Hey, it’s Nutrients and Oxygen
The phylum __________ has both invertebrate and vertebrate groups.A. EchinodermataB. UrochordataC. ChordataD. CephalochordataE. Onychophoran
Your answer would be C. Chordata.
The phylum Chordata includes both invertebrate and vertebrate groups. The correct answer is C.
Chordates are characterized by the presence of a notochord, a hollow nerve cord, pharyngeal slits, and a post A tail at some stage of their development.
Invertebrate chordates, such as tunicates and lancelets, belong to the subphyla within Chordata. These invertebrate groups possess some of the characteristic features of chordates but may not retain them throughout their entire life cycle.The vertebrates, including fish, amphibians, reptiles, birds, and mammals, also belong to the phylum Chordata. They possess a backbone or vertebral column, which distinguishes them from the invertebrate chordates.Therefore, the correct option is C.
To know more about Chordata, click here:
https://brainly.com/question/18644263
#SPJ6
Which of the following would not be a choice on a parallel key?
A)male or female
B)brown eyes or not
C)brown eyes
D)content or discontent
Moon altitude of Archimedes
Any stimulus that opens a ________ ion channel will produce a graded potential.
A) a voltage-gated
B) a chemically-gated
C) a sodium
D) a mechanically-gated
E) All of the answers are correct.
E) All of the answers are correct.
Ion channels are proteins located in the membrane that allow ions to pass through the channel pore. Ion channels can be classified (by what opens and closes the channels) into few groups:
• Voltage-gated channels-open and close in response to membrane potential
Examples: Voltage-gated proton channels, Voltage-gated sodium channels, Voltage-gated potassium channels
• Ligand-gated (neurotransmitter) or ionotropic receptors (ligand binds to extracellular domain of the receptor
Examples: "nicotinic" Acetylcholine receptor, ionotropic glutamate-gated receptors
• Lipid-gated- lipid molecules bind to the transmembrane domain of the channel
Example: Inward-rectifier potassium channels
• Light-gated channels-like rhodopsin channel that is directly opened by photons
• Mechanosensitive (e.g. stretch, pressure) ion channels.
How does global warming affect photosynthesis
Global warming leads to higher temperatures which can cause plants to lose CO₂ faster and close their stomata to conserve water, impacting photosynthesis negatively. Drought conditions, increasing respiration rates, and less water for NADPH formation further compound these effects. Overall, climate change presents complex challenges to the photosynthesis process and ecosystem health.
Explanation:Global warming affects photosynthesis in multiple ways. With an average temperature increase of 3-5°C, as expected due to global warming, photosynthesis may be affected due to the balance of photosynthesis and respiration in plants. While initial growth enhancement is predicted due to plants acclimating to warmer temperatures, factors such as an increase in respiration rates, especially under conditions of drought and stress, may diminish this benefit.
Moreover, plants may lose CO₂ more rapidly as gases diffuse faster in higher temperatures. On hot, dry days, plants conserve water by closing their stomata, which also reduces CO₂ intake, potentially slowing the Calvin cycle and affecting the photosynthesis process negatively. Additionally, with less water available, the formation of NADPH, crucial for photosynthesis, may also be impeded.
The increased concentration of carbon dioxide due to the greenhouse effect and the reduction of forests, which plays a role in removing CO₂ from the atmosphere, also contribute to the complexity of the impact on photosynthesis in the face of global climate change. These changes in global climate carry mixed effects on plant growth and agriculture, influencing not only photosynthesis but also the overall health of ecosystems.
The operon model describes how bacteria control the production of groups of enzymes. In this model, synthesis of the messenger RNA coding for these enzymes is switched on or off by regulatory proteins.
Can you match terms related to operons to their definitions?
1. A(n) ______ is a stretch of DNA consisting of an operator, a promoter, and genes for a related set of proteins, usually making up an entire metabolic pathway.
2. The ______ is/are arranged sequentially after the promoter.
3. A(n) _______ is a specific nucleotide sequence in DNA that binds RNA polymerase, positioning it to start transcribing RNA at the appropriate place.
4. A(n) ______ for a protein, such as a repressor, that controls the transcription of another gene or group of genes.
5. Regulatory proteins bind to the ______ to control expression of the operon.
6. A(n) ______ is a protein that inhibits gene transcription. In prokaryotes, this protein binds to the DNA in or near the promoter.
