Explanation:
Determine whether peoples from one populace will interbreed with people from the other populace when brought into one another's local environmentsAn animal category is a gathering of individual living beings that interbreed and produce fruitful, practical posterity. As indicated by this definition, one species is recognized from another when, in nature, it isn't feasible for matings between people from every specie to create prolific posterity Individuals from similar species share both outer and inward qualities that create from their DNA. The closer relationship two living beings share, the more DNA they share for all intents and purpose, much the same as individuals and their families. Individuals' DNA is probably going to be more similar to their father's or mother's DNA than their cousin's or grandparent's DNA. Living beings of similar species have the most significant level of DNA arrangement and, subsequently, share attributes and practices that lead to effective propagationAlmost half the birds in the yard were brown cardinals and the rest were bright red cardinals, so Jimmy perceived them as two distinct groups of birds. This best illustrates the principle of:__________.1. Connectedness2. Similarity3. Closure4. Relative clarity
Answer: Similarity
Explanation:
The similarity among the individuals can be defined as the principle in which the organism or object are separated based on criteria.
The criteria can be color, feature, similar process, et cetera. Here, the birds are separated based on the character of similarity on cardinal.
The similarity here is in the cardinal color of the bird. One of the cardinal color of birds is red and the other one is brown.
In the south of France mosquitoes can be a nuisance. As the economy is dependent in part on tourists, this can be problematic. So they spray insecticides to kill the mosquitoes. The heroic mosquitoes had an allele for a gene in their gene pool that resists the insecticide. The two graphs below show the frequency of the resistance allele in two different seasons and two different years. The x-axis is distance from the cost. Note, that spraying stops at about 20 km from the coast. Spraying only happens in the summer? Why might the allele frequency fall so quickly at the coast in the winter?
Select one:
a. Thee allele is advantageous when there is no spraying
b. There is a fitness cost to the allele, so as soon as selection for the allele stops, it's frequency drops.
c. Because there is no gene flow between the fall and summer mosquitoes, the allele will not be passed between them.
d. Genetic drift eliminates many mosquitoes because of spraying, so the allele frequency goes down.
Answer:
There is a fitness cost to the allele, so as soon as selection for the allele stops, it's frequency drops
Explanation:
The two graphs show the frequency of the resistance allele in two different seasons and two different years , this is due to mutation a force for changing the allele frequencies( genetic drift) in a population over time
if an allele reduce fitness, it frequency will drop from one generation to the next
The allele frequency falls quickly at the coast in the winter because there is a fitness cost to the allele, so as soon as selection for the allele stops, its frequency drops. The correct answer is option : b. There is a fitness cost to the allele, so as soon as selection for the allele stops, its frequency drops.
The allele frequency falls quickly at the coast in the winter because the spraying of insecticides stops, removing the selective pressure favoring the resistance allele.
In other words, during the summer when spraying occurs, mosquitoes carrying the resistance allele have a selective advantage, but in the winter, when spraying ceases, there is no longer a benefit to having the allele.
This suggests that there is a fitness cost associated with carrying the resistance allele, such as decreased reproductive success or reduced survival in the absence of insecticide exposure.
The rapid decline in the frequency of the resistance allele at the coast in the winter suggests that there is a fitness cost associated with the allele, leading to its decrease when selection pressure is removed.
Two species of tree frogs occupy different elevations in the canopy of a rain forest. If these frogs with strikingly different patterns of coloration but similar patterns of activity are brought together, they can produce offspring that survive to adulthood and can then mate successfully with individuals of either species. What keeps these frogs recognizably distinct?
1. Lack of hybrid fertility
2. Temporal isolation
3. Mechanical isolation
4. Habitat Isolation
5. Lack of hybrid viability
Answer:
Habitat Isolation
Explanation:
Ecological, or habitat, isolation occurs when two species that could interbreed do not because the species live in different areas.
