What is the speed of the animal from 0-20s?

50 m/s
0.4 m/s
20 m/s
2.5 m/s

What Is The Speed Of The Animal From 0-20s? 50 M/s0.4 M/s20 M/s2.5 M/s

Answers

Answer 1

Answer:

2.5 m/s

Explanation:

The speed of the animal is given by the ratio between the distance travelled by the animal and the time elapsed:

[tex]v=\frac{d}{t}[/tex]

where d is the distance travelled and t the time elapsed. Note that this quantity is also equal to the slope of the curve.

In the time interval 0-20 s, we have

d = 50 m - 0 m = 50 m

t = 20 s - 0 s = 20 s

So, the speed is

[tex]v=\frac{50 m}{20 s}=2.5 m/s[/tex]


Related Questions

What is the strongest force on Earth?
P.S. It is not LOVE

Answers

lol if not LOVE then its , strongest fundamental force is the strong nuclear force; it is 100 times stronger than the electromagnetic force.

hope this helps:)sorry if it doesnt

The velocity of a projectile at launch has a horizontal component vh and a vertical component vv. When the projectile is at the highest point of its trajectory, identify the vertical and the horizontal components of its velocity and the vertical component of its acceleration. Consider air resistance to be negligible

Answers

Answer:

- horizontal component of the velocity: [tex]v_h[/tex] (because it is constant)

- vertical component of the velocity: 0

- vertical component of the acceleration: [tex]-g=-9.8 m/s^2[/tex] (downward)

Explanation:

The motion of a projectile consists of two independent motions:

- Along the horizontal direction, there are no forces acting on the projectile (if we neglect air resistance), therefore the horizontal acceleration is zero and the horizontal component of the velocity, vh, is constant

- Along the vertical direction, there is only one force acting on the projectile: the force of gravity, downward, which produces a constant downward acceleration of [tex]g=9.8 m/s^2[/tex]. As a consequence, the vertical component of the velocity changes according to

[tex]v_v(t) = v_v-gt[/tex]

where vv is the initial vertical velocity and t the time. According to this equation, the vertical component of the velocity decreases first, then becomes zero at the point of maximum height, then becomes negative (= changes direction and points downward)

So, in summary, at the highest point of the trajectory we have:

- horizontal component of the velocity: [tex]v_h[/tex] (because it is constant)

- vertical component of the velocity: 0

- vertical component of the acceleration: [tex]-g=-9.8 m/s^2[/tex] (downward)

At the highest point, the final vertical velocity is zero, and the final horizontal velocity is equal to the initial horizontal velocity.

The acceleration due to gravity acting on the object is always directed downwards.

In a projectile motion, the velocity of projected upwards decreases as the object moves upwards and eventually become zero at the maximum height.

The velocity of an object projected upwards is given as;

[tex]v_y = v_0 -gt[/tex]

At the highest point, the final vertical velocity is given as;

[tex]v_y_f= 0[/tex]

The horizontal velocity is always constant because it is not affected by gravity.

At the highest point, the final horizontal velocity is given as;

[tex]v_x_f = v_x_0[/tex]

The acceleration due to gravity acting on the object is always directed downwards.

Learn more here:https://brainly.com/question/12860905

Find the TRUE statement. Use the underlined word to determine whether the statement is true or false. Question 3 options: Electromagnetic waves are mechanical because they require a medium to travel. Electromagnetic waves are transverse because they have electric and magnetic fields that move perpendicular to the direction of energy transfer. The speed of an electromagnetic wave depends on the frequency of the wave. Gamma rays are faster than radio waves. As the frequency of an EM wave increases, so does the wavelength. They are directly related.

Answers

Electromagnetic waves are transverse because they have electric and magnetic fields that move perpendicular to the direction of energy transfer.

(sorry if I'm wrong) :(

Final answer:

The accurate statement is that electromagnetic waves are transverse because their electric and magnetic fields move perpendicular to the direction of energy transfer. Other claims are false since electromagnetic waves do not need a medium to travel, and gamma rays are not faster than radio waves; all electromagnetic waves move at light speed, and frequency and wavelength are inversely related.

Explanation:

The true statement among the options given is that electromagnetic waves are transverse because they have electric and magnetic fields that move perpendicular to the direction of energy transfer.

Electromagnetic waves are not mechanical because they do not require a medium to travel through; they can move through the vacuum of space. The speed of an electromagnetic wave is constant at the speed of light (approximately 3.0 × 108 m/s), regardless of its frequency. Moreover, gamma rays are not faster than radio waves because all electromagnetic waves travel at the same speed. And as the frequency of an electromagnetic wave increases, the wavelength decreases; they are inversely related, not directly related.

A leaky 10-kg bucket is lifted from the ground to a height of 16 m at a constant speed with a rope that weighs 0.7 kg/m. initially the bucket contains 48 kg of water, but the water leaks at a constant rate and finishes draining just as the bucket reaches the 16-m level. find the work done. (use 9.8 m/s2 for g.) show how to approximate the required work by a riemann sum. (let x be the height in meters above the ground. enter xi* as xi.)

Answers

[tex]\displaystyle W =\lim_{n\to\infty}{\sum_{i=0}^{n}{(678.16 - 36.26\;x_i)\cdot\dfrac{16}{n}}}[/tex].

Explanation

The mass comes in three parts:

the mass of the rope,the mass of the water in the leaky bucket, andthe mass of the bucket.

Both the mass of the rope [tex]m_\text{rope}[/tex] and the mass of the water in the bucket [tex]m_\text{water}[/tex] varies with the height [tex]x[/tex] of the bucket. Express the two masses as a function of [tex]x[/tex]:

[tex]m_\text{rope} = 0.7\;(16 - x)[/tex],

The water in the bucket behaves like yet another rope of density [tex]48 \;\text{kg}/ 16 \;\text{m}= 3.0\;\text{kg}\cdot\text{m}^{-1}[/tex]. The mass of the water left in the bucket at height [tex]x[/tex] will be

[tex]m_\text{water} = 3.0\;(16 - x)[/tex].

The mass of the bucket is [tex]10\;\text{kg}[/tex]. Combining the three:

[tex]m(x)  = m_\text{rope}(x) + m_\text{water}(x) + m_\text{bucket} \\\phantom{m(x)} = 0.7\;(16-x) + 3.0\;(16 - x) + 10\\\phantom{m(x)} = 69.2 - 3.7\;x[/tex].

Weight of the bucket at height [tex]x[/tex]:

[tex]F_\text{weight}(x) = m(x)\cdot g = 9.8\;(69.2 - 3.7\;x) = 678.16 - 36.26\;x[/tex].

The bucket moves upward at a constant speed. As a result,

[tex]F(x) = W(x) = 678.16 - 36.26\;x[/tex].

Express the work required as a definite integral:

[tex]\displaystyle W = \int_{0}^{16}{F(x) \cdot dx} = \int_{0}^{16}{(678.16 - 36.26\;x)\cdot dx}[/tex].

Rewrite the definite integral as a Riemann Sum:

[tex]\displaystyle W = \int_{0}^{16}{(678.16 - 36.26\;x)\cdot dx} \\\phantom{W}= \lim_{n\to\infty}{\sum_{i=0}^{n}{(678.16 - 36.26\;x_i)\cdot\frac{16-0}{n}}}\\\phantom{W} = \lim_{n\to\infty}{\sum_{i=0}^{n}{(678.16 - 36.26\;x_i)\cdot\frac{16}{n}}}[/tex].
Final answer:

The work done lifting a bucket of water draining at a constant rate can be calculated using the physics Work formula and approximating the varying force with a Riemann sum. The total work is the sum of the work done across several small intervals, calculated by multiplying the force required to lift the remaining water plus the bucket and the rope by the small altitude.

Explanation:

The work done in lifting an object can be calculated using the formula Work = Force x Distance = (mass x gravity) x height. However, this situation is a bit more complex since the mass of both the bucket and the water it contains decrease continuously as the bucket is lifted.

We will approximate this varying force using a Riemann sum. We can imagine breaking up the 16 m into n small intervals. For each interval i from 0 to n-1, we calculate the force required to lift the remaining water plus the bucket and rope to a height xi*, and then multiply this by the small change in height Δx. This gives us the small amount of work done ΔW_i = (m(xi*)g)Δx, where m(xi*) is the mass of the system at height xi*.

The total work then is approximately the sum of all these small amounts of work, W ≈ Σ ΔW_i for i from 0 to n-1. The more intervals we use (the bigger n is), the better this approximation will be.

Learn more about Work and Energy here:

https://brainly.com/question/31519289

#SPJ3

A mass on the end of a spring undergoes simple harmonic motion. At the instant when the mass is at its equilibrium position, what is its instantaneous velocity? 1.Instantaneous velocity cannot be determined without additional information2.At equilibrium, its instantaneous velocity is less than its maximum but not zero.3.At equilibrium, its instantaneous velocity is at maximum4.At equilibrium, its instantaneous velocity is zero.

Answers

Answer:

3.At equilibrium, its instantaneous velocity is at maximum

Explanation:

The motion of a mass on the end of a spring is a simple harmonic motion. In a simple harmonic motion, the total mechanical energy of the system is constant, and it is sum of the elastic potential energy (U) and the kinetic energy of the mass (K):

[tex]E=U+K=\frac{1}{2}kx^2+\frac{1}{2}mv^2 = const.[/tex]

where

k is the spring constant

x is the displacement of the spring from equilibrium

m is the mass

v is the speed

As we see from the formula, since the total energy E is constant, when the displacement (x) increases, the speed (v) increases, and viceversa. Therefore, when the mass is at its equilibrium position (which corresponds to x=0), the velocity of the mass will be maximum.

Final answer:

At the equilibrium position in simple harmonic motion, the instantaneous velocity of the mass is at its maximum. This is because all the potential energy of the spring is converted into kinetic energy of the mass at this point.

Explanation:

In a simple harmonic motion such as a mass on the end of a spring, the equilibrium position is the point where the spring is neither stretched nor compressed. This equilibrium is often denoted as x = 0. When the mass passes through this point, its velocity is at maximum, because at this instance, the entire potential energy of the spring is converted into kinetic energy of the mass. So, the correct statement among the provided options is, 'At equilibrium, its instantaneous velocity is at maximum'. The instantaneous velocity varies according to the displacement of the mass from the equilibrium during its oscillation.

In other words, when the displacement is at its extremes (maximum or minimum), the velocity becomes zero as the mass momentarily pauses before changing its direction of motion. On the other hand, when the displacement is zero at the equilibrium, the velocity is at its maximum.

Learn more about Simple Harmonic Motion here:

https://brainly.com/question/35900466

#SPJ3

A coil lies flat on a level tabletop in a region where the magnetic field vector points straight up. The magnetic field suddenly grows stronger. When viewed from above, what is the direction of the induced current in this coil as the field increases?a. Counterclockwiseb. Clockwise initially, then counterclockwise before stoppingc. Clockwised. There is no induced current in this coil

Answers

ghnjghfjghfdagdfsagdfsbvgdfshgfhgfhgfhgfhdgfh tyityukivmjbvnmvbcn

In February 1955, a paratrooper fell 370 m from an airplane without being able to open his chute but happened to land in snow, suffering only minor injuries. Assume that his speed at impact was 55 m/s (terminal speed), that his mass (including gear) was 68 kg, and that the magnitude of the force on him from the snow was at the survivable limit of 1.1 × 105 N. What are (a) the minimum depth of snow that would have stopped him safely and (b) the magnitude of the impulse on him from the snow?

Answers

a) 0.94 m

The work done by the snow to decelerate the paratrooper is equal to the change in kinetic energy of the man:

[tex]W=\Delta K\\-F d = \frac{1}{2}mv^2 - \frac{1}{2}mu^2[/tex]

where:

[tex]F=1.1 \cdot 10^5 N[/tex] is the force applied by the snow

d is the displacement of the man in the snow, so it is the depth of the snow that stopped him

m = 68 kg is the man's mass

v = 0 is the final speed of the man

u = 55 m/s is the initial speed of the man (when it touches the ground)

and where the negative sign in the work is due to the fact that the force exerted by the snow on the man (upward) is opposite to the displacement of the man (downward)

Solving the equation for d, we find:

[tex]d=\frac{1}{2F}mu^2 = \frac{(68 kg)(55 m/s)^2}{2(1.1\cdot 10^5 N)}=0.94 m[/tex]

b) -3740 kg m/s

The magnitude of the impulse exerted by the snow on the man is equal to the variation of momentum of the man:

[tex]I=\Delta p = m \Delta v[/tex]

where

m = 68 kg is the mass of the man

[tex]\Delta v = 0-55 m/s = -55 m/s[/tex] is the change in velocity of the man

Substituting,

[tex]I=(68 kg)(-55 m/s)=-3740 kg m/s[/tex]

(a) The minimum depth of the snow is 0.935 m.

(b) The magnitude of the impulse on him from the snow is -3,740 Ns.

How to calculate the minimum depth of the snow?

(a) The minimum depth of the snow is calculated by applying the following formula as follows;

Apply the principle of conservation of energy;

Fd = ¹/₂mu²

d = mu²/2F

where;

m is the massF is the applied forceu is the initial velocity

d = (68 x 55² ) / ( 2 x 1.1 x 10⁵)

d = 0.935 m

(b) The magnitude of the impulse on him from the snow is calculated as follows;

J = mΔv

where;

Δv is change in speed

J = m(v - u)

J = 68 (0 - 55)

J = -3,740 Ns

Learn more about impulse here: https://brainly.com/question/30395939

#SPJ3

Use the flow rate equation to help explain how the motion of a whitewater raft changes as the river channel becomes narrower.

Answers

as the flow becomes narrower, more pressure is exerted because the pressure is greater

Final answer:

As the river channel narrows, the water velocity increases due to the same volume of water needing to pass through a smaller area, speeding up the motion of a whitewater raft. This effect is similar to narrowing the opening of a hose to increase water speed.

Explanation:

The flow rate equation helps explain how the motion of a whitewater raft changes as the river channel becomes narrower by considering the flow velocity, which is influenced by the hydraulic radius, channel slope, and channel roughness. In simpler terms, the flow rate (Q) is the volume of water that moves past a point in a given time and is calculated by Q = wdv, where w is the width of the channel, d is the depth of the channel, and v is the velocity of the water.

When the river channel narrows, the same volume of water (discharge) must pass through a smaller cross-sectional area. Consequently, the velocity of the water increases, which can be thought of like putting a thumb over the end of a hose to speed up the water. This increase in velocity will cause the whitewater raft to move faster downstream when the channel is narrower.

Moreover, factors such as rain or snow melt can lead to an increase in discharge, which would further contribute to an increase in the velocity of the water in the narrowed parts of the river. On the contrary, as the channel widens downstream, the current generally slows, which may result in increased sedimentation and a slower moving whitewater raft.