7. A(n) ______ is a specific small molecule that binds to a bacterial regulatory protein and changes its shape so that it cannot bind to an operator, thus switching an operon on.
genes of an operon
regulatory gene
repressor
operator
promoter
operon
inducer
1. A(n) operon ______ is a stretch of DNA consisting of an operator, a promoter, and genes for a related set of proteins, usually making up an entire metabolic pathway.
An operon is often define as a functioning unit of DNA which contains cluster of genes that are together transcribed and controlled.
2. The genes of an operon ______ is/are arranged sequentially after the promoter.
These genes are transcribed together into an mRNA. After that they can be translated together or that mRNA can be spliced into monocistronic mRNAs that are translated separately.
3. A(n) promoter _______ is a specific nucleotide sequence in DNA that binds RNA polymerase, positioning it to start transcribing RNA at the appropriate place.
This sequence of DNA is necessary for gene expression since it initiates transcription.
4. A(n) regulatory gene ______ for a protein, such as a repressor, that controls the transcription of another gene or group of genes.
Regulatory gene is gene that encodes for the regulatory proteins such as repressors or activators.
5. Regulatory proteins bind to the operator ______ to control expression of the operon.
For example, operator is a segment of DNA to which a repressor binds and negatively controls gene expression.
6. A(n) repressor ______ is a protein that inhibits gene transcription. In prokaryotes, this protein binds to the DNA in or near the promoter.
Repressor is a DNA-binding molecule (protein) with regulatory role: it can inhibit the expression of one or more genes.
7. A(n) inducer ______ is a specific small molecule that binds to a bacterial regulatory protein and changes its shape so that it cannot bind to an operator, thus switching an operon on.
An inducer is a molecule that regulates gene expression by binding to repressors or activators: prevents the repressor from binding to the operator or helps activator binding to DNA.
The operon model includes components such as an operon, genes, a promoter, a regulatory gene, an operator, a repressor, and an inducer. Each term refers to a specific role in the regulation of gene expression in bacteria.
The operon model describes how bacteria control the production of groups of enzymes. In this model, synthesis of the messenger RNA coding for these enzymes is switched on or off by regulatory proteins.
A(n) operon is a stretch of DNA consisting of an operator, a promoter, and genes for a related set of proteins, usually making up an entire metabolic pathway.The genes of an operon are arranged sequentially after the promoter.A(n) promoter is a specific nucleotide sequence in DNA that binds RNA polymerase, positioning it to start transcribing RNA at the appropriate place.A(n) regulatory gene codes for a protein, such as a repressor, that controls the transcription of another gene or group of genes.Regulatory proteins bind to the operator to control expression of the operon.A(n) repressor is a protein that inhibits gene transcription. In prokaryotes, this protein binds to the DNA in or near the promoter.A(n) inducer is a specific small molecule that binds to a bacterial regulatory protein and changes its shape so that it cannot bind to an operator, thus switching an operon on.If a rifleman's gunsight is adjusted correctly but he has shaky arms, he might shoot bullets scattered widely around the bull's-eye target. draw a sketch of the target with the bullet holes. does this show variation (lack of precision) or bias
It shows lack of precision due to a physical obstacle like shaky arms.
Answer:
Lack of precision
Explanation:
Precision is a term used to describe a situation that is close to a correct measurement, but does not correctly measure that measurement. In addition, for a situation to be precise, it is necessary that this situation be repeated and that every repetition shows the same result.
If a situation is repeated and shows different results, it means that this situation is lacking in precision. An example of this can be seen in the question above where a sniper shoots towards a target, does not hit the target and his shots hit places with different distances. You can see a representation of this in the figure below.
Describe the chromosome number of the cells created at the end of mitosis. What is the correct term to describe this number?
Mitosis, although a continuous process, is conventionally divided into five stages: prophase, prometaphase, metaphase, anaphase and telophase.
The final stage is telophase.
The nuclear membrane reforms around the chromosomes grouped at either pole of the cell, the chromosomes uncoil and become diffuse, and the spindle fibres disappear.
Similarly, in humans, there are 92 chromosomes present and 92 chromatids during anaphase. These numbers remain the same during telophase. It is only after the end of mitosis, when the dividing cells have fully separated and the membranes have reformed, that the normal chromosome number is restored to the cell.
The Hubble Constant: measures distance using parallax angles measures the difference between absolute and apparent magnitude is a relationship between distance and velocity can only be used to measure distances of close stars
is a relationship between distance and velocity
Explanation;According to Hubble's Law the recessional speed of a galaxy is directly proportional to its distance.The Hubble Constant is the unit of measurement used to describe the expansion of the universe, it is the relationship of the recessional speed of a galaxy and its distance.The formula showing the relationship is given by the formula:v = Hd, where: v = velocity of a galaxy, in km/s. H = Hubble Constant, measured in km/s/Mpc and d is the distance in km.
Alleles for the same trait are separated from each other during the process of what?
Meiosis. But more specifically: Anaphase I.
I think you meant ALS
If someone add thousands of small fish to a lake, how would the number of big fish change
Answer:
The population of big fish would increase.
Explanation:
As small fish increase, more food for bigger fish will increase, so bigger fish will naturally navigate to the lake.
Which is an example of why the prosses of photosynthesis is important to life on earth
Photosynthesis is a process found only in plants, not in animals
It uses carbon dioxide and produces Oxygen.
Grass uses photosynthesis to produce glucose, which is used within the grass for growth.A parasitic way of life can be best demonstrated by the feeding adaptations of the A) earthworm. B) leech. C) shark. D) spider.
B) Leech. Parasitism is when one organism benefits off another while that organism is harmed. Another example of parasitism is a flea on a dog or cat.
Answer:
B) leech
Explanation:
The feeding adaptations of leech best represents parasitic way of life. Leeches are invertebrate animals and the phylum to which they belong is Annelida and their subclass is Hirudinea. Leeches have an anticoagulant named as heparin which they inject in the body of the host on which they feed upon. Heparin does not let the blood of the host coagulate and in this way they keep sucking the blood of host organism. Leeches are parasitic because they get benefited out of the host without benefiting the host by any means.
Which vertebrae would you expect to have the largest body, relative to the other regions? which vertebrae would you expect to have the largest body, relative to the other regions? lumbar cervical thoracic sacral?
The right answer is lumbar.
The vertebral column of humans is composed of several vertebra grouped according to their location. From the top there are the cervical vertebrae, the thoracic vertebrae, the lumbar vertebrae, and the welded vertebrae which are the secret and the coccyx.
The lumbar vertebrae, located in the middle of the spine are the widest and the most spaced between them.
The sahara is where some of the earliest human fossils have been found
I think this statement is true.
But recent discoveries, have brought to light new human remains (some of the oldest) in Morocco, on the "other side of Sahara".
Movement of the chromosomes during anaphase would be most affected by a drug that prevents which of the following events in mitosis and cell division?
A) nuclear envelope breakdownB) elongation of microtubulesC) shortening of microtubulesD) formation of a cleavage furrow
The correct answer is: C) shortening of microtubules
Chromosome movement is possible thanks to changes in microtubule length. Several types of microtubules are involved. First, during the anaphase kinetochore microtubules shorten and consequently the chromosomes move toward the spindle poles. Then the astral microtubules that are anchored to the cell membrane pull the poles further apart. At the end of anaphase, the interpolar microtubules slide past each other and that additionaly separate the chromosomes.
In mitosis and cell division, the movement of chromosomes during anaphase would mainly be affected by a drug that prevents the shortening of microtubules as they are responsible for the movement of chromosomes to the cell poles.
Explanation:The movement of chromosomes during anaphase during mitosis and cell division would be most affected by a drug that prevents the shortening of microtubules (option C).
During anaphase, sister chromatids separate and move towards the opposite poles of the cell. This process is facilitated by the shortening of microtubules which are attached to the kinetochores of the sister chromatids, pulling them apart.
If a drug prevented this shortening, the chromosomes would have difficulty separating and moving to the cell poles during anaphase.
The movement of chromosomes during anaphase in mitosis is primarily facilitated by the shortening of microtubules. During anaphase, the microtubules attached to the kinetochores of the chromosomes pull them towards opposite poles of the cell. If a drug prevents the shortening of microtubules, it would impair the movement of chromosomes and lead to abnormal cell division.
Learn more about Anaphase in Mitosis here:https://brainly.com/question/29768164
#SPJ3
PLEASE HELP ASAP WILL GIVE BRAINLIEST!!