A bacterial cell is suddenly expelled from a warm human intestine into the cold world outside. Which one of the following adjustments might the cell make to maintain the same level of membrane fluidity that the cell had in the intestine?a. increase the length of the hydrocarbon tails in its membrane phospholipids.
b. increase the proportion of unsaturated hydrocarbon tails in its membrane phospholipids.
c. increase the proportion of hydrocarbon tails with no double bonds in its membrane phospholipid.
d. decrease the amount of cholesterol in the membrane.
Explanation:
Composed of a phospholipid bilayer with installed proteins, the plasma layer is specifically penetrable to particles and natural atoms and directs the development of substances all through cells. Plasma films must be truly adaptable so as to permit certain cells, for example, red platelets and white platelets, to change shape as they go through restricted vessels. The plasma membrane additionally assumes a job in securing the cytoskeleton to give shape to the phone, and in joining to the extracellular grid and different cells to help bunch cells together to frame tissues. The layer likewise keeps up the cell potentialHence the right answer is option b "increase the proportion of unsaturated hydrocarbon tails in its membrane phospholipids"Cytokinesis in animal cells is accomplished by constriction of the cell along the plane of cell division (formation of a cleavage furrow). In plant cells, which have cell walls, a completely different mechanism of cytokinesis has evolved.
Which of the following statements are true of cytokinesis in plant cells? Select the two that apply.
After chromosome separation is complete, a network of microfilaments forms near the plane of cell division that will separate the two new cells.
The cell plate consists of the plasma membrane and cell wall that will eventually separate the two daughter cells.
The plasma membrane of the parent cell grows inward, eventually joining with the cell plate.
Vesicles from the Golgi apparatus move along microtubules, coalesce at the plane of cell division, and form a cell plate.
Answer:
option A and option D
Explanation:
cytokinesis in plant cells is aided by the formation of a cell plate. prior to cell plate formation which is situated at the middle, a complex network of microtubules, microfilaments, and endoplasmic reticulum elements assemble in two opposing groups perpendicular to the plane of the future cell plate during anaphase and telophase. this aids in the movement of vessicles coming from the golgi apparatus forming the cell plate.
Which of the following places these items in the correct order for DNA-virus replication? 1. Maturation 2. DNA synthesis 3. Transcription 4. Translation
Answer:
2; 3; 4; and 1
The correct order for DNA-virus replication is DNA synthesis, transcription, translation, and maturation. This process begins with replication of the virus's DNA, then the creation of RNA from the DNA, followed by the production of proteins, and finally the assembly of new virus particles.
Explanation:The correct order for DNA-virus replication is 2. DNA synthesis, 3. Transcription, 4. Translation, and 1. Maturation. During DNA synthesis, the virus's DNA is replicated. Transcription is the next process where the viral DNA is transcribed into RNA, which happens in the host cell's nucleus. Next is translation, where the RNA is used as a template to produce virus proteins. Lastly, in the maturation step, new virus particles are assembled and often results in the host cell being lysed.
Learn more about DNA-virus replication here:https://brainly.com/question/35866617
#SPJ3
Chronic fatigue syndrome results from repeated motions performed in the course of normal work and daily activities. a. True b. False
Answer:
False
Explanation:
Chronic fatigue syndrome refers to the condition of continuous or long term tiredness which is not corrected with the sleep.
There are many causes of such type of tiredness but the exact cause of the fatigue is not known as this symptom is common to many disorders. The main causes of chronic fatigue are the weak immune system, pathogens and the stress which is increasing with modernisation.
Since there are many causes of the fatigue syndrome therefore only repeated daily activities is not the only option and thus is false.
Thus, false is correct.
Ovalbumin is a protein found in eggs. Describes the molecular structure of ovalbumin
Answer:
The protein present in the white portion of an egg is termed as ovalbumin and it holds more than 55 percent of the overall constituent of the protein present in an egg. However, the exact function of ovalbumin within the egg is not known yet, though it is considered as a storage protein.
As it is known that all the proteins are the polymers of the amino acids. Thus, ovalbumin also as a protein must comprise the amino acid chains, which are associated together via a peptide bond. The amino acid chains get a twist and folded in an appropriate function and provide a specific three-dimensional shape to the protein.
