The distribution of the amount of change in UF student's pockets has an average of 2.02 dollars and a standard deviation of 3.00 dollars. Suppose that a random sample of 45 UF students was taken and each was asked to count the change in their pocket. The sampling distribution of the sample mean amount of change in students pockets is

A. approximately normal with a mean of 2.02 dollars and a standard error of 3.00 dollars
B. approximately normal with a mean of 2.02 dollars and a standard error of 0.45 dollars
C. approximately normal with an unknown mean and standard error.
D. not approximately normal

Answers

Answer 1

Answer:

B. approximately normal with a mean of 2.02 dollars and a standard error of 0.45 dollars

Step-by-step explanation:

We use the Central Limit Theorem to solve this question.

The Central Limit Theorem estabilishes that, for a random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], a large sample size can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard error [tex]s = \frac{\sigma}{\sqrt{n}}[/tex]

In this problem, we have that:

[tex]\mu = 2.02, \sigma = 3, n = 45, s = \frac{3}{\sqrt{45}} = 0.45[/tex]

So the correct answer is:

B. approximately normal with a mean of 2.02 dollars and a standard error of 0.45 dollars


Related Questions

1. A manufacturer of a printer determines that the mean number of days before a cartridge runs out of ink is 75 days, with a standard deviation of 6 days. Assuming a normal distribution, what is the probability that the number of days will be less than 67.5 days?

Answers

Answer:

[tex]P(X<67.5)=P(\frac{X-\mu}{\sigma}<\frac{67.5-\mu}{\sigma})=P(Z<\frac{67.5-75}{6})=P(z<-1.25)[/tex]

And we can find this probability using the normal standard table or excel:

[tex]P(z<-1.25)=0.106[/tex]

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let X the random variable that represent the number of days before cartridge runs out of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(75,6)[/tex]  

Where [tex]\mu=75[/tex] and [tex]\sigma=6[/tex]

We are interested on this probability

[tex]P(X<67.5)[/tex]

And the best way to solve this problem is using the normal standard distribution and the z score given by:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

If we apply this formula to our probability we got this:

[tex]P(X<67.5)=P(\frac{X-\mu}{\sigma}<\frac{67.5-\mu}{\sigma})=P(Z<\frac{67.5-75}{6})=P(z<-1.25)[/tex]

And we can find this probability using the normal standard table or excel:

[tex]P(z<-1.25)=0.106[/tex]

y=−7x+3 y=−x−3 ​
Find the solution to the system of equations.

Answers

Answer:

(x,y)=(1,-4)

Step-by-step explanation:

y=−7x+3

y=−x−3 ​

(y=) −7x+3=−x−3 ​

-7x+x=-3-3

-6x=-6

x=-6/(-6)

x=1

y=-7*1+3=-7+3=-4

(x,y)=(1,-4)

Answer:

[tex](x,y)= (1,-4)\\[/tex]

Step-by-step explanation:

We will solve it using the substitution method

Using Substitution method

Let [tex]y = -7x + 3[/tex] be equation 1 and [tex]y = -x - 3[/tex] be equation 2

putting value of y from equation 1 in equation 2 and further simplifying:

we get

[tex]-7x +3 = -x - 3\\-7x + x = -3 -3\\-6x =-6\\\\6x=6x\\x= 1[/tex]

Now put value of x i.e. [tex]x=1[/tex] in equation 1 and by further simplifying

[tex]y = -7x + 3\\y= -7(1) +3\\y= -7+3\\y=-4[/tex]

So the solution to the system is written as\[tex](x,y)= (1,-4)[/tex]

A reasonable estimate of the moment of inertia of an ice skater spinning with her arms at her sides can be made by modeling most of her body as a uniform cylinder. Suppose the skater has a mass of 64 kg . One eighth of that mass is in her arms, which are 60 cm long and 20 cm from the vertical axis about which she rotates. The rest of her mass is approximately in the form of a 20-cm-radius cylinder.

Answers

Answer:

Step-by-step explanation:

Given data:

Mass of the one arm of the skater, m = (1/16) x 64 = 4 kg

Rest mass of the skater in the form of cylinder, M = (7 / 8) x 64 kg = 56 kg

Radius of the cylinder, R = 20 cm = 0.20 m

The parallel axis theorem:

how many pounds of chamomile tea that costs 18.20 per pound must be mixed with 12lb of orange tea that costs 12.25 per pound to make a mixture that costs 14.63 per pound

Answers

8 pounds of chamomile tea must be mixed to make a mixture that costs 14.63 per pound.              

Step-by-step explanation:

We are given the following in the question:

Chamomile tea:

Unit cost = 18.20 per pound

Amount = x pounds

Total cost =

[tex]18.20\times x = 18.20x[/tex]

Orange tea:

Unit cost = 12.25 per pound

Amount = 12 pounds

Total cost =

[tex]12.25\times 12 = 147[/tex]

Total mixture:

Unit cost = 14.63 per pound

Amount = (12+x) pounds

Total cost =

[tex]14.63\times (12+x) = 175.56 + 14.63x[/tex]

We can write the equation that cost of mixture is equal to cost of chamomile tea and orange tea.

[tex]18.20x + 147 = 175.56 + 14.63x\\\Rightarrow 18.20x- 14.63x = 175.56-147\\\Rightarrow 3.57x = 28.56\\\Rightarrow x = 8[/tex]

Thus, 8 pounds of chamomile tea must be mixed to make a mixture that costs 14.63 per pound.

A state insurance commission estimates that 13% of all motorists in its state areuninsured. Suppose this proportion is valid. Find the probability that in a randomsample of 50 motorists, at least 5 will be uninsured. You may assume that the normaldistribution applies.

Answers

Answer:

79.95% probability that in a randomsample of 50 motorists, at least 5 will be uninsured.

Step-by-step explanation:

We use the binomial approximation to the normal to solve this question.

Binomial probability distribution

Probability of exactly x sucesses on n repeated trials, with p probability.

Can be approximated to a normal distribution, using the expected value and the standard deviation.

The expected value of the binomial distribution is:

[tex]E(X) = np[/tex]

The standard deviation of the binomial distribution is:

[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]

Normal probability distribution

Problems of normally distributed samples can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

When we are approximating a binomial distribution to a normal one, we have that [tex]\mu = E(X)[/tex], [tex]\sigma = \sqrt{V(X)}[/tex].

In this problem, we have that:

[tex]n = 50, p = 0.13[/tex]

So

[tex]\mu = E(X) = np = 50*0.13 = 6.5[/tex]

[tex]\sigma = \sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{50*0.13*0.87} = 2.38[/tex]

Find the probability that in a randomsample of 50 motorists, at least 5 will be uninsured.