Why don't most parasites kill their host?
Atleast 2 sentence response
Because they think that they are too humble to kill hosts. They think, "We will let Steve Harvey live."
Why do insectivorous plants trap insect while they also prepare carbohydrate by photosynthesis
But carnivorous plants often live in "awful", nutrient-poor places. In other words, very nutrient scarce environments where they're very boggy, so most of the nutrients have probably been leached away by water. As a result, the soil is so poor that many of those trace elements that keep plants growing normally, just aren't available in appreciable amounts. So the plants need to look to the air to obtain that nutrition and they do it by catching insects because if they catch an insect, insects have got lots of iron, they've got lots of proteins, they've got lots of other micronutrients in them that the plants have adapted and evolved to make use of, and to supplement the poor source of things that are coming in through the soil.
hope this helps please make me the brainliest
Consider the endosymbiosis theory for the origin of the mitochondrion. How did each endosymbiotic partner benefit from the relationship?
According to endosymbiosis theory, the mitochondria was once free-living prokaryotic cell. The cell was engulfed by other cell (host cell) via the process of phagocytosis.
The “eaten” cell survived inside the host. The host cell provided a nutrition and safe environment to live and the future mitochondria produced energy that the host cell can use. Over time the organelle and the host cell have evolved together.
A nerve poison that blocked neurotransmitter receptors on the dendrites would __________. inactivate the enzyme that degrades the neurotransmitter cause continued stimulation of the membrane of the receiving neuron inhibit the regeneration of the neurotransmitter for use by the sending neuron prevent reception of a signal in a receiving neuron
The correct answer is: prevent reception of a signal in a receiving neuron
Neurotransmitters are signal molecules or chemical messengers which transmit signals across a chemical synapse. Neurotransmitters send the signal, from one neuron (nerve cell) to another neuron, from neuron to muscle cell (motor plate), or from neuron to gland cell.
Drugs that bind to neurotransmitter’s receptor can have two effects on its action:
• Antagonists-they bind to receptor and thus prevent a neurotransmitter from binding to it
• Agonists-they bind to receptor and mimic the normal neurotransmitter (have the same effect as neurotransmitter).
A nerve poison that blocks neurotransmitter receptors on dendrites would prevent the reception of a signal in a receiving neuron. This happens as the flow of ions across the neuron's membrane is disrupted, making the neuron less likely to fire an action potential.
Explanation:If a nerve poison blocked neurotransmitter receptors on the dendrites, it would essentially prevent reception of a signal in a receiving neuron. Neurotransmitters, released from the sending neuron, need to bind to specific receptors in order to send a signal to the receiving neuron. Blocking these receptors therefore disrupts this communication process.
Upon the blocking, the flow of ions across the neuron's membrane is interfered with. This makes the neuron less likely to fire an action potential. The affected neurotransmitter cannot properly stimulate the postsynaptic neuron, in this case, due to the presence of the poison. So, it's not about inactivating any enzyme or inhibiting the regeneration of the neurotransmitter. It is more about preventing the reception of a signal in a receiving neuron.
Learn more about Neurotransmitter Blocking here:https://brainly.com/question/31474301
#SPJ3
Which type of rock forms due to the weight of the overlying rocks?
A. Igneous
B. Metamorphic
C. Sedimentary
Answer:
Option (C)
Explanation:
Sedimentary rocks are those rocks that are formed due to the compaction and lithification of sediments.
When the rocks are weathered by the agents such as wind, water and ice, the sediments or the particles are carried from that particular area to a different place. The sediments are then continuously deposited in a different place. As a result of which the sediments are accumulated over one another, forming layers. These sediments over a due course of time undergoes compaction and solidification due to the weight of the overlying rocks. This is how the sedimentary rocks are formed. Some of the examples of sedimentary rocks are sandstone, limestone, shale, and mudstone.
Thus, the correct answer is option (C).
Answer:
metamorphic rock
Explanation:
36. Breezes are named
A- for the feature they flow towards.
B- for the person who first observed them.
C- for the country they flow in.
D- for the feature they flow from.
The correct answer is - D- for the feature they blow from.
The breezes have all sorts of names, most of which tend to be derived from the feature they flow from. Lot of winds are named after the side of the world that they come from, so there's easterlies, westerlies, northern winds, southern winds. Some are maned after a river, as they flow along side it, like Vardarec. Some may be named after a mountain, or just have a name similar to a mountain, like mountain wind, forest wind, gorski vetrec.
Some winds, on the other hand, have names that describe their force, especially that goes for the strong ones, like bura along the Croatian coast on the Adriatic Sea.
The brachialis does not act at the shoulder and the coracobrachialis does not act at the elbow joint. Explain
Answer:
Coracobrachialis is the first muscle that gets innervation. it is involved in the flexing of shoulder and its adducts at the glenohumeral point. It does not cross elbow joint that's why it has no function there.
Brachialis is the essential versatile flexor of elbow joint. It originates at the upper arm almost mid of humerus, from the distal portion and inserts on ulna. that is why it can not have any kind of influence on shoulder.
The brachialis does not act on the shoulder because it is located deep to the biceps brachii and only provides power in flexing the forearm. Meanwhile, the Coracobrachialis is responsible for the flexion and adduction of the arm at the shoulder joint and doesn't extend to the elbow joint.
Explanation:The reason why the brachialis does not act at the shoulder and the coracobrachialis does not act at the elbow joint is because of their location and function in the musculoskeletal system. The brachialis provides additional power in flexing the forearm and is located deep to the biceps brachii, meaning it doesn't cross the shoulder and therefore doesn't have a functional impact on that joint. Similarly, the coracobrachialis is responsible for the flexion and adduction of the arm at the shoulder joint, but it doesn't extend to or have a direct effect on the elbow joint.
It's important to note that muscles can only contract, so they occur in pairs. For instance, in the arm, the biceps brachii is a flexor and helps close the limb, while the triceps is an extensor that opens the limb.
In this configuration, which is typical of skeletal muscles, bones, and joints, each muscle has a specific role and area of operation based on its attachment to the skeleton and the functionalities it provides.
Learn more about muscles action here:https://brainly.com/question/31884567
#SPJ3
PLEASE HELP!!!
What happens if nondisjunction occurs?
Too many gametes are produced.
Mitosis cannot take place.
No gametes are produced.
A gamete receives too many or too few copies of a chromosome.
a gamete recieves too many or too few copies of a chromosome.
Why do you think rheumatoid arthritis is often a degenerative disease?
Osteoarthritis is also known as degenerative joint disease. Rheumatoid arthritis on the other hand, is an autoimmune disease in which your own immune system attacks your own tissues, in this case, your joints. This causes chronic inflammation, painful swelling, and and can lead to joint deformity.
Answer:
Because the immune system considers the healthy tissue to be a foreign invader, every time the body regenerates the tissue, it will attack it again. Over time, there is greater tissue loss, which causes symptoms to worsen.
Explanation:
PLATO answer
PLEASE ANSWER WILL GIVE 75 POINTS
1. Eight double-stranded DNA molecules resulted after three complete cycles of a single DNA double helix. How many molecules will result after 10 cycles? 20 cycles? 30 cycles? (Hint: You’ll need a calculator that can do logarithmic functions)
2. How do the amplified DNA strands compare with the original DNA strands? (Answer should include: Are the sequences the same/different? Length the same/different?)
3. After 30 cycles, what percent of the DNA in the test tube would be like the original DNA strand? What percent would be like the target segment?
Could DNA be amplified with only one primer? WHy or why not?
4. Primers will sometimes complement each other and create a DNA product. This creates a problem when trying to determine what came from your target DNA and what was created by the primer complementation.
5. What could you add when you design your PCR experiment to make sure that only DNA product you are seeing is coming from your target DNA? (Hint: what do you need for any experiment?)
where the abcd at idk but here some help
Typically, the goal of PCR is to make enough of the target DNA region that it can be ... by gel electrophoresis, or cloned into a plasmid for further experiments. ... are used in each PCR reaction, and they are designed so that they flank the target .... copies of a DNA sequence that we can see or manipulate that region of DNA.
For example, it might be a gene whose function a researcher wants to ... Typically, the goal of PCR is to make enough of the target DNA region that it ... Like other DNA polymerases, Taq polymerase can only make DNA if it's ... determines the region of DNA that will be copied, or amplified, by the primers she or he chooses.