Answer:
Ovalbumin is the main protein found in the egg white, which constitutes approximately 55 per cent of the total proteins inside an egg.
The main function of this protein is non known but it serves as a storage protein in the cell.
The ovalbumin of the chicken is made of 385 amino acids whose molecular mass is 42. 7 kDa.
It has N-terminal acetylation, Glycosylation and G1 phosphorylation . Ovalbumin forms a serpin like structure.
Afferent arteriolar vasoconstriction __________ blood flow into the glomerulus, which causes the glomerular-capillary blood pressure to __________, leading to a(n) __________ in the net filtration pressure and a resultant __________ in the GFR.
Answer:
Afferent arteriolar vasoconstriction decreases blood flow into the glomerulus, which causes the glomerular-capillary blood pressure to decrease, leading to a(n) decrease in the net filtration pressure and a resultant decrease in the GFR.
Explanation:
Pretty self-explanatory.
When comparing protein-coding DNA sequences of similar genes in related species, you see that some of the sequences are longer in one species compared to the other. Which of the following is the most likely number of extra bases that you would see
Answer:
Homolog genes with sequence identity often exhibit differences in length associated with size variations in the intronic sequences
Explanation:
In eukaryotic organisms, genes are composed by 1- coding sequences (i.e., exons) that are transcribed into precursor mRNAs, and 2-noncoding regions (or introns), which are not transcribed but contain sequences involved in the control of gene expression
Gland that secretes through ducts to the surface of an organ or tissue or into a vessel is called
Answer: Exocrine glands.
Explanation:
The gland can be defined as the group of cells in an animal's body which synthesizes hormones and releases its secretion directly into the bloodstream or inside the cavities or directly on the outer surface of the body.
The gland that secrete the secretions directly on the skin or outer surface is known as exocrine gland.
The secretions can be from sweat from sweat glands, goblet cells, salivary gland and tear gland are some of the example of exocrine gland.
An exocrine gland is a type of gland that secretes substances through ducts either to the surface of an organ or tissue, or into a vessel. These glands include sweat glands, salivary glands, and the pancreas.
Explanation:A gland that secretes through ducts to the surface of an organ or tissue, or into a vessel, is referred to as an exocrine gland. These glands produce substances such as sweat, saliva, and digestive enzymes. There is a wide array of exocrine glands in the human body, including sweat glands, salivary glands, and the pancreas. Each of these glands carries out its function by secretions which pass through ducts to their targets. These are different from endocrine glands, which release hormones directly into the bloodstream.
Learn more about Exocrine Gland here:https://brainly.com/question/32491091
#SPJ3
Since animals have nerve and muscle tissue and plants do not, which of the following events in earth’s history would be associated with adaptive radiation of many groups of animals, and not particularly that of plants?
A. increase in atmospheric O2
B. great increase in land mass area
C. changes in global ocean temperatures
D. meteorite impacts and volcanic eruptions
E. earthquake activity causing increased barrier formation
Answer:
The correct option is A) increase in atmospheric O2
Explanation:
The nerve cells and the muscle cells suggest that the the presence of oxygen in the atmosphere was an adaptive radiation which brought the existence of different animals. The conditions became favorable for different animals to survive on Earth only when the availability of oxygen improved in the atmosphere. As animal cells like the muscle cells require a constant supply of oxygen, we can hence say that increase in atmospheric oxygen was the adaptive radiation for supporting many group of animals.
The amino acid sequence of cytochrome c is exactly the same in humans and chimpanzees. There is a difference of 13 amino acids between the cytochrome c of humans and dogs, and a difference of 20 amino acids between the cytochrome c of humans and rattle snakes. Which of the following is best supported by these data?
a. Rattlesnakes apparently gave rise evolutionarily to the dog, chimpanzee, and human.
b. Cytochrome c apparently has an entirely different function in rattlesnakes than in mammals, which explains the difference in the number of amino acids.
c. Cytochrome c is not found universally in animals.
d. Cytochrome c from a rattlesnake could function in a dog, but not in a chimpanzee.
e. The human is apparently more closely related to the chimpanzee than to the dog or rattlesnake.