This is 1 subtracted by the pvalue of Z when X = 4. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{4 - 6.5}{2.38}[/tex]

[tex]Z = -0.84[/tex]

[tex]Z = -0.84[/tex] has a pvalue of 0.2005

1 - 0.2005 = 0.7995

79.95% probability that in a randomsample of 50 motorists, at least 5 will be uninsured.

Using the normal approximation to the binomial distribution, the probability that at least 5 out of 50 motorists will be uninsured when 13% of motorists are uninsured is approximately 74.22%.

First, we calculate the mean (μ) and the standard deviation (σ) of the number of uninsured motorists in a sample of 50. The mean number of uninsured motorists is μ = np, where n is the sample size and p is the probability of a motorist being uninsured. So, μ = 50 * 0.13 = 6.5.

The standard d eviation is σ = √(np(1-p)). Therefore, σ = √(50 * 0.13 * (1 - 0.13)) ≈ 2.31.

To find the probability of at least 5 uninsured motorists, we want P(X ≥ 5). We need to standardize this to the standard normal distribution to find the z-score. The z-score is z = (X - μ) / σ.

For X = 5, the z-score is z = (5 - 6.5) / 2.31 ≈ -0.65. We use the z-table or a calculator to find the probability corresponding to z = -0.65.

Since we want at least 5 uninsured, we find P(Z ≥ -0.65), which equals 1 - P(Z < -0.65). The value from the z-table for -0.65 is approximately 0.2578. Therefore, the probability we're looking for is 1 - 0.2578 = 0.7422, or 74.22%.

Draw a rectangle that shows 8 equal parts . Shade more than 3/8 of the rectangle but less than 5/8 .what fraction did you model? Use multiplication and division to write two equivalent fractions for your model.

Answers

Answer:

4/8 more than 3/ but less than 5/8

Answer: I modeled 4/8 because it is greater than 3 less than 5 2 equivalent fractions are 8/16 12/24

Step-by-step explanation:

A random sample of 1800 NAU students in Flagstaff found 1134 NAU students who love their MAT114 class. Find a 95% confidence interval for the true percent of NAU students in Flagstaff who love their MAT114 class. Express your results to the nearest hundredth of a percent. .

Answers

Answer:

95% confidence interval for the true percent of NAU students in Flagstaff who love their MAT114 class is (60.77% , 65.23%)

Step-by-step explanation:

Among 1800 NAU students, 1134 students love their class. We have to find the 95% confidence interval of students who love their class.

We will use the concept of confidence interval of population proportion for this problem.

The proportion of students who love the class = p = [tex]\frac{1134}{1800}=0.63[/tex]

Proportion of students who do not love the class = q = 1 - p = 1 - 0.63 = 0.37

Total number of students in the sample = n = 1800

Confidence Level = 95%

The z values associated with this confidence level(as seen from z table) = 1.96

The formula to calculate the confidence interval for population proportion is:

[tex](p-z\times\sqrt{\frac{p \times q}{n}},p+z\times\sqrt{\frac{p \times q}{n}})[/tex]

Using the values in this expression gives:

[tex](0.63-1.96 \times \sqrt{\frac{0.63 \times 0.37}{1800}}, 0.63+1.96 \times \sqrt{\frac{0.63 \times 0.37}{1800}})\\\\ =(0.6077,0.6523)[/tex]

Thus, 95% confidence interval for the true percent of NAU students in Flagstaff who love their MAT114 class is (0.6077 ,0.6523) or (60.77% , 65.23%

A computer virus is trying to corrupt two files. The first file will be corrupted with probability 0.4. Independently of it, the second file will be corrupted with probability 0.3. (a) Compute the probability mass function (pmf) of X, the number of corrupted files.

Answers

Answer:

[tex]P(X = 0) = 0.42[/tex]

[tex]P(X = 1) = 0.46[/tex]

[tex]P(X = 2) = 0.12[/tex]

Step-by-step explanation:

We have these following probabilities:

40% probability that the first file is corrupted. So 60% probability that the first file is not corrupted.

30% probability that the second file is corrupted. So 70% probability that the second file is not corrupted.

Probability mass function

Probability of each outcome(0, 1 and 2 files corrupted).

No files corrupted:

60% probability that the first file is not corrupted.

70% probability that the second file is not corrupted.

So

[tex]P(X = 0) = 0.6*0.7 = 0.42[/tex]

One file corrupted:

First one corrupted, second no.

40% probability that the first file is corrupted.

70% probability that the second file is not corrupted.

First one ok, second one corrupted.

60% probability that the first file is not corrupted.

30% probability that the second file is corrupted.

[tex]P(X = 1) = 0.4*0.7 + 0.6*0.3 = 0.46[/tex]

Two files corrupted:

40% probability that the first file is corrupted.

30% probability that the second file is corrupted.

[tex]P(X = 2) = 0.4*0.3 = 0.12[/tex]

A survey among US adults of their favorite toppings on a cheese pizza reported that 43% favored pepperoni, 14% favored mushrooms, and 6% favored both pepperoni and mushrooms. What is the probability that a random adult favored pepperoni or mushrooms on their cheese pizza? Provide your answer as a whole number in the box below, i.e., .32 is 32% so you would enter 32. Round as needed.

Answers

Answer:

51% of US adults favored pepperoni or mushrooms on their cheese pizza.                                                    

Step-by-step explanation:

We are given the following in the question:

Percentage of US adults that favored pepperoni = 43%

[tex]P(P) = 0.43[/tex]

Percentage of US adults that favored mushroom = 14%

[tex]P(M) = 0.14[/tex]

Percentage of US adults that favored both pepperoni and mushroom = 6%

[tex]P(M\cap P) = 0.06[/tex]

We have to evaluate the probability that a random adult favored pepperoni or mushrooms on their cheese pizza.

Thus, we have to evaluate:

[tex]P(M\cup P) = P(M) + P(P) - P(M\cap P)\\P(M\cup P) = 0.43 + 0.14 - 0.06\\P(M\cup P) = 0.51 = 51\%[/tex]

Thus, 51% of US adults favored pepperoni or mushrooms on their cheese pizza.

Write the equation of the line that passes through (3, 4) and (2, −1) in slope-intercept form. (2 points) a y = 3x − 7 b y = 3x − 5 c y = 5x − 11 d y = 5x − 9

Answers

Answer: y = 5x − 11

Step-by-step explanation:

The equation of a straight line can be represented in the slope-intercept form, y = mx + c

Where c = intercept

Slope, m =change in value of y on the vertical axis / change in value of x on the horizontal axis represent

change in the value of y = y2 - y1

Change in value of x = x2 -x1

y2 = final value of y

y 1 = initial value of y

x2 = final value of x

x1 = initial value of x

The line passes through (3,4) and (2, -1),

y2 = - 1

y1 = 4

x2 = 2

x1 = 3

Slope,m = (- 1 - 4)/(2 - 3) = - 5/- 1 = 5

To determine the y intercept, we would substitute x = 3, y = 4 and m= 5 into

y = mx + c. It becomes

4 = 5 × 3 + c

4 = 15 + c

c = 4 - 15 = - 11

The equation becomes

y = 5x - 11

The proportion of high school seniors who are married is 0.02. Suppose we take a random sample of 300 high school seniors; a.) Find the mean and standard deviation of the sample count X who are married. b.) What is the probability that, in our sample of 300, we find that 8 of the seniors are married? c.) What is the probability that we find less than 4 of the seniors are married? d.) What is the probability that we find at least 1 of the seniors are married?

Answers

Answer:

a) Mean 6, standard deviation 2.42

b) 10.40% probability that, in our sample of 300, we find that 8 of the seniors are married.

c) 14.85% probability that we find less than 4 of the seniors are married.

d) 99.77% probability that we find at least 1 of the seniors are married

Step-by-step explanation:

For each high school senior, there are only two possible outcomes. Either they are married, or they are not. The probability of a high school senior being married is independent from other high school seniors. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

The expected value of the binomial distribution is:

[tex]E(X) = np[/tex]

The standard deviation of the binomial distribution is:

[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]

In this problem, we have that:

[tex]n = 300, p = 0.02[/tex]

a.) Find the mean and standard deviation of the sample count X who are married.

Mean

[tex]E(X) = np = 300*0.02 = 6[/tex]

Standard deviation

[tex]\sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{300*0.02*0.98} = 2.42[/tex]

b.) What is the probability that, in our sample of 300, we find that 8 of the seniors are married?

This is P(X = 8).

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 8) = C_{300,8}.(0.02)^{8}.(0.98)^{292} = 0.1040[/tex]

10.40% probability that, in our sample of 300, we find that 8 of the seniors are married.

c.) What is the probability that we find less than 4 of the seniors are married?

[tex]P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)[/tex]

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 0) = C_{300,0}.(0.02)^{0}.(0.98)^{300} = 0.0023[/tex]

[tex]P(X = 1) = C_{300,1}.(0.02)^{1}.(0.98)^{299} = 0.0143[/tex]

[tex]P(X = 2) = C_{300,2}.(0.02)^{2}.(0.98)^{298} = 0.0436[/tex]

[tex]P(X = 3) = C_{300,3}.(0.02)^{3}.(0.98)^{297} = 0.0883[/tex]

[tex]P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0.0023 + 0.0143 + 0.0436 + 0.0883 = 0.1485[/tex]

14.85% probability that we find less than 4 of the seniors are married.

d.) What is the probability that we find at least 1 of the seniors are married?

Either no seniors are married, or at least 1 one is. The sum of the probabilities of these events is decimal 1. So

[tex]P(X = 0) + P(X \geq 1) = 1[/tex]

From c), we have that [tex]P(X = 0) = 0.0023[/tex]. So

[tex]0.0023 + P(X \geq 1) = 1[/tex]

[tex]P(X \geq 1) = 0.9977[/tex]

99.77% probability that we find at least 1 of the seniors are married

Final answer:

In this problem, the mean and standard deviation of a binomial distribution, with probability of success 0.02 and sample size 300, are found. Subsequently, the probabilities that 8, less than 4, and at least 1 of the seniors are married are computed using the binomial formula.

Explanation:

This problem deals with the Binomial distributions in statistics. Since we know the proportion of high school seniors who are married is 0.02, and the sample size is 300, we can use these values to calculate the mean and the standard deviation.

a.) The mean (mean = np) of the sample count X who are married is 0.02*300=6, and the standard deviation would be sqrt(n*p*(1-p)) = sqrt(300*0.02*0.98) = √5.88≈2.43.

b.) The probability that, in our sample of 300, we find that 8 of the seniors are married is given by the binomial formula P(X=k) = C(n,k)(p^k)(1-p)^(n-k). Plugging n=300, k=8, p=0.02 into the formula, we get the desired probability.

c.) The probability that we find less than 4 of the seniors are married is sum of P(X=k) from k=0 to 3. This could be computed using the aforementioned binomial formula. Remember, you're summing the probabilities for each k.

d.) The probability that we find at least 1 of the seniors are married can be found by subtracting the probability that none of the seniors are married from 1 (i.e., P(X >=1) = 1 - P(X=0)).

Learn more about Binomial Distribution here:

https://brainly.com/question/39749902

#SPJ11

Brian is filling a conic container with water. He has the container half full. The radius of the container is 5 inches and the height is 20 inches. What is the current volume of the water?

Answers

The current volume of the water is 261.66 square inches.

Solution:

The container is in cone shape.

Radius of the container = 5 inch

Height of the container = 20 inch

Volume of the container = [tex]\frac{1}{3} \pi r^2 h[/tex]

                                        [tex]$=\frac{1}{3}\times 3.14 \times 5^2 \times 20[/tex]

Volume of the container = 523.33 square inch

Current volume of the water = Half of the volume of container

                                               [tex]$=\frac{1}{2}\times523.33[/tex]

                                               = 261.66 square inch

The current volume of the water is 261.66 square inches.

An article in Knee Surgery, Sports Traumatology, Arthroscopy, "Arthroscopic meniscal repair with an absorbable screw: results and surgical technique," (2005, Vol. 13, pp. 273-279) cites a success rate more than 90% for meniscal tears with a rim width of less than 3 mm, but only a 67% success rate for tears of 3-6 mm. If you are unlucky enough to suffer a meniscal tear of less than 3 mm on your left knee, and one of width 3-6 mm on your right knee, what are the mean and variance of the number of successful surgeries?

Answers

Answer:

Mean = 1.57

Variance=0.31

Step-by-step explanation:

To calculate the mean and the variance of the number of successful surgeries (X), we first have to enumerate the possible outcomes:

1) Both surgeries are successful (X=2).

[tex]P(e_1)=0.90*0.67=0.603[/tex]

2) Left knee unsuccessful and right knee successful (X=1).

[tex]P(e_2)=(1-0.9)*0.67=0.1*0.67=0.067[/tex]

3) Right knee unsuccessful and left knee successful (X=1).

[tex]P(e_3)=0.90*(1-0.67)=0.9*0.33=0.297[/tex]

4) Both surgeries are unsuccessful (X=0).

[tex]P(e_4)=(1-0.90)*(1-0.67)=0.1*0.33=0.033[/tex]

Then, the mean can be calculated as the expected value:

[tex]M=\sum p_iX_i=0.603*2+0.067*1+0.297*1+0.033*0\\\\M=1.206+0.067+0.297+0\\\\M=1.57[/tex]

The variance can be calculated as:

[tex]V=\sum p_i(X_i-\bar{X})^2\\\\V=0.603(2-1.57)^2+(0.067+0.297)*(1-1.57)^2+0.033*(0-1.57)^2\\\\V=0.603*0.1849+0.364*0.3249+0.033*2.4649\\\\V=0.1115+0.1183+0.0813\\\\V=0.3111[/tex]

The mean and variance of the number of successful surgeries for both knees combined are:

Mean: [tex]\({1.57}\)[/tex]

Variance: [tex]\({0.3111}\)[/tex]

The mean and variance of the number of successful surgeries for the given meniscal tears can be calculated using the information provided about the success rates.

For a meniscal tear with a rim width of less than 3 mm, the success rate is more than 90%. For simplicity, let's assume the success rate is exactly 90% (since we don't have the exact number above 90%). For a tear of 3-6 mm, the success rate is 67%.

Let's denote the success of a surgery as a random variable [tex]\( X \)[/tex], which takes the value 1 if the surgery is successful and 0 if it is not. The probability of success [tex]\( P(X = 1) \)[/tex] is the success rate, and the probability of failure [tex]\( P(X = 0) \)[/tex] is [tex]\( 1 - P(X = 1) \)[/tex].

For the left knee (tear less than 3 mm):

- [tex]\( P(X = 1) = 0.90 \)[/tex] (success rate)

- [tex]\( P(X = 0) = 1 - 0.90 = 0.10 \)[/tex] (failure rate)

For the right knee (tear 3-6 mm):

- [tex]\( P(X = 1) = 0.67 \)[/tex] (success rate)

- [tex]\( P(X = 0) = 1 - 0.67 = 0.33 \)[/tex] (failure rate)

The mean (expected value) of the number of successful surgeries for each knee is calculated as follows:

For the left knee:

[tex]\[ E(X) = \sum_{i=0}^{1} x_i \cdot P(X = x_i) = 1 \cdot 0.90 + 0 \cdot 0.10 = 0.90 \][/tex]

For the right knee:

[tex]\[ E(X) = \sum_{i=0}^{1} x_i \cdot P(X = x_i) = 1 \cdot 0.67 + 0 \cdot 0.33 = 0.67 \][/tex]

The variance of the number of successful surgeries for each knee is calculated using the formula for the variance of a binary random variable:

For the left knee:

[tex]\[ \text{Var}(X) = E(X^2) - [E(X)]^2 \][/tex]

[tex]\[ E(X^2) = \sum_{i=0}^{1} x_i^2 \cdot P(X = x_i) = 1^2 \cdot 0.90 + 0^2 \cdot 0.10 = 0.90 \][/tex]

[tex]\[ \text{Var}(X) = 0.90 - (0.90)^2 = 0.90 - 0.81 = 0.09 \][/tex]

For the right knee:

[tex]\[ E(X^2) = \sum_{i=0}^{1} x_i^2 \cdot P(X = x_i) = 1^2 \cdot 0.67 + 0^2 \cdot 0.33 = 0.67 \][/tex]

[tex]\[ \text{Var}(X) = E(X^2) - [E(X)]^2 \][/tex]

[tex]\[ \text{Var}(X) = 0.67 - (0.67)^2 = 0.67 - 0.4489 = 0.2211 \][/tex]

Now, assuming the surgeries on the two knees are independent events, the mean and variance for both knees combined can be calculated as follows:

Mean for both knees:

[tex]\[ E(X_{\text{left}} + X_{\text{right}}) = E(X_{\text{left}}) + E(X_{\text{right}}) = 0.90 + 0.67 = 1.57 \][/tex]

Variance for both knees:

Since the surgeries are independent, the variance of the sum is the sum of the variances:

[tex]\[ \text{Var}(X_{\text{left}} + X_{\text{right}}) = \text{Var}(X_{\text{left}}) + \text{Var}(X_{\text{right}}) = 0.09 + 0.2211 = 0.3111 \][/tex]

Therefore, the mean and variance of the number of successful surgeries for both knees combined are:

Mean: [tex]\({1.57}\)[/tex]

Variance: [tex]\({0.3111}\)[/tex]

One mole of nickel (6 1023 atoms) has a mass of 59 grams, and its density is 8.9 grams per cubic centimeter, so the center-to-center distance between atoms is 2.23 10-10 m. You have a long thin bar of nickel, 2.1 m long, with a square cross section, 0.08 cm on a side. You hang the rod vertically and attach a 69 kg mass to the bottom, and you observe that the bar becomes 1.11 cm longer. From these measurements, it is possible to determine the stiffness of one interatomic bond in nickel.

Answers

Final answer:

Nickel does not crystallize in a simple cubic structure because the hypothetical density of a simple cubic arrangement is 2.23 g/cm³, significantly less than the actual density of nickel, which is 8.90 g/cm³.

Explanation:

To determine if nickel crystallizes in a simple cubic structure, we can compare the calculated density of a simple cubic arrangement of nickel atoms to the actual density of nickel. Given the edge length of the unit cell for nickel is 0.3524 nm (3.524 x 10⁻⁸ cm) and knowing the properties of a simple cubic lattice, the volume of a single cubic unit cell would be V = a³ = (3.524 x 10⁻⁸ cm)³ = 4.376 x 10⁻²³ cm³. With the mass of a single nickel atom (58.693 g/mol divided by Avogadro's number, 6.022 x 10²³ atoms/mol), if the nickel crystallized in a simple cubic structure, the predicted density would be:

density = mass/volume = (9.746 x 10⁻²³ g) / (4.376 x 10⁻²³ cm³) = 2.23 g/cm³. However, because the actual density of nickel is 8.90 g/cm³, we can conclude that nickel does not form a simple cubic structure.

The altitude of a triangle is increasing at a rate of 2.5 2.5 centimeters/minute while the area of the triangle is increasing at a rate of 2 2 square centimeters/minute. At what rate is the base of the triangle changing when the altitude is 7.5 7.5 centimeters and the area is 96 96 square centimeters

Answers

Answer:

The base of the triangle is decreasing at a rate 8 centimeter per minute.      

Step-by-step explanation:

We are given the following in the question:

[tex]\dfrac{dh}{dt} = 2.5\text{ cm per minute}\\\\\dfrac{dA}{dt} = 2\text{ square cm per minute}[/tex]

Instant height = 7.5 cm

Instant area = 96 square centimeters

Area of triangle =

[tex]A=\dfrac{1}{2}\times b\times h[/tex]

where b is the base and h is the height of the triangle.

[tex]96 = \dfrac{1}{2}\times b \times 7.5\\\\b = \dfrac{96\times 2}{7.5} = 25.6[/tex]

Rate of change of area of triangle =

[tex]\dfrac{dA}{dt} = \dfrac{d}{dt}(\dfrac{bh}{2})\\\\\dfrac{dA}{dt} =\dfrac{1}{2}(b\dfrac{dh}{dt} + h\dfrac{db}{dt})[/tex]

Putting values, we get,

[tex]2 = \dfrac{1}{2}(7.5\dfrac{db}{dt}+25.6(2.5))\\\\4 = 7.5\dfrac{db}{dt} + 64\\\\-60 = 7.5\dfrac{db}{dt} \\\\\Rightarrow \dfrac{db}{dt} = \dfrac{-60}{7.5} = -8[/tex]

Thus, the base of the triangle is decreasing at a rate 8 centimeter per minute.

According to a 2013 study by the Pew Research Center, 15% of adults in the United States do not use the Internet (Pew Research Center website, December, 15, 2014). Suppose that 10 adults in the United States are selected randomly.

a. Is the selection of the 10 adults a binomial experiment? Explain.

b. What is the probability that none of the adults use the Internet (to 4 decimals)?

c. What is the probability that 3 of the adults use the Internet (to 4 decimals)? If you calculate the binomial probabilities manually, make sure to carry at least 4 decimal digits in your calculations.

d. What is the probability that at least 1 of the adults uses the Internet (to 4 decimals)?

Answers

Answer:

a) For this case we can use the binomial model since we assume independent events and the same probability for each trial is the same p =0.15

b) [tex]P(X=0)=(10C0)(0.15)^0 (1-0.15)^{10-0}=0.1969[/tex]

c) [tex]P(X=3)=(10C3)(0.15)^3 (1-0.15)^{10-3}=0.1298[/tex]

d) [tex] P(X \geq 1)= 1-P(X <1) = 1-P(X=0)[/tex]

And using the result from part a we got:

[tex] P(X \geq 1)= 1-P(X <1) = 1-P(X=0)= 1-0.1969 =0.8031[/tex]

Step-by-step explanation:

Previous concepts

The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".  

Let X the random variable of interest, on this case we now that:  

[tex]X \sim Binom(n p)[/tex]  

The probability mass function for the Binomial distribution is given as:  

[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]  

Where (nCx) means combinatory and it's given by this formula:  

[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]  

Solution to the problem

Part a

For this case we can use the binomial model since we assume independent events and the same probability for each trial is the same p =0.15

Part b

For this case we want this probability:

[tex] P(X=0)[/tex]

And replacing we got:

[tex]P(X=0)=(10C0)(0.15)^0 (1-0.15)^{10-0}=0.1969[/tex]

Part c

For this case we want this probability:

[tex] P(X=3)[/tex]

And replacing we got:

[tex]P(X=3)=(10C3)(0.15)^3 (1-0.15)^{10-3}=0.1298[/tex]

Part d

For this cae we want thi probability:

[tex] P(X \geq 1)[/tex]

And we can use the complment rule and we got:

[tex] P(X \geq 1)= 1-P(X <1) = 1-P(X=0)[/tex]

And using the result from part a we got:

[tex] P(X \geq 1)= 1-P(X <1) = 1-P(X=0)= 1-0.1969 =0.8031[/tex]

In choosing what music to play at a charity fund raising event, Shaun needs to have an equal number of string quartets from Mendelssohn, Beethoven, and Haydn. If he is setting up a schedule of the 66 string quartets to be played, and he has 66 Mendelssohn, 1616 Beethoven, and 6868 Haydn string quartets from which to choose, how many different schedules are possible? Express your answer in scientific notation rounding to the hundredths place.

Answers

Answer:

64.69e221

Step-by-step explanation:

When choosing, the combination formula for selection is used. That is when selecting "r" number of items from a possible "n" items, then the number of ways is denoted as:

nCr = n! / (n-r)! × r!

Since 66 string quartet have to be chosen and the 3 genres must be equally represented in the string quartet, then we must have 22 number of each genre in it.

Number of ways to select 22 mendelssohn from possible 66 = 66C22 = 1.82 × 10^17

Number of ways to select 22 Beethoven from possible 1616 = 1616C22 = 2.97 × 10^49

Number of ways to select 22 Haydn from possible 6868 = 6868C22 = 2.2 × 10^63

Total number of ways to arrange these 66 schedules = 66! = 5.44 × 10^92

Number of possible schedule = [1.82 * 10^17] * [2.97*10^49] * [2.2*10^63] * [5.44*10^92]

=64.69 ×10^221. ≈64.69e221

Following Exercise 3.5.9, let p1, . . . , pk be a pairwise relatively prime set of naturals, each greater than 1. Let X be the set {0, 1, . . . , p1 −1}× . . . ×{0, 1, . . . , pk −1}. Define a function f from {0, 1, . . . , p1p2 . . . pk − 1} to X by the rule f(x) = x%p1, . . . , x%pk. Prove that f is a subject

Answers

Answer: see the pictures attached

Step-by-step explanation:

Use Green's Theorem to find the work done by the force F(x, y) = x(x + y) i + xy2 j in moving a particle from the origin along the x-axis to (6, 0), then along the line segment to (0, 6), and then back to the origin along the y-axis.

Answers

Final answer:

The question involves using Green's Theorem to calculate work done by a specific force field along a triangular path. Green's Theorem links the line integral around a closed curve to a double integral over the region it encloses. However, direct calculation of line integrals may be more applicable for this problem.

Explanation:

The question asks to use Green's Theorem to calculate the work done by a force F(x, y) = x(x + y) i + xy^2 j moving a particle along a specified path. Green's Theorem relates a line integral around a simple closed curve C, to a double integral over the plane region D bounded by C. It's expressed in the form ∑_C (M dx + N dy) = ∫∫_D (∂N/∂x - ∂M/∂y) dA where M and N are components of a vector field.

To use Green's Theorem, we identify M = x(x + y) and N = xy^2. Thus, ∂N/∂x = y^2 and ∂M/∂y = x. The path described (origin to (6,0), to (0,6), and back to origin) encloses a triangle, the area of which is easily integrated over. However, it is crucial to note that direct integration methods or alternative strategies may sometimes be more straightforward for such paths, especially when they do not form a typical closed curve as in standard Green's Theorem applications.

In the context of this problem, the key would be computing the line integrals directly due to the specific nature of the force field and the path involved. The use of Green's Theorem hints at setting up an integration over the area, but with the given vector field and triangular path, the execution would involve careful calculation of respective line integrals or assessing the area directly since the theorem simplifies to a calculation over the region enclosed by the path.

American car travels 32 miles on 1 gallon of gas European car travels 12.7 km on 1 L of gas which car gets better gas mileage explain your reasoning

Answers

The American car because 32 miles = 51.5 km and since it uses a gallon which is 3.785l you divide the 51.5 by 3.785 which gives you 13.376km per liter which is more that 12.7 (European)

Answer: the American car gets better gas mileage.

Step-by-step explanation:

American car travels 32 miles on 1 gallon of gas. This means that its gas mileage is 32 miles per gallon.

European car travels 12.7 km on 1 L of gas. We would convert 12.7 km to miles.

1 kilometer = 0.621 mile

12.7 kilometer = 12.7 × 0.621 = 7.8867 miles

We would also convert 1 L to gallons.

1 liter = 0.264 us gallons

Therefore, the gas mileage of the European car in miles per gallon would be

7.8867/0.264 = 29.87 miles per gallon.

Therefore, since 32 miles per gallon is greater than 29.87 miles per gallon, it means that the American car gets better gas mileage.

A salesperson obtained a systematic sample of size 2525 from a list of 500500 clients. To do​ so, he randomly selected a number from 1 to 2020​, obtaining the number 1313. He included in the sample the 1313th client on the list and every 2020th client thereafter. List the numbers that correspond to the 2525 clients selected.

Answers

Question

A salesperson obtained a systematic sample of size 25 from a list of 500 clients. To do​ so, he randomly selected a number from 1 to 20, obtaining the number 13. He included in the sample the 13th client on the list and every 20th client thereafter. List the numbers that correspond to the 25 clients selected.

Answer:

13, 33, 53, ...... 393

Step-by-step explanation:

The Question is making reference to arithmetic progression

Where the first term is 13

And the difference between each interval is 20 (i.e number of clients)

Using the following formula, well obtained the client in any position

Tn = a + (n - 1) d

Where Tn = nth term

a = T1 = 1st term = 13

n = number of terms = 1 to 25

d = common difference = 20

Calculating T2

T2 = 13 + (2 - 1) * 20

T2 = 13 + 20

T2 = 33

Calculating T3

T3 = 13 + (3 - 1) * 20

T3 = 53

.......

Calculating the 20th term

T3 = 13 + (20 - 1) * 20

T20 = 393

New York City is the most expensive city in the United States for lodging. The mean hotel room rate is $204 per night. Assume that room rates are normally distributed with a standard deviation of $55. What is the minimum cost that captures the 20% most expensive hotel rooms in New York City?

Answers

Answer:

[tex]z=0.842<\frac{a-204}{55}[/tex]

And if we solve for a we got

[tex]a=204 +0.842*55=250.31[/tex]

So the value of height that separates the bottom 80% of data from the top 20% is 250.31.  

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let X the random variable that represent the room hotel rate of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(204,55)[/tex]  

Where [tex]\mu=204[/tex] and [tex]\sigma=55[/tex]

For this part we want to find a value a, such that we satisfy this condition:

[tex]P(X>a)=0.20[/tex]   (a)

[tex]P(X<a)=0.80[/tex]   (b)

Both conditions are equivalent on this case. We can use the z score again in order to find the value a.  

As we can see on the figure attached the z value that satisfy the condition with 0.80 of the area on the left and 0.20 of the area on the right it's z=0.842. On this case P(Z<0.842)=0.8 and P(z>0.842)=0.2

If we use condition (b) from previous we have this:

[tex]P(X<a)=P(\frac{X-\mu}{\sigma}<\frac{a-\mu}{\sigma})=0.842[/tex]  

[tex]P(z<\frac{a-\mu}{\sigma})=0.842[/tex]

But we know which value of z satisfy the previous equation so then we can do this:

[tex]z=0.842<\frac{a-204}{55}[/tex]

And if we solve for a we got

[tex]a=204 +0.842*55=250.31[/tex]

So the value of height that separates the bottom 80% of data from the top 20% is 250.31.  

ALGEBRA 2 HELP!!!
Find all the linear factors
f(x)=[tex]3x^{4}-7x^{3}-10x^{2} +28x-8[/tex]

Answers

Answer:

x + 2

3x − 1

x − 2

Step-by-step explanation:

The order of the polynomial is 4, so there are 4 roots.

Use rational root theorem to find possible rational roots.

±1, ±2, ±4, ±8, ±1/3, ±2/3, ±4/3, ±8/3

By trial and error, -2, ⅓, and 2 are all roots.  The fourth root can't be imaginary (complex roots come in pairs), so one of the real roots must be repeated.

Answer: the factors are (x - 2)(x + 2)(3x - 1)

Step-by-step explanation:

The given polynomial function is expressed as

f(x) = 3x⁴ - 7x³ - 10x² + 28x - 8

The first step is to test for any value of x that satisfies the polynomial when

3x⁴ - 7x³ - 10x² + 28x - 8 = 0

Assuming x = 2, then

3(2)⁴ - 7(2)³ - 10(2)² + 28 × 2 - 8 = 0

48 - 56 - 40 + 56 - 8 = 0

0 = 0

It means that x - 2 is a factor.

To determine the other factors, we would apply the long division method. The steps are shown in the attached photo. Looking at the photo, we would factorize the quadratic equation which is expressed as

3x² + 5x - 2 = 0

3x² + 6x - x - 2 = 0

3x(x + 2) - 1(x + 2)

(3x - 1)(x + 2) = 0

Give (in percents) the two marginal distributions, for marital status and for income. Do each of your two sets of percents add to exactly 100%? If not, why not?

Answers

Answer:

Answer is attached

Step-by-step explanation:

6.11

Marginal Distribution of Marital Status

Single 4.1%

Married 93.9%

Divorced 1.5%

Widowed .5%

Marginal Distribution of Job Grade

Job Grade 1 11.6%

Job Grade 2 51.5%

Job Grade 3 30.2%

Job Grade 4 6.7%

Each of the marginal distributions sum up to exactly 100%. Depending on how one rounds the percentages, it is possible that the results will not be exactly 100%.

Please help me find the answer.

Answers

Answer:

b/a = c/b

if a = b, then b = c

Answer: the second one (b/a = c/b) and the last one (if a = b then b = c) are the only ones that are true

Step-by-step explanation:

The number of views of a page on a Web site follows aPoisson distribution with a mean of 1.5 per minute.a. What is the probability of no views in a minute?b. What is the probability of two or fewer views in10 minutes?c. Does the answer to the previous part depend on whetherthe 10-minute period is an uninterrupted interval? Explain.d. Determine the length of a time interval such that the probabilityof no views in an interval of this length is 0.001.

Answers

Answer:

a. P (X=0) = 0.223

b. P(X≤2) = 3.93 * 10^-5

C. No

D. t=4.6 miutes

Step-by-step explanation:

a. P (X=0) = [tex]e^{-1.5}[/tex] = 0.223

b. P(X≤2) =[tex]e^{1.5 * 10} (1 + 1.5*10 + \frac{1.5^{2} * 10^{2} }{2} )[/tex]

   = 3.93 * 10^-5

C. No, the answer to the previous part does not depend on whether the 10-minute period is an uninterrupted interval, it only depend on the uniformity of the density of views per minute ad independency of the disjoint time intervals.

D. P (X=0) =0.001

  [tex]e^{-1.5t} = 0.001\\\\-1.5t=ln(0.001)\\\\t =\frac{-6.9}{-1.5}[/tex]

t=4.6 miutes

Final answer:

The Poisson distribution is used to calculate the probabilities of certain counts of discrete events occurring in a given time interval. By using the average rate of occurrence, we can determine probabilities relevant to web traffic, call intervals, or urgent care visits.

Explanation:

The Poisson distribution is used to model the number of events that occur in a fixed interval of time or space if these events happen with a known average rate and independently of the time since the last event. Various scenarios using Poisson distributions involve understanding the probability of a certain number of events occurring over a specified period.

Probability of no views in one minute: This can be computed using the formula for the Poisson distribution where the expected mean number of events (λ) is 1.5. The probability P(X=0) is given by (e^-1.5 * 1.5^0) / 0!.Probability of two or fewer views in 10 minutes: Given that events occur at a rate of 1.5 per minute, over 10 minutes the average rate would be 15. Calculate the cumulative probability for 0, 1, and 2 events and sum them up.Dependence of the interval: The answer to part b does not depend on the interval being uninterrupted, as the Poisson model assumes independence of intervals.Length of interval for a 0.001 probability of no views: Find the interval length 't' such that P(X=0) = 0.001 using the Poisson formula and solving for 't'.

Use inverse trigonometric functions to solve the following equations. If there is more than one solution, enter all solutions as a comma-separated list (like "1, 3"). If an equation has no solutions, enter "DNE".solve tan ( θ ) = 1 tan(θ)=1 for θ θ (where 0 ≤ θ < 2 π 0≤θ< 2π).

Answers

The solutions to the equation tan(θ) = 1 within the specified range 0 ≤ θ < 2π: θ = 0.7854, 3.9270

Apply the inverse tangent function:

We begin by applying the inverse tangent function (arctan) to both sides of the equation: arctan(tan(θ)) = arctan(1)

Since arctan is the inverse of tangent, they cancel each other out on the left side, leaving us with: θ = arctan(1)

Determine the reference angle:

arctan(1) = π/4, which is the reference angle in the first quadrant where tangent is 1.

Find solutions in other quadrants:

The tangent function has a period of π, meaning it repeats its values every π radians.

Since tangent is also positive in the third quadrant, we add π to the reference angle to find the solution in that quadrant: θ = π/4 + π = 5π/4

Consider the specified range:

We're given the range 0 ≤ θ < 2π. Both π/4 and 5π/4 fall within this range, so they are the valid solutions.

Therefore, the solutions to the equation tan(θ) = 1 within the specified range are θ = 0.7854 (π/4) and θ = 3.9270 (5π/4).

Final answer:

To solve the equation tan(θ) = 1 for θ, we need to use the inverse tangent function. The solution to the equation is θ = π/4.

Explanation:

To solve the equation tan(θ) = 1 for θ, we need to use the inverse trigonometric function. In this case, we will use the inverse tangent function, also known as arctan or atan.

Applying the inverse tangent function to both sides of the equation, we get θ = atan(1).

Using a calculator, we find that atan(1) = π/4. Therefore, the solution to the equation is θ = π/4.

For this problem, carry at least four digits after the decimal in your calculations. Answers may vary slightly due to rounding.

Santa Fe black-on-white is a type of pottery commonly found at archaeological excavations at a certain monument. At one excavation site a sample of 572 potsherds was found, of which 363 were identified as Santa Fe black-on-white.

(a) Let p represent the proportion of Santa Fe black-on-white potsherds at the excavation site. Find a point estimate for p. (Round your answer to four decimal places.)


(b) Find a 95% confidence interval for p. (Round your answers to three decimal places.)

lower limit
upper limit

Answers

Answer:

a) p = 0.6346

b) 95% confidence interval

Lower limit: 0.5951

Upper limit: 0.6741      

Step-by-step explanation:

We are given the following in the question:

Sample size, n = 572

Number of Santa Fe black-on-whitepots , x = 363

a) proportion of Santa Fe black-on-white potsherds

[tex]\hat{p} = \dfrac{x}{n} = \dfrac{363}{572} = 0.6346[/tex]

b) 95% confidence interval

[tex]\hat{p}\pm z_{stat}\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}[/tex]

[tex]z_{critical}\text{ at}~\alpha_{0.05} = 1.96[/tex]

Putting the values, we get:

[tex]0.6346\pm 1.96(\sqrt{\frac{0.6346(1-0.6346)}{572}}) = 0.6346\pm  0.0395\\\\=(0.5951,0.6741)[/tex]

Lower limit: 0.5951

Upper limit: 0.6741

A company determines that its marginal​ cost, in​ dollars, for producing x units of a product is given by Upper C prime (x )equals4500 x Superscript negative 1.9​, where xgreater than or equals1.11. Suppose that it were possible for the company to make infinitely many units of this product. What would the total cost be?

Answers

Answer:

Total Cost = Fixed Cost as x --> ∞

Step-by-step explanation:

C'(x) = 4500 x⁻¹•⁹ where x ≥ 1

Marginal Cost = C'(x) = (dC/dx)

C(x) = ∫ (marginal cost) dx

C(x) = ∫ (4500 x⁻¹•⁹)

C(x) = (-5000 x⁻⁰•⁹) + k

where k = constant of integration or in economics term, K = Fixed Cost.

C(x) = [-5000/(x⁰•⁹)] + Fixed Cost

The company wants to make infinitely many units, that is, x --> ∞

C(x --> ∞) = [-5000/(∞⁰•⁹)] + Fixed Cost

(∞⁰•⁹) = ∞

C(x --> ∞) = [-5000/(∞)] + Fixed Cost

But mathematically, any number divide by infinity = 0;

(-5000/∞) = 0

C(x --> ∞) = 0 + Fixed Cost = Fixed Cost.

Total Cost of producing infinite number of units for this cost function is totally the Fixed Cost.

You can now sell 80 cups of lemonade per week at 40¢ per cup, but demand is dropping at a rate of 4 cups per week each week. Assuming that raising the price does not affect demand, how fast do you have to raise your price if you want to keep your weekly revenue constant? HINT [Revenue = Price × Quantity.]

Answers

Final answer:

To keep the weekly revenue constant while demand drops, we can set up an equation using the revenue formula. By equating the original revenue with the new revenue, we can find the rate at which the price needs to be raised. Taking the derivative, we can determine the rate of change of the price.

Explanation:

To keep the weekly revenue constant, we need to find the rate at which the price has to be raised to offset the drop in demand. Currently, the price is 40¢ per cup and demand is dropping at a rate of 4 cups per week. Since revenue is equal to price times quantity, we can set up the equation:
Revenue = Price × Quantity.

Initially, we have 80 cups of lemonade sold at 40¢ per cup, resulting in a revenue of $32 (80 x 40¢). As demand drops by 4 cups per week each week, the new quantity sold can be represented by 80 - 4t, where t represents the number of weeks. Let P be the new price per cup that needs to be raised. The new revenue equation can be written as:

Revenue = P(80 - 4t).

To find the value of P, we equate the original revenue ($32) with the new revenue:

$32 = P(80 - 4t).

Simplifying the equation, we get:

32 = 80P - 4Pt.

Moving the terms around, we have:

4Pt = 80P - 32.

Dividing both sides by 4P, we get:

t = (80P - 32)/(4P).

So, the rate at which the price needs to be raised to keep the weekly revenue constant is given by the derivative of t with respect to P. Taking the derivative, we get:

t' = (4(80P - 32) - 4P(80))/(4P)^2.

Simplifying further, we have:

t' = (320P - 128 -  320P)/(4P)^2.

Simplifying again, we get:

t' = -128/(4P)^2.

Thus, the rate of change of t with respect to P is given by -128/(4P)^2. This represents the rate at which the price needs to be raised in order to keep the weekly revenue constant.

Other Questions
El profesor termina su ____ (4th) ao de estudios. A snack food company experimented with the frequency of its advertising by working with a local cable provider. On the north end of the city, the frequency was high, while it was only moderate on the south end of town. The company then obtained the checkout scanner data from grocery stores in each part of town for comparison. This is a form of:_______. What was the outcome of the Korean War? (SSUSH20a)A. The United States radically reduced its involvement in Asian affairs.B. Korea remained divided at the 38th parallel.C. An intense anti war movement developed in the United States.D. Civilian control of American armed forces seriously eroded.One purpose of the GI Bill (Servicemen's Readjustment Act of 1944) was 1. The average annual increase of CO2 between 1958 and 2014 was . 2. The average annual increase of CO2 between 1970 and 1980 was . 3. The average annual increase of CO2 between 2004 and 2014 was . 4. CO2 concentration and rate over time. 5. The most recent CO2 concentration measured is . find the product of 3 and 2y-4x=8 Anna baked 333 batches of cookies with ccc cookies in each batch. She then ate 888 cookies!How many cookies does Anna have left? _______________ hormones include steroids and bind to ____________ receptors. From the following statements about mechanical waves, identify those that are true for transverse mechanical waves only, those that are true for longitudinal mechanical waves only, and those that are true for both types of waves.A. In longitudinal waves, the particles of the medium move parallel to the direction of the flow of energy.B. Many wave motions in nature are a combination of longitudinal and transverse motion.C. In transverse waves, the particles of the medium move perpendicular to the direction of the flow of energy.D. All of the above How were johnsons ideas a departure from more conservative ideas? if you have a prodigious talent for satire, would people reject your work or want to read it? If the producer have 35,000 kg of biomass, calculate and label the amount of biomass at the other 4 levels Carla Companys ledger shows the following balances on December 31, 2020. 7% Preferred Stock$10 par value, outstanding 21,700 shares $ 217,000 Common Stock$100 par value, outstanding 32,700 shares 3,270,000 Retained Earnings 630,000Assuming that the directors decide to declare total dividends in the amount of $366,000, determine how much each class of stock should receive under each of the conditions stated below. One years dividends are in arrears on the preferred stock.(a) The preferred stock is cumulative and fully participating. Which of the following is true about the gibbous moon? A. All of its lit surface can be seen. B. More than half of its lit surface can be seen. C. Less than half of its lit surface can be seen. D. None of its lit surface can be seen. A car is rounding a circular curve of radius r on a banked turn. As the drawing indicates, there are two forces acting on the car, its weight mg and the normal force FN exerted on it by the road. Which force, or force component, provides the centripetal force that keeps the car moving on the circular path?1. The vertical component, FNcos of the normal force.2. The horizontal component, FNsin of the normal force.3. Both the normal force, FN, and the weight, mg, of the car.4. The normal force, FN.5. The weight, mg, of the car.6. The horizontal component, FNsin of the norma.l A supervisor in a large hardware store wants to encourage his older workers to seek out on-the-job training so they will keep themselves familiarized with new products. One way to do so is to build the sense of _______________ in these older workers. Consider two x distributions corresponding to the same x distribution. The first x distribution is based on samples of size n = 100 and the second is based on samples of size n = 225. Which x distribution has the smaller standard error? The distribution with n = 100 will have a smaller standard error. The distribution with n = 225 will have a smaller standard error. Explain your answer. Since x = 2/n, dividing by the square root of 100 will result in a small standard error regardless of the value of 2. Since x = /n, dividing by 100 will result in a small standard error regardless of the value of . Since x = /n, dividing by 225 will result in a small standard error regardless of the value of . Since x = /n, dividing by the square root of 100 will result in a small standard error regardless of the value of . Since x = /n, dividing by the square root of 225 will result in a small standard error regardless of the value of . Since x = 2/n, dividing by the square root of 225 will result in a small standard error regardless of the value of 2. How do the graphs of f(x)=x^2 and g(x)=3/4x^2 What are the x-intercepts of the equation?[tex]r(x) = x-1/x+4[/tex] George, the CEO of a company, always uses examples from the Bible to convey his messages to his diverse workforce. He also favors employees who can quote verses from the Bible while talking to him. The non-Christian employees of the company, therefore, feel excluded. From the given information, it can be said that George shows _____. Here are the data for the past 21 months for actual sales of a particular product: LAST YEAR THIS YEAR January 370 295 February 415 350 March 405 355 April 435 440 May 430 450 June 495 385 July 415 365 August 330 290 September 385 350 October 515 November 600 December 495 Develop a forecast for the fourth quarter using a three-quarter, weighted moving average. Weight the most recent quarter 0.50, the second most recent 0.25, and the third 0.25. Solve the problem using quarters, as opposed to forecasting separate months. (Round your answer to 2 decimal places.) Steam Workshop Downloader