10 kJ/mol

Now with this value we can calculate heat:

Q = 10 * 2.5 = 25 kJ

However, in the reaction we have 2A, so it's not 1:1 mole ratio, but instead is 1:2, so this result we have to divide it between 2 so:

Q = 25 / 2 = 12.5 kJ

The heat required for the reaction is zero because the enthalpy changes for the two parts of the reaction cancel each other out.

To calculate the heat required for the reaction, we need to know the enthalpy change (ΔH°) for the reaction 2a + b → a2b. However, the enthalpy change for this reaction is not provided in the question. Assuming that the enthalpy change for this reaction is known, we can proceed with the calculation.

 Let's denote the enthalpy change for the reaction 2a + b → a2b as ΔH°. The reaction of interest is:

[tex]\[ 2a + b + a_2b \rightarrow 2ab + a_2 \][/tex]

 This reaction can be broken down into two parts:

1. The reaction of 2 moles of a with 1 mole of b to form 1 mole of a2b:

with an enthalpy change of H°.

[tex]\[ 2a + b \rightarrow a_2b \][/tex]

2. The reaction of 1 mole of a2b to form 2 moles of ab:

[tex]\[ a_2b \rightarrow 2ab \][/tex]

Since the reaction of a2b to form 2ab does not involve any additional reactants, it can be considered as the reverse of the first part, but with twice the amount of ab produced. Therefore, the enthalpy change for this part would be -H° (since the reverse reaction has the opposite sign of the forward reaction), and for 1 mole of a2b reacting, it would be -2ΔH° (because 2 moles of ab are formed).

Now, we are given 2.50 moles of a, and we assume there is excess b and a2b. The reaction will proceed until all of a is consumed. Since the reaction stoichiometry is 2 moles of a to 1 mole of a2b, 1.25 moles of a2b will be required to react with the 2.50 moles of a (since 2.50 moles of a require 1.25 moles of a2b).

The overall enthalpy change for the reaction will be the sum of the enthalpy changes for the two parts:

 1. For the reaction of 2.50 moles of a with b to form a2b:

[tex]\[ \Delta H_1 = 2.50 \text{ moles} \times \Delta H^\circ \][/tex]

2. For the reaction of 1.25 moles of a2b to form ab:

[tex]\[ \Delta H_2 = 1.25 \text{ moles} \times (-2 \Delta H^\circ) \][/tex]

The total enthalpy change (ΔH_total) is the sum of ΔH_1 and ΔH_2:

[tex]\[ \Delta H_{\text{total}} = \Delta H_1 + \Delta H_2 \][/tex][tex]\[ \Delta H_{\text{total}} = 2.50 \Delta H^\circ - 2 \times 1.25 \Delta H^\circ \][/tex]

[tex]\[ \Delta H_{\text{total}} = 2.50 \Delta H^\circ - 2.50 \Delta H^\circ \][/tex]

[tex]\[ \Delta H_{\text{total}} = 0 \][/tex]

 Surprisingly, the total enthalpy change for the reaction is zero. This is because the amount of heat released in the formation of a2b is exactly equal to the amount of heat absorbed in the formation of ab from a2b. Therefore, no additional heat is required for the overall reaction to proceed.

 The final answer is:  [tex]\[ \boxed{0} \][/tex]

The heat required for the reaction is zero because the enthalpy changes for the two parts of the reaction cancel each other out. This conclusion is based on the assumption that the enthalpy change for the reaction 2a + b → a2b is known and that the reaction proceeds as written. If the enthalpy change for the formation of a2b is not known, then it would be necessary to look up the standard enthalpy of formation for a2b to perform the calculation.

The population of weights for men attending a local health club is normally distributed with a mean of 171-lbs and a standard deviation of 29-lbs. An elevator in the health club is limited to 35 occupants, but it will be overloaded if the total weight is in excess of 6510-lbs.Assume that there are 35 men in the elevator. What is the average weight beyond which the elevator would be considered overloaded?

Answers

Answer:

186 lbs per man.