Answer:
Option-(E): The human is apparently more closely related to the chimpanzee than to the dog or rattlesnake.
Explanation:
Humans are primates and that s why we can argue that we are more closely related to the chimpanzees, as there are more similarities inside the genome and the sequences of the amino acids of the two species. And, thus they result in arrangement of both the species inside the same taxonomic level.While, the rattle snake and dog are far more different when it comes to the over all sequences of amino acid inside the living beings cellular structure.A heme protein present within the outer and inner membrane of mitochondria is called Cytochrome c.
The main role is to transport electrons between the III complex and IV complex during ETC.
The correct answer is:
Option E. The human is apparently more closely related to the chimpanzee than to the dog or rattlesnake.
The explanation for this is:
Humans and Chimpanzees both are primates and are nearly related.The genome and amino acid arrays of both animals are more comparable as correlated to any other mammal.They come below the same taxonomical arrangement.Rattlesnake being a reptile and dog being a mammal is different in amino acid sequences and are different in characters too.Therefore, humans are closely related to chimpanzees than dogs or rattlesnakes.
To learn more about genome and sequences refer to the link:
https://brainly.com/question/9627574
What is meant by double fertilization? Select all that apply. A diploid zygote is formed. Two diploid zygotes form. Endosperm will form. Plants aren't real.
Answer:
A diploid zygote is formed; Endosperm will form.
Explanation:
The fertilization in angiosperms (flowering plants) is known as double fertilization. In this process, two male gametes or sperms are involved where one sperm fertilizes the ovum or egg cell and forms a diploid zygote that develops into an embryo while the other sperm fertilizes two polar nuclei and forms a triploid cell that develops into the endosperm.
The female reproductive structure of a flower includes stigma, style, and ovary. During pollination, the pollen grain attaches to the stigma where it begins to germinate and forms a pollen tube that grows into the style and reaches the ovary. It enters the ovary and penetrates an opening in the ovule called the micropyle. The generative cell in the pollen grain travels through the pollen tube and divides to form two sperms that enter into the ovule.
Usually, six cells (three antipodal cells, two synergid cells, and one egg cell) and two polar central nuclei are present in an unfertilized ovule. Here, a process known as syngamy occurs, where one haploid sperm fertilizes the haploid egg cell or ovum and forms a diploid zygote. It later grows into an embryo. The other haploid sperm fuses with the two haploid polar nuclei to form a triploid nucleus that develops into the endosperm (nutrient-rich tissue) which provides nourishment to the growing embryo. Later, the fertilized ovule forms the seed and the ovary develops into the fruit which envelops and protects the seed.
Proteins that regulate the cell cycle are inactive when the cell is not dividing, and they are turned on when the cell begins the cell cycle. What would happen if these proteins remain turned on indefinitely?
Answer:
If these proteins turned on indefinitely than the cell will divide uncontrollably and will become a cancerous cell.
Explanation:
The cell cycle is controlled by many proteins which helps in the regulation of cell cycle and cell cycle completion. So these proteins are inactive when cell is not dividing but become active when cell is dividing which means they are needed to be active to divide the cell.
Therefore if they remained turned on indefinitely than the cell will continue to divide indefinitely like cancerous cells and due to overproduction of cell it will cause tumors or cancer in the body.
Answer: Cells would divide uncontrollably and could become cancerous
Explanation: i took the test
The event that gave rise to algae was the uptake of cyanobacteria that became chloroplasts. This process of engulfing microbes that then become parts of the eukaryotic cell is known as ______________ .
Answer:
Endosymbiosis
Explanation:
Endosymbiosis is a theory developed to explain the origin of eukaryotic cells from a prokaryotic origin. Organelles of the eukaryotic cells such as mitochondria and chloroplast were thought to have developed from this process.
According to this theory, a proto-eukaryote eats up or engulf a proto-mitochondrion or protochloroplast (in form of microbes) to become eukaryotic organelles such as mitochondrion and chloroplast respectively.