The reason an astronaut in an earth satellite feels weightless is that

Answers

there is less gravity

Answer:

Gravity is the reason why you feel this way

Explanation:

Other Questions
The reaction shifts toward the product gas.Ammonia is consumed in the reaction.The system reacts by increasing the number of gas molecules.The pressure on the gases decreases momentarily. which of the following is an example of how a scientist might use a modelA. Marbles placed inside a hollow sphere are used to describe protons in a nucleus B. Stopwatches measure the amount of time it takes for runners to complete a mileC. Microscopes are used to magnify a group of cells on sets of slides D. A wrench is used to tighten a nut onto a piece of wood In complete sentences, explain two reasons why the Federal Reserve is made up of system of banks spread across the country. Lo opuesto (The opposite) de barato es caro . La madre de mi marido es mi . La cae (falls) del cielo (sky) cuando hace mucho fro. Mi hermana nunca se cas. Ella es . Cuando eres vegetariano no comes . El es un postre fro y es muy popular en el verano. Cuando viajas, muestras tu equipaje en la al llegar a tu destino. Pones la ropa en la para prepararte para un viaje. La habitacin donde te duchas es el . Cuando la ropa cuesta menos de lo normal (than normal) est de . Diagnostics_number_3 Ms vocabulario Pair up the questions with their corresponding answer. : l es viudo. : Lo siento, pero no lo tengo aqu. : Nos divertimos mucho. : S, al baloncesto. : Ciento cincuenta pesos. : Se fue a la cama a las doce. : No, no me gustan los dulces. : S, lo cierran a las ocho. : No, le dan mucho miedo. : Mediana. Diagnostics_number_4 Verbos en presente Fill in the blanks with the present tense forms of the verbs in parentheses. Yo siempre (poner) la mesa. Isabel (hacer) la tarea de espaol. T (salir) los fines de semana You business Is dependent on gas to transport its goods. The price of oil decreases, which means your production cost _ In Cherokee County, the fine for speeding is $17 for each mile per hour the driver is traveling over the posted speed limit. In Cherokee County, Kirk was fined $221 for speeding on a road with the posted speed limit of 30mph. Kirk was fined for traveling at what speed, in miles per hour? Explain you answer in 3 sentences. (2 points) Describe how president jackson reacted to the supreme court decision supporting the cherokees' rights Japanese Shinto believed that kami spirits could be found in what kinds of objects? Select all that apply.A.riversB.scripturesC.treesD.sculpturesE.paintings What is the main didference between health-related fitness and performance related fitness Spain declared war on what country in 1859? What does an eco psychologist study brainliest for whoever answers this i need it quickRegarding early reports of the Holocaust during World War II, the immediate response by President Roosevelt and the United States government wasa. to focus on winning the war as quickly as possible.b. to allow greater numbers of refugees into the United States.c. to notify the public of the reports of German actions against the Jews.d. to begin taking steps to invade concentration camps to free those held there.Newspapers in the United States reported Nazi atrocities against European Jews as early as 1942. Which response describes the reaction of the general public to these reports?a. suggestions for covert operations against concentration campsb. support for economic sanctions against Germanyc. demand for immediate military action in Europed. denial that such reports could be true I will rate brainliest help Find the Ka of nitrous acid given that a 0.20 M solution of the acid has a hydrogen ion concentration of 2.8*10-3 M. HNO2 (aq) ? H+ (aq) + NO2- (aq) Which number line shows the solution set for |s/2+4| < 2 If angle one and angle five a vertical angles and angle one equals 55 then angle five will equal _____? A guitarist is tuning a guitar. She hears a low beat every 2.0 seconds. What is the difference between the correct frequency and measured frequency of the guitar string? Which of the following measurements could be the side lengths of a right triangle?A.54 in, 72 in, 108 inB.54 in, 81 in, 90 inC.45 in, 72 in, 90 inD.54 in, 72 in, 90 in Ivys teacher assigned a class project where each student must choose a topic of their choice and communicate their thoughts via any media they would like. What does Ivys teacher mean by the word media?A) She is referring to the paparazzi.B) She is allowing students to select their own method of communication.C) She wants students to create a visual poster.D) She has a very specific format that she would like students to use. Antoine stands on a balcony and throws a ball to his dog, who is at ground level. The ball's height (in meters above the ground), x seconds after Antoine threw it, is modeled by: h(x)=-2x^2+4x+16. How many seconds after being thrown will the ball hit the ground? Steam Workshop Downloader