1. After 10 cycles, there would be 1024 DNA molecules, after 20 cycles there would be 524288 molecules, and after 30 cycles there would be 536,870,912 molecules. 2. The amplified DNA strands have the same sequence as the original DNA strands, but the length is different. 3. After 30 cycles, only approximately 0.0000015% of the DNA in the test tube would be like the original DNA strand.
Explanation:1. The number of double-stranded DNA molecules after each cycle of amplification in a polymerase chain reaction (PCR) can be calculated by multiplying the number of molecules from the previous cycle by 2. In this case, after 3 cycles, there are 8 molecules. So, after 10 cycles, there would be 8 x 2⁷ molecules (2 raised to the power of 7) which is equal to 1024 molecules. Similarly, after 20 cycles, there would be 8 x 2¹⁹ molecules which is equal to 524288 molecules, and after 30 cycles, there would be 8 x 2²⁹ molecules which is equal to 536,870,912 molecules.
2. The amplified DNA strands would have the same sequence as the original DNA strands since PCR duplicates the DNA template. However, the length of the amplified DNA strands would be different, as each cycle of amplification doubles the number of DNA molecules.
3. After 30 cycles, only a fraction of the DNA in the test tube would be like the original DNA strand. To calculate the percentage, we can divide the number of molecules of the original DNA strand (8) by the total number of molecules after 30 cycles (536,870,912) and multiply by 100. This would result in approximately 0.0000015% of the DNA being like the original DNA strand. The remaining 99.9999985% would be similar to the target segment.
PCR requires two primers, one for each strand of the original DNA, to target the specific region of interest. Using only one primer would not allow specific amplification of the target DNA, as the polymerase would randomly bind to any available single-stranded DNA molecule and amplify it.
4. When primers complement each other and create a DNA product, it becomes challenging to distinguish between the DNA that originated from the target DNA and the DNA created through primer complementation. This can lead to false amplification results and difficulties in accurately determining the amplification of the target DNA.
5. To ensure that only the DNA product from the target DNA is observed, you can add a control sample that lacks the target DNA. This control sample should contain all the PCR components, including the primers, except for the target DNA. By comparing the amplification results of the control sample with the target DNA sample, you can confirm that the DNA product observed is specific to the target DNA.
Learn more about PCR amplification here:https://brainly.com/question/33462275
#SPJ12
The chemicals involved in the transfer of impulses from one neuron to another are called _[blank]_​.
dendrites
neurotransmitters
neurons
axons
the answer is neurotransmitters
neurotransmitters cause the transfer of an impulse from one nerve fiber to another nerve fiber, a muscle fiber, or some other structure.
The eggs released by sponges during reproduction have proteins on their surfaces that prevent sperm from different sponge species from binding to the eggs. what type of reproductive isolation would include this example? the eggs released by sponges during reproduction have proteins on their surfaces that prevent sperm from different sponge species from binding to the eggs. what type of reproductive isolation would include this example? gamete incompatibility behavioral reproductive isolation hybrid inviability mechanical reproductive isolation
gamete incompatibility?
What interesting fact about human genes allows humans to be so much more complex than something like a fruit fly
Final answer:
Human genes enhance complexity through alternative splicing, wherein a single gene can produce multiple protein products, significantly expanding the human proteome compared to that of simpler organisms. Unique genes present in humans but missing in invertebrates also contribute to this complexity, as does genetic research on model organisms that share many core genes with humans.
Explanation:
An interesting fact about human genes that allows humans to be much more complex than organisms like fruit flies is the process known as alternative splicing. While humans have roughly 20,000 to 22,000 genes, which is not significantly higher than many simpler organisms, the complexity arises in how our cells can produce multiple proteins from a single gene. This means that the human proteome, the total number of different proteins, is much larger than that of the fruit fly or the roundworm, potentially up to 10 times larger due to the number of alternative splicing events.
Moreover, humans possess genes that are absent in invertebrates, which likely contribute to the added complexity and functions that distinguish vertebrates. These unique genes and the vast combination of genetic variations, contributed by both alternative splicing and regulatory mechanisms, give rise to the profound diversity observed in the human population. In addition, genetics research on simpler models like fruit flies is extraordinarily valuable for understanding human diseases, due to the commonality of core genes between these species.
Which of the following are likely to occur as global temperatures rise?
a rise in sea levels
massive die-offs of reef communities
more severe droughts in some areas
stronger storms and hurricanes
a and d
a, b, and c
a and b
all of the above