Endosymbiosis, a fundamental process in evolutionary biology, is the term for the uptake of cyanobacteria by eukaryotic cells, leading to the formation of chloroplasts in algae and eventually higher plants.
Explanation:The process by which algae arose due to the uptake of cyanobacteria, which then became chloroplasts, is known as endosymbiosis. This evolutionary event stems from a eukaryotic cell engulfing a photosynthetic cyanobacterium through phagocytosis. Over time, this became a mutualistic relationship where the cyanobacterium, rather than being digested, continued to live within the eukaryotic cell, providing it with energy through photosynthesis, and eventually becoming an integral part of the cell as the chloroplast. This process occurred not just once, but multiple times, allowing for diverse forms of algae, such as green algae, which gave rise to higher plants, as well as red algae, brown algae, diatoms, dinoflagellates, and euglenoids which acquired photosynthesis through secondary endosymbiosis involving the uptake of red or green algae.
Both the red and green algae are descendants from this primary endosymbiotic event, with their plastids containing two membranes: one from the cyanobacterial wall and another from the outer membrane of the host cell. In secondary endosymbiosis, an already symbiotic eukaryotic cell (one containing a chloroplast) is taken up by another eukaryotic cell, resulting in a complexity of membranes around the plastid and sometimes retaining remnants of the endosymbiotic algae's nucleus.
What is not a function of the respiratory system?
Answer:
Any Function that has nothing to do with gas exchange, acid-base balance, phonation, pulmonary defense and metabolism.
Explanation:
Allele frequencies of a population can change by A. natural selection. B. genetic drift. C. mutations in the gene pool. D. founder effect. E. All of the above.
Allele frequencies of a population can change through natural selection, genetic drift, and mutations in the gene pool. The founder effect can also lead to changes in allele frequencies.
option e is correct
Explanation:Allele frequencies of a population can change through natural selection, genetic drift, and mutations in the gene pool. Natural selection is the process by which certain alleles are favored and become more prevalent in a population over time.
Genetic drift is the random change in allele frequencies due to chance events. Mutations introduce new alleles into the gene pool, possibly leading to changes in allele frequencies. Additionally, the founder effect, which occurs when a small group of individuals becomes isolated and establishes a new population, can also lead to changes in allele frequencies.
Learn more about Allele frequencies and population changes here:https://brainly.com/question/36239193
#SPJ3
Who is at the greatest risk of a heart attack? a. Forrest, who has high levels of LDLs and low levels of HDLs b. Sawyer, who has low levels of both LDLs and HDLs c. Gump, who has high levels of both LDLs and HDLs d. Tucker, who has low level of LDLs and high levels of HDLs
Answer:
(C) Gump, who has high levels of both LDLs and HDLs
Explanation:
A high level of LDL is a threat to good health. It's an indicator to a bad level of cholesterol
A low level of HDL which indicates a low level of cholesterol is a good sign to health.
But when a person has a combination of High LDL and High HDL that's a sure chance of HEART ATTACK.
In other words,
Heart attack is highest if a person has level of LDL and High level of HDL
Forrest, with high levels of LDLs and low levels of HDLs, is at the highest risk for a heart attack due to the increased LDL:HDL ratio leading to greater plaque buildup and heart disease risk.
Explanation:When considering who is at the greatest risk of a heart attack among the given individuals, it's important to understand the roles of low-density lipoproteins (LDLs) and high-density lipoproteins (HDLs) in cardiovascular health. LDLs are often referred to as "bad" cholesterol because they can lead to the buildup of plaque in the arteries, increasing the risk for heart attacks. Conversely, HDLs are known as "good" cholesterol as they help to transport cholesterol from the tissues back to the liver for recycling, thus helping to prevent plaque formation.
Based on this information:
Forrest, who has high levels of LDLs and low levels of HDLs, is at the greatest risk of a heart attack because this profile contributes to a higher LDL:HDL ratio, which is associated with an increased risk for heart disease due to greater plaque buildup.Sawyer, who has low levels of both LDLs and HDLs, might have a more neutral risk profile.Gump, with high levels of both LDLs and HDLs, also has an increased risk but not as much as Forrest's, assuming his HDL levels help mitigate some of the effects of high LDLs.Tucker, who has low levels of LDLs and high levels of HDLs, has the most favorable lipid profile and the lowest risk for a heart attack of the individuals mentioned.Therefore, a. Forrest is at the greatest risk of a heart attack.