Explanation:

If we assume that we have 35 men in the elevator, and the elevator will be overloaded if the total weight is in excess of 6510-lbs, so we just need to take average:

6510 lbs / 35 = 186 lbs per man.

Have a nice day!

A student releases a block of mass m at the top of a slide of height h1. the block moves down the slide and off the end of the table of height h2, landing on the floor a horizontal distance d from the edge of the table. Friction and air resistance are negligible. The overall height H of the setup is determined by the height of the room. Therefore, if h1 is increased, h2 must decrease by the same amount so that the sum h1+h2 remains equal to H. The student wants to adjust h1 and h2 to make d as large as possible.

A) 1) Without using equations, explain why making h1 very small would cause d to be small, even though

h2 would be very large?
2) Without using equations, explain why making h2 very small would cause d to be small, even though
h1 would be large

B) Derive an equation for d in terms of h1, h2, m, and physical constants as appropriate.

Answers

A1) The reason why making h₁ very small would cause d to be small is; Because the horizontal component of the launch velocity would be very small.

A2) The reason why making h₂ very small would cause d to be small is;

Because the time of flight it will take the object to get to the floor would be very small and as a result, the object would not possess enough time to move horizontally before the vertical motion.

B) The equation for d in terms of h₁ and h₂ is;

d = 2√(h₁ × h₂)

A) 1) The reason why making h₁ very small would cause d to be small is because the horizontal component of the launch velocity would be very small.

A) 2) The reason why making h₂ very small would cause d to be small is because the time of flight it will take the object to get to the floor would be very small and as a result, the object would not possess enough time to move horizontally before the vertical motion.

B) Formula for Launch Velocity is;

V = √(2gh₁)

h₁ was used because the top of the slide from where the student released the block has a height of h₁.

Also, the time it takes to fall which is time of flight is given by the formula;

t = √(2h₂/g)

h₂ was used because the height of the table the object is on before falling is h₂.

Now, we know that d is distance from edge of the table and formula for distance with respect to speed and time is;

distance = speed × time

Thus;

d = √(2gh₁) × √(2h₂/g)

g will cancel out and this simplifies to give;

d = 2√(h₁ × h₂)

Read more at; https://brainly.com/question/20427663

(A)

(1)  The reason for making [tex]h_{1}[/tex] very small is due to smaller value of horizontal component of launch velocity.

(2) The reason for making [tex]h_{2}[/tex] very small is due to smaller value of time of flight.

(B) The distance (d) covered by the block is  [tex]2\sqrt{h_{1}h_{2}}[/tex].

Given data:

The mass of block is, m.

The height of table from the top of slide is,  [tex]h_{1}[/tex].

The height of table at the end of slide is, [tex]h_{2}[/tex].

The height of room is, H.

(A)

(1)

If the launch velocity of the block is v, then its horizontal component is very small, due to which adjusting the height  [tex]h_{1}[/tex]  to be very small will cause the d to be small.

(2)

The height  [tex]h_{2}[/tex]  is dependent on the time of flight, and since the time of flight taken by the block to get to the floor is very less, therefore the block will not get sufficient time to accomplish its horizontal motion. That is why making [tex]h_{2}[/tex] very small will cause d to be smaller.

(B)

The expression for the distance covered by the block is,

[tex]v=\dfrac{d}{t}\\d = v \times t[/tex] ..............................(1)

Here, v is the launch speed of block and t is the time of flight.

The launch speed is,

[tex]v^{2}=u^2+2gh_{1}\\v=\sqrt{u^2+2gh_{1}}\\v=\sqrt{0^2+2gh_{1}}\\v=\sqrt{2gh_{1}}[/tex]

And the time of flight is,

[tex]h_{2}=ut+\dfrac{1}{2}gt^{2}\\h_{2}=0 \times t+\dfrac{1}{2}gt^{2}\\h_{2}=0+\dfrac{1}{2}gt^{2}\\t=\sqrt\dfrac{2h_{2}}{g}[/tex]

Substituting the values in equation (1) as,

[tex]d = v \times t\\d = \sqrt{2gh_{1}}\times \sqrt\dfrac{2 h_{2}}{g}}\\d=2\sqrt{h_{1}h_{2}}[/tex]

Thus, the distance (d) covered by the block is  [tex]2\sqrt{h_{1}h_{2}}[/tex].

Learn more about the time of flight here:

https://brainly.com/question/17054420?referrer=searchResults

the decimal reduction time (DRT) is the time it takes to kill 90% of cells present. Assume that a DRT value for autoclaving a culture is 1.5 minutes. How long would it take to kill all the cells if 10^6 cells were present? What would happen if you stopped the heating process at 9 minutes?

Answers

Answer:

It takes 10.5 minutes to kill all the bacteria.

Only 1 cell would remain after 9 minutes.

Explanation:

It will take 1.5 minutes to kill 90% of the cells. So, after 1.5 minutes, only 10% would remain. After 3 minutes, only 1% remain. So, to figure out how long it would take to kill a million cells, we have to multiply 1 million by 0.1 repeatedly until the final value is less than 1 that is because when the value is less than 1, it means there are no more bacteria.

So:  

[tex]10^6 \times (0.1)^7[/tex] = 0.1  

So, you need 10.5 minutes of killing to kill one million cells.

Time taken=  7 x 1.5 minutes = 10.5 minutes.  

After 9 minutes you would have:  

[tex]10^{6} \times (0.1)^{6}[/tex] = 1 cell left

Final answer:

The decimal reduction time (DRT) is the time it takes to kill 90% of cells present. If a DRT value for autoclaving a culture is 1.5 minutes, it means that it takes 1.5 minutes to kill 90% of the cells. To calculate how long it would take to kill all the cells if 10^6 cells were present, you can use the DRT value as a basis. If you stopped the heating process at 9 minutes, it means that you haven't reached the time required to kill 100% of the cells.

Explanation:

The decimal reduction time (DRT) is the time it takes to kill 90% of cells present. If a DRT value for autoclaving a culture is 1.5 minutes, it means that it takes 1.5 minutes to kill 90% of the cells. To calculate how long it would take to kill all the cells if 10^6 cells were present, you can use the DRT value as a basis. Since the DRT value represents the time it takes to kill 90% of the cells, you can calculate the time to kill 100% of the cells by dividing the DRT value by 90 and then multiplying it by 100. In this case, it would be as follows:

T = (1.5 minutes / 90) * 100 = 1.67 minutes

If you stopped the heating process at 9 minutes, it means that you haven't reached the time required to kill 100% of the cells. As a result, some cells would still be alive.

A 5.0-kg cannonball is fired over level ground with a velocity of 2.00 ⨯ 102 m/s at an angle of 25° above the horizontal. Just before it hits the ground its speed is 150 m/s. Over the entire trip, find the change in the thermal energy of the cannonball and air.

Answers

Answer:

E=147898.01J

Explanation:

A 5.0-kg cannonball is fired over level ground with a velocity of 2.00 ⨯ 102 m/s at an angle of 25° above the horizontal. Just before it hits the ground its speed is 150 m/s. Over the entire trip, find the change in the thermal energy of the cannonball and air

firstly , we look for the time of flight it takes to make the projectile path

T=2Usin∅/g

take g= 9.81m/s

T=2*200sin25/(9.81)

T=17.23Secs

energy is force *distance

E=f*d

f=m*g

f=5*9.81

f=49.05N

s=distance

s=(v+u)T/2

s=(150+200)17.23/2

s=3015.25m

49.05N*3015.25m

E=147898.01J

Other Questions
The nozzle bends the flow from vertically upward to 30 degrees with the horizontal as it discharges the water (at 20 degrees C) to the atmosphere at V = 125 ft/s. The volume of water within the nozzle itself (above the flange) is 100 lb. Find the horizontal and vertical forces that must be applied to the flange (by the pipe below it) to hold it in place.Area of flange = 1.0 ft^2Area of nozzle = 0.50 ft^2Volume of area above flange = 1.8 ft^3Vertical height from flange to nozzle = 2 ft Marcos has $24. Yaneliz has 1/6 of the amount of money Marcos has. Write an expression. Cannoli Corp. is the parent of its subsidiary, Carac Corp., and the corporations have filed consolidated tax returns since Year 3. In Year 4 Carac sells to Cannoli land worth $90,000 (basis $50,000) at a selling price of $90,000. In Year 6 Cannoli sells the land to an unrelated third party for $120,000, its fair market value at that time. What amount of gain is recognized on Cannoli and Caracs Year 4 and Year 6 consolidated tax returns, respectively? Year 4 Year 6 a) $0 $30,000 b) $40,000 $30,000 c) $90,000 $30,000 d) $0 $70,000 factor the polynomial completely x^2-x-20 I need some help with these 2 questions. The point (-4,0) is rotated 180 degrees counterclockwise using center (0,0). what are the coordinates of the image? les filler sont _____ les garcons. A) plus grande que B) moins grands que C) plus petit que D) plus grandes que In the United States, it is estimated that ____ of all companies allow employees to telework at least one day per week. Does anyone know this? The ___ value is the number of time units a programmed timer is programmed to count before timed contacts change state. A project costs $45,000 today, and will produce a single, one-time after tax cash flow of $330,000 in the future. What is the IRR of this project under each of the following scenarios? a. The future cash flow occurs in 5 years. b. The future cash flow occurs in 10 years. c. The future cash flow occurs in 15 years. d. The future cash flow occurs in 20 year Drosophila melanogaster, the fruit fly, has a 2n chromosome number of 8. Assuming that a somatic G2 nucleus contains about 8.0 picograms of DNA, how many picograms of nuclear DNA would you expect in: a) Mitotic metaphase b) a primary oocyte (metaphase) c) a secondary oocyte (metaphae) d) a first polar body (metaphase) how do i find the volume of these similar solids? round to the nearest tenth HELP A serving of food labeled reduced fat has at least 25% less fat and 25% fewer calories than a full-fat version of the same food.True or False? France, in addition to its occasional stabs at strategic trade policy, pursues an active nationalist cultural policy, promoting French art, music, fashion, cuisine, and so on. This may be primarily a matter of attempting to preserve a national identity in an increasingly homogeneous world, but some French officials also defend this policy on economic grounds. In what sense could some features of such a policy be defended as a kind of strategic trade policy? Let A = (0, 0), B = (8, 1), C = (5, 5), P = (0, 3), Q = (7, 7), and R = (1, 10). Prove that angles ABC and P QR have the same size. A mysterious white powder could be powdered sugar (C12H22O11), cocaine (C17H21NO4), codeine (C18H21NO3), norfenefrine (C8H11NO2), or fructose (C6H12O6). When 82 mg of the powder is dissolved in 1.50 mL of ethanol (d = 0.789 g/cm3, normal freezing point 114.6 C, Kf = 1.99 C/m), the freezing point is lowered to 115.5 C. What is the identity of the white powder? "Somehow the killing of the giant spider, all alone by himself in the dark without the help of the wizard of the dwarves or of anyone else, made a great difference to Mr. Baggins. He felt a different person, and much fiercer and bolder in spite of an empty stomach, as he wiped his sword on the grass and put it back into its sheath."How is this a significant moment for Bilbo?This quote is significant because it shows how Bilbo is growing as a hero. After killing the spider, he becomes more courageous and bold.This quote is significant because it shows how much of a coward Bilbo is in the story. After killing the spider, he becomes more timid.This quote is significant because it demonstrates how crazy Bilbo has become in Mirkwood. He has lost his mind and is speaking to his sword.This quote is significant because it shows Bilbo slowly turning evil. Using his sword to kill the spider is an example of how malicious he has become. Find the range of 4/3-t What is the best way to prevent the spread of infection Steam Workshop Downloader