1. nitrate [tex]NO_{3} ^{-1}[/tex] : The valency of nitrogen is 5 and oxygen is 2. Therefore, the formula for nitrate is [tex]NO_{3} ^{-1}[/tex]
2. sulfate [tex]SO_{4}^{ -2}[/tex] : The valency of sulfur is 6 and oxygen is 2. Therefore, the formula for sulfate is [tex]SO_{4}^{ -2}[/tex].
3. ammonium [tex]NH_{4} ^+[/tex] : The valency of nitrogen is 5 and hydrogen is 1. Therefore, the formula for ammonium is [tex]NH_{4}^ +.[/tex]
4. carbonate [tex]CO_{3}^{ -2}[/tex] : The valency of carbon is 4 and oxygen is 2. Therefore, the formula for carbonate is [tex]CO_{3}^{ -2}[/tex].
5. permanganate [tex]MnO_{4}^{ -1}[/tex] : The valency of manganese is 7 and oxygen is 2. Therefore, the formula for permanganate is [tex]MnO_{4}^{ -1}.[/tex]
6. sodium carbonate : The formula for sodium carbonate is [tex]Na_{2} CO_{3}[/tex]. Sodium has a valency of 1 and carbonate has a valency of 2.
7. potassium permanganate : The formula for potassium permanganate is [tex]KMnO_{4}[/tex]. Potassium has a valency of 1, manganese has a valency of 7, and oxygen has a valency of 2.
1. For nitrate [tex](NO_{3} ^{-1})[/tex], the charge on the nitrate ion is -1. To determine the formula, we need to balance the charges. Since the nitrate ion has a charge of -1, it will combine with a cation that has a charge of +1. The cation that can balance the charge is sodium [tex](Na^{+1})[/tex]. Therefore, the formula for nitrate is [tex]NaNO_{3}[/tex].
2. For phosphate [tex](PO_{4}^{ -3})[/tex], the charge on the phosphate ion is -3. Again, we need to balance the charges. The cation that can balance the charge is calcium [tex](Ca^{+2})[/tex]. Therefore, the formula for phosphate is [tex]Ca_{3} (PO_{4} )_{2}[/tex].
3. For ammonium [tex]NH_{4} ^+.[/tex], the charge on the ammonium ion is +1. This is a polyatomic ion, meaning it is a group of atoms with an overall charge. The formula for ammonium is [tex]NH_{4} ^+.[/tex]
4. For carbonate [tex](CO_{3} ^{-2})[/tex], the charge on the carbonate ion is -2. The cation that can balance the charge is calcium (Ca+2). Therefore, the formula for carbonate is [tex]CaCO_{3}[/tex].
5. For sulfide [tex](S^{-2})[/tex], the charge on the sulfide ion is -2. The cation that can balance the charge is magnesium [tex](Mg^{+2})[/tex]. Therefore, the formula for sulfide is MgS.
6. Sodium carbonate is a compound formed by the combination of sodium [tex](Na^+)[/tex] and carbonate [tex]((CO_{3}) ^{-2})[/tex] ions. The formula for sodium carbonate is [tex]Na_{2} CO_{3}[/tex].
7. Potassium permanganate is a compound formed by the combination of potassium [tex](K^+)[/tex] and permanganate [tex]MnO_{4} ^{-1}[/tex] ions. The formula for potassium permanganate is [tex]KMnO_{4}[/tex].
A student preparing for the experiments inadvertently adds an additional 400 mL of the same acid solution to the dissolution vessel. What will be the new pOH of this solution?
Answer:
POH= 13
Explanation:
A student preparing for the experiments inadvertently adds an additional 400 mL of the same acid solution to the dissolution vessel. What will be the new pOH of this solution?
PH is the measure of the degree of acidity of a solution.
POH is the measure of the degree of alkalinity of a solution
Note that pH + pOH = 14
if concentration remains the same, then volume changes will not affect pH.
The pH of the solution is given as
PH= -log[H+].
For this experiment, the dissolution vessel contains 0.1 M HCl, no matter the initial volume of the acid solution
For the molar concentration of the cation, we can propose that a strong acid will dissociate completely,
[H+] = 0.1 = 1 x 10-1 M
. substituting the concentration of the cation
PH=-log[1 x 10-1] = 1.
Note that pH + pOH = 14 for any aqueous solution.
we say that
the pOH = 14 - pH.
pOH = 14-1 = 13.
A food product contains 15 g of carbohydrates, 5 g of protein and 4 g of fat. How many calories are in one serving of this product?
Answer: 116 calories of energy
Explanation:
A calorie is a non-standard unit of energy.
On combustion,
1 gram Carbohydrates = 4 calories,
1 gram protein = 4 calories,
1gram fat = 9 calories.
Therefore,
15 grams of carbohydrates = (15*4) = 60
5 grams of protein = (5*4) = 20
4 grams of fats = (4*9) = 36
Then add up: 60 + 20 + 36 = 116 calories of energy
A student assisting with the experiment would observe all of the following about the electron transport chain EXCEPT:A. Electrons are passed from carriers with lower reduction potential to those with higher reduction potential.B. The first electron carrier is also a proton pump.C. All electron carriers are mobile and hydrophobic.D. The electron carriers can transport a maximum of 2 electrons.
Answer:
C. All electron carriers are mobile and hydrophobic
Explanation:
Hello,
In this case, it is widely known that the electron carriers move inside the inner mitochondrial membrane and consequently move electrons from one to another. In such a way, they are mobile, therefore they are largely hydrophobic as long as they are inside the membrane.
For instance, the cytochrome c is a water-soluble protein in a large range, therefore, the answer is: C. All electron carriers are mobile and hydrophobic.
Best regards.