An acute non-contagious respiratory tract infection that produces severe pneumonia-like symptoms caused by bacteria that thrive in warm aquatic environments and are inhaled through contaminated aerosolized water droplets is known as:_______.
Answer: Legionnaires' disease
Explanation:
Legionnaires' disease is a kind of pneumonia that is caused by the bacteria.The bacterial infection spreads by breathing the aerosol or mist from the water. The bacteria does not spread from person to person thus the disease is non-contagious.
The bacteria of the disease lives in the aquatic environment and may contaminate the water body. The symptoms of the disease includes the chills, coughs, high fever, headaches and muscle aches. X-ray and lab test can be done to diagnose the disease.
Answer: Legionella infection.
Explanation:
Legionnaires disease doesn't spread from one person to another person. They spread by the help of mist such as air conditioning units in large buildings.
The adults who are greater than the age of 50 and have addiction of tobacco is more prone to this disease because they have weaker immunity.
The common symptoms of this disease is also same like common flu, fever, chills , diarrhea, headache et cetera.
Blood vessel walls contain elastin, a protein that allows the vessel to stretch under high pressure. Which type of blood vessel do you expect will have the highest concentration of elastin in its walls?
Answer: Artery
Explanation:
Artery is a type of blood vessel that carry blood (usually oxygenated blood except the pulmonary artery) away from the heart to all parts of the body.
Since, blood from the heart is under high pressure due to the pumping action of the heart muscles, arteries possess elastin, that allows it to stretch under high pressure.
What particles could diffuse easily through a cell membrane?
Oxygen molecules are easy to get diffused from cell membrane. The correct option is d.
What is diffusion?Diffusion is the net movement of individual molecules of a compound across a semipermeable barrier from a high concentration area to a low concentration area.
Osmosis is the transfer of solvent particles from a diluted solution to a more concentrated solution.
Diffusion, on the other hand, is the transport of particles from a higher concentration region to a lower concentration region.
As oxygen-rich blood passes through a cell, oxygen diffuses through the cell membrane to a lower concentration area within the cell.
It is able to accomplish this simply because the oxygen molecule is small and has no charge or polarity. The mitochondria consume oxygen quickly.
Thus, the correct option is d.
For more details regarding diffusion, visit:
https://brainly.com/question/13513898
#SPJ6
Your question seems incomplete, the missing options could be:
a) Hydrogen ion (H+)b) Glucosec) Sodium ion (Na+)d) Oxygen (O2)Many tropical zooplankton have elaborate spines. These have been interpreted as either a defense against predation or a means to increase drag and prevent sinking. How would you determine which was the likely reason for these structures
Answer:
Means to increase drag and prevent sinking is the correct answer.
Explanation:
Plankton avoid sinking by increasing their surface area and decreasing their density. Spines slow down sinking by adding surface area without increasing density. Defense against predation would be to sing below. Not the opposite.
If a sexually reproducing organism has 28 chromosomes in its body cells, how many chromosomes did it inherit from each parent?
If a parent cell has 28 chromosomes and undergoes meiosis, the resulting cells will have 14 chromosomes.
what's a chromosome and its role?A chromosome is a long DNA molecule with part or all of the genetic material of an organism. maximum eukaryotic chromosomes include packaging proteins called histones which, aided via chaperone proteins, bind to and condense the DNA molecule to maintain its integrity.
Chromosomes are the highest level of organization of DNA and proteins. the main feature of chromosomes is to carry the DNA and transfer the genetic information from mother and father to offspring. Chromosomes play a vital role throughout cellular division. They defend the DNA from getting tangled and damaged.
Learn more about chromosomes here
https://brainly.com/question/11912112
#SPJ2
Scientific investigation of the exact effects of environmental steroids on humans is extremely difficult since there are multiple sources of hormones in the environment. Avalid study would require a control group that has not been exposed to the chemicals being studied. Since everyone has had some exposure to environmental hormones, no control group is available to use as a reference Another way to assess the environmental hazard due to storoid hormones is to analyze the amount of residual hormones present following commercial water treatment by water treatment plants Which situation would make researchers suspect that there was an excess of steroid hormones in the environment? 1. An increase in bone fractures in seniors in the area 2. Premature puberty in girls in the area 3. An increase in mutation role in amphibians in the area 4. An increase in foot fungal infections
Explanation:
Steroid hormones are a gathering of hormones, got from cholesterol, from the class of mixes known as steroids. They are emitted by the adrenal cortex, testicles and ovaries, and by the placenta during pregnancy. Based on their receptors, steroid hormones have been ordered into five gatherings: glucocorticoids, mineralocorticoids, androgens, oestrogens and progestogens. Puberty is the point at which young ladies' bodies and psyches develop and they develop into young ladies. This typically begins when a young lady is around 10 years of age. Some of the time, however, an a lot more youthful young lady begins to give the indications of puberty. This is called intelligent (pre-KOH-shuss), or early adolescence (PU-ber-ty).Hence the right answer is option 2 Premature puberty in girls in the area".Will be marked BRAINLIEST!!!
Which hormone, synthesized by the anterior pituitary gland, causes the body to manufacture an abundance of muscle tissue?
a. Growth hormone
b. Prolactin
c. Thyroxin
d. Follicle-stimulating hormone
e. Adrenocorticotropic hormone
Answer:
I believe the answer is A...I'm not completely sure but I tried my best to think.
Answer:
a
because that makes the most sense and hormones
What is an important difference between light-dependent and light-independent reactions of photosynthesis?
Answer:
Explanation:
Photosynthesis is broadly divided into two phases. The one is the light-dependent or light reactions and other is the light-independent or dark reactions. Both these phases occur in the chloroplast of a plant cell.
Light-dependent reactions occur in the thylakoid of the chloroplast. These reactions require light. The chlorophyll molecules absorb light and convert light energy into NADH and ATP. Light energy also breaks water molecules and releases oxygen.
Light-independent reactions do not require light and the reactions occur in the stroma of the chloroplast. Using power (NADH and ATP) synthesized during light reactions, carbon dioxide is reduced into sugar molecules.
The belief that children's immune systems need to be exposed to viruses and bacteria in order to strengthen them, but that children are overprotected from this exposure, is called the __________.
Answer:
hygiene hypothesis
Explanation:
mark brainliest
10. In angiosperms, a _____ is contained in the anthers or ovaries, and the _____ consists of the rest of the plant. sporophyte; gametophyte gametophyte; sporophyte bryophyte; sporophyte sporophyte; bryophyte
Answer:
Gametophyte,sporophyte.
Explanation:
The gametes produce by gametophyte is contain in Anther and ovaries and sporophyte develops into zygote(plant).
Sporophyte through meiosis produces spores. Meiosis been a reductional process reduced the 2n to n(haploid chromosome).
The haploid spores formed germinate into haploid gametophyte.
Gametophyte at maturity produces gametes through mitosis. Two gametes from similar organism or organism of the same species then fuse together to produce zygote
In angiosperms, the ‘gametophyte’ is contained in the anthers or ovaries, where sexual reproduction occurs. The 'sporophyte' refers to the rest of the asexual plant that generates spores.
Explanation:In angiosperms, the term gametophyte refers to the sexual phase that is contained in the anthers, in the case of males, or ovaries, in the case of females. These gametophytes are where the production of gametes - sperm cell and egg cell - occurs. Conversely, the sporophyte consists of the rest of the plant like leaves, stems, and roots. This stage is asexual, and it generates spores that will grow into gametophytes.
So, the accurate pairing for your question would be 'gametophyte; sporophyte'.
Learn more about Angiosperms here:https://brainly.com/question/31460772
#SPJ6
Which part of the transition zone receives the most rainfall
Answer: South
Explanation: