What is the volume of a 0.5 mol/L NaOH solution required to completely react with 20 mL of a 2.0 mol/L HCl solution? What is the pH value of the produced solution? (Hint: Write and balance the chemical reaction between HCl and NaOH, and then use the stoichiometric relation (molar relation) between NaOH and HCl to calculate the minimum volume of NaOH solution.) Group of answer choices

Answers

Answer 1

Answer:

The volume of NaOH required is 80mL

pH of the resulting solution is 7 since reaction produces a normal salt

Explanation:

First, we generate a balanced equation for the reaction as shown below:

NaOH + HCl —> NaCl + H2O

From the equation,

nA = 1

nB = 1

From the question,

Ma = 2.0 mol/L

Va = 20 mL

Mb = 0.5 mol/L

Vb =?

MaVa / MbVb = nA /nB

2x20 / 0.5 x Vb = 1

0.5 x Vb = 2 x 20

Divide both side by 0.5

Vb = (2 x 20)/0.5

Vb = 80mL

The volume of NaOH required is 80mL

Since the reaction involves a strong acid and a strong base, a normal salt solution will be produced which is neutral to litmus paper. So since the salt solution is neutral to litmus paper then the pH of the resulting solution is 7

Answer 2

The pH of a solution prepared by mixing HCl and NaOH, we need to determine the concentration of the resulting solution. Since HCl and NaOH react in a 1:1 ratio to form water and salt (NaCl), we can use the concept of neutralization to find the resulting concentration.

Moles of HCl = volume (in L) × molarity = 0.020 L × 0.30 mol/L = 0.006 mol

Moles of NaOH = volume (in L) × molarity = 0.015 L × 0.60 mol/L = 0.009 mol

Since HCl and NaOH react in a 1:1 ratio, the limiting reagent is HCl. This means that all of the HCl will react with NaOH, and we will have an excess of NaOH. Therefore, the number of moles of HCl remaining will be zero.

Total volume = 20.0 mL + 15.0 mL = 35.0 mL = 0.035 L

Concentration of resulting solution = (Moles of HCl + Moles of NaOH) / Total volume

= (0.006 mol + 0.009 mol) / 0.035 L

= 0.429 mol/L

pH = -log[H+]

pH = -log(0.429)

≈ 0.366

Therefore, the pH of the solution prepared by mixing 20.0 mL of 0.30 M HCl with 15.0 mL of 0.60 M NaOH is approximately 0.366.

Learn more about concentration here : brainly.com/question/30862855
#SPJ11


Related Questions

How many electrons in an atom can have each of the following quantum number or sublevel designations?
(a) n = 2, l = 1
(b) 3d
(c) 4s

Answers

Answer: a:6 electrons, b:10electrons, c: 2electrons

Explanation:

1.Principle quantum number(n)

n is the number of shell, it is a positive integer. The maximum number of electrons in a shell is 2(n2)

2.Azimuthal quantum number(l)

l is the number of subshell in the principal shell

The name of subshell are s, p, d, f

The number of nodes in each subshell is

s is l=0, p is l=1, d is l=2, f is l=3.

Each shell can have 2 x l + 1 sublevels, and each sublevel can accommodate maximum of 2 electrons and have two electrons.

A. n=2, l=1 then 2 x 1 + 1= 3 subshell, 3*2= 6 electrons in the p subshell

b. 3d, d is l = 2 then 2 x 2 + 1 = 5 sublevels, 5*2=10 electrons in the d subshell

c. 4s, s is l=0 then 2 x 0 + 1 = 1 sublevel, 1*2=2 electrons in the s subshell.

Palladium (Pd; Z 46) is diamagnetic. Draw partial orbital diagrams to show which of the following electron configurations is consistent with this fact:
(a) [Kr] 5s²4d⁸
(b) [Kr] 4d¹⁰
(c) [Kr] 5s¹4d⁹

Answers

Answer : The electron configurations consistent with this fact is, (b) [Kr] 4d¹⁰  

Explanation :

Electronic configuration : It is defined as the representation of electrons around the nucleus of an atom.

Number of electrons in an atom are determined by the electronic configuration.

Paramagnetic compounds : They have unpaired electrons.

Diamagnetic compounds : They have no unpaired electrons that means all are paired.

The given electron configurations of Palladium are:

(a) [Kr] 5s²4d⁸

In this, there are 2 electrons in 's' orbital and 8 electrons in 'd' orbital. From the partial orbital diagrams we conclude that 's' orbital are paired but 'd' orbital are not paired. So, this configuration shows paramagnetic.

(b) [Kr] 4d¹⁰

In this, there are 10 electrons in 'd' orbital. From the partial orbital diagrams we conclude that electrons in 'd' orbital are paired. So, this configuration shows diamagnetic.

(c) [Kr] 5s¹4d⁹

In this, there are 1 electron in 's' orbital and 9 electrons in 'd' orbital. From the partial orbital diagrams we conclude that 's' orbital and 'd' orbital are not paired. So, this configuration shows paramagnetic.

Final answer:

The correct electron configuration for a diamagnetic substance like Palladium (Pd) is [Kr] 4d¹⁰. This is because diamagnetic substances like Palladium need to have all their electron orbitals fully filled, thereby having no unpaired electrons.

Explanation:

The subject of this question is about the electron configuration of Palladium (Pd; Z 46), which is a diamagnetic element. Diamagnetic substances have no unpaired electrons and are not attracted to a magnetic field. Thus, to be consistent with this fact, the electron configuration of Palladium must not have any unpaired electrons.

(a) [Kr] 5s²4d⁸: This configuration would imply there are unpaired electrons in the 4d orbital, which contradicts the fact that Palladium is diamagnetic.

(b) [Kr] 4d¹⁰: This configuration correctly states that all the orbitals are filled, including the 5s orbital before the 4d orbital. Therefore, the correct electron configuration for Palladium, a diamagnetic element, is [Kr] 4d¹⁰.

(c) [Kr] 5s¹4d⁹: The proposed configuration would also suggest an unpaired electron exists in the 4d orbital, which contradicts Palladium being diamagnetic.

Learn more about Electron Configuration here:

https://brainly.com/question/31812229

#SPJ6

Which of the following solutions will have the lowest freezing point? Input the appropriate letter. A. 35.0 g of C3H8O in 250.0 g of ethanol (C2H5OH) B. 35.0 g of C4H10O in 250.0 g of ethanol (C2H5OH) C. 35.0 g of C2H6O2 in 250.0 g of ethanol (C2H5OH)

Answers

Answer:

Solution with 35.0 g of [tex]C_3H_8O[/tex] in 250.0 g of ethanol will have lowest freezing point

Explanation:

[tex]\Delta T_f=K_f\times m[/tex]

where,

[tex]\Delta T_f[/tex] =depression in freezing point =  

[tex]K_f[/tex] = freezing point constant  

m = molality

As we can see that higher the molality of the solution more will depression in freezing point of the solution and hence lower will the freezing point of solution.

[tex]Molality=\frac{moles}{\text{mass of solvent in kg}}[/tex]

A. 35.0 g of [tex]C_3H_8O[/tex] in 250.0 g of ethanol.

Moles of [tex]C_3H_8O[/tex]=[tex]\frac{35.0 g}{60 g/mol}=0.5833 mol[/tex]

Mass of solvent i.e. ethanol = 250.0 g = 0.25 kg (1 g = 0.001 kg)

[tex]m=\frac{0.5833 mol}{0.25 kg}=2.33 m[/tex]

B. 35.0 g of [tex]C4H_{10}O[/tex] in 250.0 g of ethanol

Moles of [tex]C_4H_{10}O[/tex][tex]=[tex]\frac{35.0 g}{74 g/mol}=0.4730 mol[/tex]

Mass of solvent i.e. ethanol = 250.0 g = 0.25 kg (1 g = 0.001 kg)

[tex]m'=\frac{0.4730 mol}{0.25 kg}=1.89 m[/tex]

C. 35.0 g of [tex]C_2H_{6}O_2[/tex] in 250.0 g of ethanol

Moles of [tex]C_2H_{6}O_2[/tex]=[tex]\frac{35.0 g}{62g/mol}=0.5645 mol[/tex]

Mass of solvent i.e. ethanol = 250.0 g = 0.25 kg (1 g = 0.001 kg)

[tex]m''=\frac{0.5645 mol}{0.25 kg}=2.26 m[/tex]

[tex]m>m'''>m''[/tex]

Solution with 35.0 g of [tex]C_3H_8O[/tex] in 250.0 g of ethanol will have lowest freezing point

You analyze a sample of unknown metal as you would in this experiment. You measure the volume of H2(g) generated to be 71.85 mL and the water temperature to be 20.0°C. You calculate PH2 to be 0.781 atm. Use the ideal gas law to calculate the number of moles of hydrogen gas generated.

Answers

Answer: The number of moles of hydrogen gas generated is [tex]2.33\times 10^{-3}mol[/tex]

Explanation:

To calculate the number of moles of hydrogen gas, we use the equation given by ideal gas which follows:

[tex]PV=nRT[/tex]

where,

P = pressure of the gas = 0.781 atm

V = Volume of the gas = 71.85 mL = 0.07185 L     (Conversion factor:  1 L = 1000 mL)

T = Temperature of the gas = [tex]20^oC=[20+273]K=293K[/tex]

R = Gas constant = [tex]0.0821\text{ L. atm }mol^{-1}K^{-1}[/tex]

n = number of moles of hydrogen gas = ?

Putting values in above equation, we get:

[tex]0.781atm\times 0.07185L=n\times 0.0821\text{ L.atm }mol^{-1}K^{-1}\times 293K\\\\n=\frac{0.781\times 0.07185}{0.0821\times 293}=2.33\times 10^{-3}mol[/tex]

Hence, the number of moles of hydrogen gas generated is [tex]2.33\times 10^{-3}mol[/tex]

In an aqueous solution containing Ni (II) and Ni (IV) salts, which cation would you expect to be the more strongly hydrated? Why?

Answers

Answer:

Well in comparison of Ni (II) and Ni (IV), Ni (IV) is a stronger vation with the +4 charge so it will attract the more oxygen ions in the aqueous solution. That is why Ni (IV) will be more strongly hydrated.

Explanation:

Final answer:

In an aqueous solution, the Ni (IV) cation is more strongly hydrated than the Ni (II) cation due to its higher charge density, which attracts more water molecules into its hydration sphere.

Explanation:

In an aqueous solution containing Ni (II) and Ni (IV) salts, the Ni (IV) cation is expected to be more strongly hydrated. This outcome is attributed primarily to the charge density. The Ni (IV) has a higher charge (+4) compared to Ni (II) which has a +2 charge. In terms of hydration, water molecules, which act as dipoles, are more strongly attracted to ions with a higher charge density. This means that the Ni (IV) ion, with its higher charge, attracts and binds water molecules more strongly than the Ni (II) ion.

This strong attraction results in a greater degree of hydration for the Ni (IV) ion as it pulls more water molecules into its hydration sphere. This process is crucial in understanding the properties of solutions, especially in predicting the behavior of ions in biological and chemical systems.

At a certain temperature this reaction follows first-order kinetics with a rate constant of 0.184 s^-1 ? Suppose a vessel contains Cl_2 O_5 at a concentration of 1.16 M. Calculate the concentration of Cl_2 O_5 in the vessel 5.70 seconds later.

Answers

Final answer:

To calculate the concentration of Cl2O5 in the vessel 5.70 seconds later, use the first-order rate law equation and the given rate constant and initial concentration.

Explanation:

To calculate the concentration of Cl2O5 in the vessel 5.70 seconds later, we can use the first-order rate law equation.

The rate law equation for a first-order reaction is: ln([A]t/[A]0) = -kt

Where [A]t is the concentration at time t, [A]0 is the initial concentration, k is the rate constant, and t is the time.

In this case, we know the rate constant (k) is 0.184 s^-1 and the initial concentration ([A]0) is 1.16 M. We need to find the concentration at 5.70 seconds ([A]t).

Plugging in the values: ln([A]t/1.16) = -0.184 * 5.70

Solving for [A]t, we find that the concentration of Cl2O5 in the vessel 5.70 seconds later is approximately 0.64 M.

Learn more about Concentration of Cl2O5 here:

https://brainly.com/question/32000336

#SPJ3

Given data: Rate constant (k) = 0.184 s⁻¹

Initial concentration (Cl₂O₅) = 1.16 M

Time (t) = 5.70 s

To find the concentration of Cl₂O₅ after 5.70 seconds  

We know that the first-order integrated rate law equation is:

ln([A]t/[A]0) = -where [A]t and [A]0 are the concentrations of reactant at time 't' and initial time '0' respectively. We can rearrange this equation to find the concentration of the reactant at any time 't':[A]t = [A]0 × e^(-kt)Putting the values in the equation, we get:

[Cl₂O₅]5.70 = 1.16 M × e^(-0.184 s⁻¹ × 5.70 s)

[Cl₂O₅]5.70 = 0.501

Therefore, the concentration of Cl₂O₅ in the vessel 5.70 seconds later is 0.501 M.

A 1.85 mass % aqueous solution urea (CO(NH2)2)has a density of 1.05 g/mL. Calculate the molality of the solution. Give your answer to 2 decimal places.

Answers

Answer:

Molality for this solution is 0.31 m

Explanation:

Molality → Mol of solute / kg of solvent

Mass of solute = 1.85 g (CO(NH₂)₂

% by mass, means mass of solute in 100 g of solution

Mass of solution = Mass of solute + Mass of solvent

As 1.85 g is the mass of solute, the mass of solvent would be 98.15 g to complete the 100g of solution.

Let's convert the mass of solvent (g to kg)

1 g = 1×10⁻³ kg

98.2 g .  1×10⁻³ kg / 1g = 0.0982 kg

Let's convert the mass of solute to moles (mass / molar mass)

1.85 g / 60 g/mol = 0.0308 mol

Molality = 0.0308 mol / 0.0982 kg → 0.31 m

To find the molality of the solution, we calculate the number of moles of urea (0.031 mol) and the mass of water (0.10315 kg). The molality is then computed as moles of urea divided by the mass of water, which comes out to be approximately 0.30 m.

To calculate the molality of the solution, we need to first know the number of moles of the solute (urea) and the mass of the solvent (water) in kilograms.

The mass % of the solution is given as 1.85%, meaning that we have 1.85g of urea in 100g of the solution. Considering that the molar mass of urea (CO(NH2)2) is about 60.06 g/mol, the number of moles of urea can be calculated as follows: Moles of urea = mass / molar mass = 1.85g / 60.06 g/mol ≈ 0.031 mol.

Since the density of the solution is given as 1.05 g/mL, the mass of the solution for 100 mL (or 100g since density = mass/volume) would be 100 mL * 1.05 g/mL = 105g. In this 105g of the solution, 1.85g is urea, so the mass of water (solvent) would be 105g - 1.85g = 103.15g or 0.10315 kg (since 1g = 0.001 kg).

Molality is the number of solute's moles divided by the mass of solvent (in kg). Thus, the molality of the solution would be: Molality = moles of urea / mass of water in kg = 0.031 mol / 0.10315 kg ≈ 0.30 mol/kg or 0.30 m.

For more such question on molality visit:

https://brainly.com/question/13200956

#SPJ3

A student reacts 20.0 mL of 0.248 M H2SO4 with 15.0 mL of 0.195 M NaOH. Write a balanced chemical equation to show this reaction. Calculate the concentrations of H2SO4 and NaOH that remain in solution after the reaction is complete, and the concentration of the salt that is formed during the reaction.

Answers

Answer: The concentration of salt (sodium sulfate), sulfuric acid and NaOH in the solution is 0.0418 M, 0.0999 M and 0 M respectively.

Explanation:

To calculate the number of moles for given molarity, we use the equation:

[tex]\text{Molarity of the solution}=\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}}[/tex]     .....(1)

For NaOH:

Initial molarity of NaOH solution = 0.195 M

Volume of solution = 15.0 mL = 0.015 L   (Conversion factor:   1 L = 1000 mL)

Putting values in equation 1, we get:

[tex]0.195M=\frac{\text{Moles of NaOH}}{0.015L}\\\\\text{Moles of NaOH}=(0.195mol/L\times 0.015L)=2.925\times 10^{-3}mol[/tex]

For sulfuric acid:

Initial molarity of sulfuric acid solution = 0.248 M

Volume of solution = 20.0 mL = 0.020 L

Putting values in equation 1, we get:

[tex]0.248M=\frac{\text{Moles of }H_2SO_4}{0.020L}\\\\\text{Moles of }H_2SO_4=(0.248mol/L\times 0.020L)=4.96\times 10^{-3}mol[/tex]

The chemical equation for the reaction of NaOH and sulfuric acid follows:

[tex]2NaOH+H_2SO_4\rightarrow Na_2SO_4+2H_2O[/tex]

By Stoichiometry of the reaction:

2 moles of NaOH reacts with 1 mole of sulfuric acid

So, [tex]2.925\times 10^{-3}[/tex] moles of KOH will react with = [tex]\frac{1}{2}\times 2.925\times 10^{-3}=1.462\times 10^{-3}mol[/tex] of sulfuric acid

As, given amount of sulfuric acid is more than the required amount. So, it is considered as an excess reagent.

Thus, NaOH is considered as a limiting reagent because it limits the formation of product.

Excess moles of sulfuric acid = [tex](4.96-1.462)\times 10^{-3}=3.498\times 10^{-3}mol[/tex]

By Stoichiometry of the reaction:

2 moles of KOH produces 1 mole of sodium sulfate

So, [tex]2.925\times 10^{-3}[/tex] moles of KOH will produce = [tex]\frac{1}{2}\times 2.925\times 10^{-3}=1.462\times 10^{-3}mol[/tex] of sodium sulfate

For sodium sulfate:

Moles of sodium sulfate = [tex]1.462\times 10^{-3}moles[/tex]

Volume of solution = [15.0 + 20.0] = 35.0 mL = 0.035 L

Putting values in equation 1, we get:

[tex]\text{Molarity of sodium sulfate}=\frac{1.462\times 10^{-3}}{0.035}=0.0418M[/tex]

For sulfuric acid:

Moles of excess sulfuric acid = [tex]3.498\times 10^{-3}mol[/tex]

Volume of solution = [15.0 + 20.0] = 35.0 mL = 0.035 L

Putting values in equation 1, we get:

[tex]\text{Molarity of sulfuric acid}=\frac{3.498\times 10^{-3}}{0.035}=0.0999M[/tex]

For NaOH:

Moles of NaOH remained = 0 moles

Volume of solution = [15.0 + 20.0] = 35.0 mL = 0.035 L

Putting values in equation 1, we get:

[tex]\text{Molarity of NaOH}=\frac{0}{0.050}=0M[/tex]

Hence, the concentration of salt (sodium sulfate), sulfuric acid and NaOH in the solution is 0.0418 M, 0.0999 M and 0 M respectively.

Final answer:

After the reaction between solutions of H2SO4 and NaOH is complete, the remaining concentrations are 0.0317 M H2SO4, 0 M NaOH, and 0.0836 M Na2SO4 are formed.

Explanation:

The balanced chemical equation for the reaction between sulfuric acid (H2SO4) and sodium hydroxide (NaOH) is: H2SO4 + 2NaOH -> Na2SO4 + 2H2O. This equation shows that one mole of sulfuric acid reacts with two moles of sodium hydroxide to produce one mole of sodium sulfate (Na2SO4) and two moles of water.

Using this stoichiometry, the moles of H2SO4 and NaOH in the solutions can be calculated with moles = concentration x volume (in L). That gives us 0.020 L * 0.248 mol/L = 0.00496 mol for H2SO4 and 0.015 L * 0.195 mol/L = 0.002925 mol for NaOH.

Since one mole of H2SO4 reacts with two moles of NaOH, all of the NaOH will react, and you will have 0.00496 mol - 2* 0.002925 mol = 0.00111 mol of H2SO4 left. The concentration of H2SO4 then is 0.00111 mol / 0.035 L (sum of volumes) = 0.0317 M.

NaOH is completely reacted, so its concentration is 0 M. From the reaction stoichiometry, 0.002925 mol of Na2SO4 is formed, so its concentration is 0.002925 mol / 0.035 L = 0.0836 M.

Learn more about Acid-Base Reaction here:

https://brainly.com/question/34233702

#SPJ3

Consider the following types of electromagnetic radiation:
(1) Microwave
(2) Ultraviolet
(3) Radio waves
(4) Infrared
(5) X-ray
(6) Visible
(a) Arrange them in order of increasing wavelength.
(b) Arrange them in order of increasing frequency.
(c) Arrange them in order of increasing energy.

Answers

Final answer:

Electromagnetic radiation can be arranged by wavelength, frequency, or energy. In increasing order, by wavelength, it is: X-ray, Ultraviolet, Visible, Infrared, Microwave, Radio waves. In increasing order, by frequency and energy, it is: Radio waves, Microwave, Infrared, Visible, Ultraviolet, X-ray.

Explanation:

The types of electromagnetic radiation listed can be arranged by wavelength, frequency, and energy. The relationship among these three properties is that as wavelength increases, frequency and energy decrease, and vice versa.

In order of increasing wavelength, the arrangement is: X-ray, Ultraviolet, Visible, Infrared, Microwave, Radio waves.In order of increasing frequency, the arrangement is the inverse: Radio waves, Microwave, Infrared, Visible, Ultraviolet, X-ray. In order of increasing energy, the arrangement is the same as frequency, because energy and frequency are directly proportional: Radio waves, Microwave, Infrared, Visible, Ultraviolet, X-ray.

Learn more about Electromagnetic Radiation here:

https://brainly.com/question/2334706

#SPJ6

Balance the following expression: __ CH3CH2COOH + __ O2 → __ CO2 + __ H2O How many moles of O2 are required for the complete combustion of 6 mol of propanoic acid?

Answers

Answer:

We need 21.0 moles of O2

Explanation:

Step 1: Data given

Moles of propanoic acid = 6.0 moles

CH3CH2COOH = propanoic acid

Step 2: The balanced equation

2CH3CH2COOH + 7O2 → 6CO2 + 6H2O

Step 3 :Calculate moles O2

For 2 moles propanoic acid we need 7 moles O2 to produce 6 moles CO2 and 6 moles H2O

For 6.0 moles propanoic acid we need 6.0 * 3.5 = 21 moles O2

We need 21.0 moles of O2

To combust 6 moles of propanoic acid completely, 15 moles of [tex]O_{2}[/tex] are required, based on the balanced chemical equation for the combustion of propanoic acid. 2 [tex]CH_{3} CH_{2} COOH[/tex] + 5 [tex]O_{2}[/tex] → 6 [tex]CO_{2}[/tex] + 4 [tex]H_{2}O[/tex] is the balanced chemical equation.

The question asks for the amount of Oxygen ([tex]O_{2}[/tex]) needed for the complete combustion of propanoic acid ([tex]CH_{3} CH_{2} COOH[/tex]). The combustion of propanoic acid can be represented by a balanced chemical equation:

2 [tex]CH_{3} CH_{2} COOH[/tex] + 5 [tex]O_{2}[/tex] → 6 [tex]CO_{2}[/tex] + 4 [tex]H_{2}O[/tex]

This means that 2 moles of propanoic acid require 5 moles of [tex]O_{2}[/tex] for complete combustion. If we have 6 moles of propanoic acid, a simple stoichiometric calculation would be to multiply the amount of [tex]O_{2}[/tex] required for 2 moles of propanoic acid by 3 (since 6 moles is three times larger than 2 moles), resulting in:

5 moles [tex]O_{2}[/tex]/2 moles [tex]CH_{3} CH_{2} COOH[/tex] × 6 moles [tex]CH_{3} CH_{2} COOH[/tex] = 15 moles [tex]O_{2}[/tex]

Therefore, to combust 6 moles of propanoic acid completely, 15 moles of [tex]O_{2}[/tex] are required.

Two classrooms, labeled A and B, are of equal volume and are connected by an open door. Classroom A is warmer than classroom B (maybe it has a sunny window). Derive a formula that relates the masses of air in each room MA and MB to the temperatures TA and TB. Which room contains a greater mass of air

Answers

Answer:

Room B contains the greater mass of air

Explanation:

According to the given data, the volume of both rooms is the same, so let's consider both volumes as V. An open door connects both the room, which infer that pressure for both the rooms is also the same, let it be P.

Considering the above conditions, the general gas equation for the air in both rooms can be given as:

[tex]PV=n_{A}RT_{A}\\ \\ PV=n_{B}RT_{B}[/tex]

Here, n represents the moles of air, R is the gas constant, and T is the temperature. Taking the ratio of both the above equations we get

[tex]\frac{PV}{PV}= \frac{n_{A}RT_{A}}{n_{B}RT_{B}}\\[/tex]

moles of the gas are mass per molecular mass, as the molecular mass is the same in both the cases so n can be replaced by m, as follows

[tex]\frac{PV}{PV}= \frac{m_{A}RT_{A}}{m_{B}RT_{B}}\\[/tex]

By simplifying we get,

[tex]\frac{m_{A}}{m_{B}}=\frac{T_{B}}{T_{A}}[/tex]

According to the given conditions, TA is greater than TB. So from the derived relation, it can be seen that the mass of air in room B is greater than the mass of air in room A.

A sodium atom has a mass number of 23. Its atomic number is 11. How many electrons does a neutral sodium atom have?

Answers

Answer:

it contains 11 electrons

Explanation:

The energy changes for many unusual reactions can be determined using Hess’s law.
(a) Calculate ΔE for the conversion of F⁻(g) into F⁺(g).
(b) Calculate ΔE for the conversion of Na⁺(g) into Na⁻(g).

Answers

Answer:

(a) F⁻(g) ⇒ F⁺(g)         ΔE=2009 KJ/mol

(b) Na⁺(g) ⇒ Na⁻(g)   ΔE=-548.6 KJ/mol

Explanation:

Hess's Law

"Energy changes for a reaction is independent of steps or route involved."

(a) F⁻(g) ⇒ F⁺(g)

Now the conversion F⁻ to F⁺ is a two step reaction. In first step F⁻ loses an electron e⁻ to become neutral atom.

F⁻ ⇒ F + e⁻   ΔH=328 KJ/mol (i)

Kindly note this energy is derived from electron affinity, which is the energy changes while adding an electron to neutral atom and its same while removing an electron from ion.

In second step,

Another electron is removed from F.

F ⇒ F⁺ + e⁻    ΔH= 1681 KJ/mol (ii)

This energy is 1st ionization energy for F, which is the energy required to remove first electron from outer most shell of neutral atom.

Now the total energy change can be found by applying Hess's law and adding equations (i) and (ii);

F⁻ ⇒ F + e⁻   ΔH=328 KJ/mol

F ⇒ F⁺ + e⁻    ΔH= 1681 KJ/mol

F⁻ ⇒ F⁺ + 2e⁻  ΔH= 2009 KJ/mol

(b) Na⁺(g) ⇒ Na⁻(g)

This reaction involves two steps in first Na⁺(g) gains electron and become neutral atom while in second step Na(g) accepts another electron to become Na⁻(g).

Na⁺(g) + e⁻⇒ Na(g)    ΔH=-495.8 KJ/mol   (i)

Na(g) + e⁻ ⇒ Na⁻(g)   ΔH=-52.8 KJ/mol     (ii)   (By Applying Hess's Law)

Na⁺(g) + 2e⁻ ⇒ Na⁻(g)  ΔH=-548.6 KJ/mol

Kindly note as there is no molar change in above mentioned reactions therefore enthalpy changes(ΔH) and internal energy changes(ΔE) are same.

If one wished to obtain 0.15 moles of glacial acetic acid, how many milliliters of glacial acetic acid should be obtained? Enter only the number with two significant figures.

Answers

Answer:

8.6 mL

Explanation:

Glacial acetic acid (or anhydrous acetic acid) can be thought of as pure acetic acid, and has a density of 1.05 g/cm³ (or g/mL).

To answer this problem first we convert moles of acetic acid (CH₃CO₂H) to grams, using its molar mass (60 g/mol):

0.15 mol acetic acid * 60 g/mol = 9.0 g acetic acid.

Now we convert grams of acetic acid to mL, using its density:

9.0 g ÷ 1.05 g/mL = 8.6 mL

Write a full set of quantum numbers for the following:
(a) The outermost electron in an Rb atom
(b) The electron gained when an S⁻ ion becomes an S²⁻ ion
(c) The electron lost when an Ag atom ionizes
(d) The electron gained when an F⁻ ion forms from an F atom

Answers

The full set of quantum numbers varies depending on the electron being considered in each element or ion, with the numbers consisting of the principal quantum number (n), angular momentum quantum number (l), magnetic quantum number (m_l), and spin quantum number (m_s).

Quantum numbers describe values of conserved quantities in the dynamics of a quantum system, which in this case are the electrons in various elements or ions.

(a) The outermost electron in an Rb (Rubidium) atom will have the quantum numbers: n = 5, l = 0, ml = 0, ms = +1/2 or -1/2.(b) The electron gained when an S⁻ ion becomes an S²⁻ ion will have the quantum numbers: n = 3, l = 2, ml = -2 to 2 (any of these for one electron), ms = +1/2 or -1/2.(c) The electron lost when an Ag atom ionizes (silver) will have the quantum numbers: n = 5, l = 0, ml = 0, ms = +1/2 or -1/2 (since the last electron in the 5s subshell is lost).(d) The electron gained when an F⁻ ion forms from an F atom will have the quantum numbers: n = 2, l = 1, ml = -1, 0, or 1 (for an additional p electron), ms = +1/2 or -1/2.

Calculate the amount of heat required to completely sublime 66.0 gg of solid dry ice (CO2)(CO2) at its sublimation temperature. The heat of sublimation for carbon dioxide is 32.3 kJ/molkJ/mol. Express your answer in kilojoules. nothing kJkJ

Answers

Answer:

48.5 kJ

Explanation:

Let's consider the sublimation of carbon dioxide at its sublimation temperature, that is, its change from the solid to the gaseous state.

CO₂(s) → CO₂(g)

The molar mass of carbon dioxide is 44.01 g/mol. The moles corresponding to  66.0 g are:

66.0 g × (1 mol/44.01 g) = 1.50 mol

The heat of sublimation for carbon dioxide is 32.3 kJ/mol. The heat required to sublimate 1.50 moles of carbon dioxide is:

1.50 mol × (32.3 kJ/mol) = 48.5 kJ

Calculate the shortest wavelength of light capable of dissociating the Br–I bond in one molecule of iodine monobromide if the bond energy, or bond dissociation energy, is 179 kJ/mol .

Answers

Answer: 6.7*10^-7 m

Explanation:

The full explanation is shown in the image attached. The energy of the photon is obtained by dividing the bond energy by the Avogadro's number. Using the Plank's equation, we cash obtain the frequency or wavelength of radiation required by substituting into the given equation appropriately.

Final answer:

To calculate the shortest wavelength of light capable of dissociating the Br-I bond, the bond energy given (179 kJ/mol) is first converted to Joules per photon. Then, applying the equation E = hc / λ with Planck's constant and the speed of light gives the shortest wavelength needed to break the bond.

Explanation:

The question asks to calculate the shortest wavelength of light capable of dissociating the Br–I bond in iodine monobromide, given that the bond energy is 179 kJ/mol. To solve this, we apply the equation relating the energy of a photon (E) to its wavelength (λ), using Planck's constant (h) and the speed of light (c).

The energy of the photon needed can be calculated using the equation E = hc / λ, where h = 6.626 x 10-34 J·s (Planck's constant) and c = 3.00 x 108 m/s (speed of light). First, convert the bond dissociation energy from kJ/mol to Joules (J) by multiplying by 1000 and dividing by Avogadro's number (6.022 x 1023 mol-1), giving the energy required per molecule.

Finally, rearrange the equation to solve for λ: λ = hc / E. Plugging in the values, we find the shortest wavelength of light capable of breaking the Br–I bond. Remember, since the question gives the bond dissociation energy in kJ/mol, conversion to Joules is necessary for the calculation to proceed correctly.

Pepsinogen is the inactive protease secreted by the chief cells in the stomach; this enzyme is converted to the active form called ______ in the presence of HCl. The primary role of this enzyme is the digestion of proteins in the stomach.a. Bicarbonateb. Pepsinc. Hydrochloric acid

Answers

Answer:

b. Pepsin

Explanation:

In the stomach, when dygestion takes place,pepsinogen is secreted  in the stomach for the dygestion of proteins, which are catalyzed to aminoacids for the use of the body.

When the pepsinogen gets in contact with the HCl it converts to pepsin, which is the actived form of the pepsinogen.

Final answer:

Pepsinogen is converted into its active form, called Pepsin, under acidic conditions rendered by Hydrochloric acid (HCl). Pepsin, once activated, aids in protein digestion.

Explanation:

Pepsinogen, an inactive protease, is secreted by the chief cells located in the stomach. Under the acidic condition produced by the presence of Hydrochloric acid (HCl), pepsinogen is converted into its active form, known as Pepsin. Pepsin plays an integral role in the process of digestion, specifically assisting in the breakdown of proteins in the stomach.

Learn more about Pepsin here:

https://brainly.com/question/36740082

#SPJ6

In a certain acidic solution at 25 ∘C, [H+] is 100 times greater than [OH −]. What is the value for [OH −] for the solution?

Answers

Answer: The value of [tex][OH^-][/tex] for the solution is [tex]10^{-6}M[/tex]

Explanation:

To calculate the concentration of hydroxide ion for the solution, we use the equation:

[tex][H^+]\times [OH^-]=10^{-14}[/tex]

We are given:

[tex][H^+]=100\times [OH^-][/tex]

Putting values in above equation, we get:

[tex]100\times [OH^-]\times [OH^-]=10^{-14}[/tex]

[tex][OH^-]^2=\frac{10^{-14}}{100}[/tex]

[tex][OH^-]=\sqrt{10^{-12}}[/tex]

[tex][OH^-]=10^{-6}M[/tex]

Hence, the value of [tex][OH^-][/tex] for the solution is [tex]10^{-6}M[/tex]

The tarnish that forms on objects made of silver is solid silver sulfide; it can be removed by reacting it with aluminum metal to produce silver metal and solid aluminum sulfide. How many moles of the excess reactant remain unreacted when the reaction is over if 5 moles of silver sulfide react with 8 moles of aluminum metal? Hint: Write a balanced chemical equation first. Enter to 1 decimal place.

Answers

Final answer:

When 5 moles of silver sulfide react with 8 moles of aluminum metal, there is an excess of aluminum. After the reaction is complete, 3.3 moles of the excess aluminum remain unreacted.

Explanation:

The balanced chemical equation for the reaction between solid silver sulfide (Ag2S) and aluminum metal (Al) is:

3Ag2S + 2Al → 6Ag + Al2S3

Based on this equation, we can see that every 3 moles of Ag2S react with 2 moles of Al to produce 6 moles of Ag and 1 mole of Al2S3.

In the given question, 5 moles of Ag2S react with 8 moles of Al. Therefore, we have an excess of Al. To determine the moles of excess Al remaining unreacted, we can set up a ratio:

(8 moles Al reacted) / (2 moles Al required to react with 3 moles Ag2S) = x moles Ag2S / 5 moles Ag2S

Simplifying this ratio, we find:

x = (8 moles Al / 2) × (5 moles Ag2S / 3 moles Al)

x = 20/6 = 3.3 moles

Therefore, 3.3 moles of the excess reactant (Al) remain unreacted when the reaction is over.

Final answer:

After writing a balanced chemical equation for the reaction between silver sulfide and aluminum, we determine that 4.7 moles of aluminum remain unreacted when 5 moles of silver sulfide react with 8 moles of aluminum.

Explanation:

To determine the number of moles of the excess reactant that remain unreacted, we first need to write a balanced chemical equation for the reaction between silver sulfide and aluminum metal. Here is the balanced equation:

3 Ag₂S (s) + 2 Al (s) → 6 Ag (s) + Al₂S₃(s)

Using the balanced equation, we see that 3 moles of silver sulfide react with 2 moles of aluminum. Therefore, if we had 5 moles of silver sulfide, we would need 2/3 × 5 = 10/3 moles of aluminum to react completely with the silver sulfide.

Since 8 moles of aluminum were originally present, we subtract the amount of aluminum that reacted to find the excess:

8 moles Al - 10/3 moles Al = 14/3 moles Al

Thus, 14/3 moles or 4.7 moles of aluminum remain unreacted.

A graduated cylinder contains 15.0 mLmL of water. What is the new water level after 34.0 gg of silver metal with a density of 10.5 g/mLg/mL is submerged in the water?

Answers

Answer: The new water level when silver metal is submerged is 18.24 mL

Explanation:

We are given:

Volume of graduated cylinder = 15.0 mL

To calculate volume of a substance, we use the equation:

[tex]\text{Density of substance}=\frac{\text{Mass of substance}}{\text{Volume of substance}}[/tex]

Density of silver metal = 10.5 g/mL

Mass of silver metal = 34.0 g

Putting values in above equation, we get:

[tex]10.5g/mL=\frac{34.0g}{\text{Volume of silver metal}}\\\\\text{Volume of silver metal}=\frac{34.0g}{10.5g/mL}=3.24mL[/tex]

New water level = Volume of silver metal + Volume of graduated cylinder

New water level = (3.24 + 15.0) mL = 18.24 mL

Hence, the new water level when silver metal is submerged is 18.24 mL

For an ideal gas, which pairs of variables are inversely proportional to each other (if all other factors remain constant)?

Answers

Answer:

Pressure and volume

Explanation:

The ideal gas equation is given below:

PV = nRT

P = nRT /V

If nRT is constant,

P will be inversely proportional to V(P & 1/V)

Therefore, pressure and volume are inversely proportional if all factors remains constant

Final answer:

In an ideal gas, pressure and volume are inversely proportional to each other if all other factors remain constant. This is known as Boyle's Law.

Explanation:

In an ideal gas, pressure and volume are inversely proportional to each other if all other factors remain constant.

This is known as Boyle's Law, which states that when the volume of a given amount of gas is decreased, the pressure increases, and vice versa.

For example, if the volume of a gas is reduced by half, the pressure will double, and if the volume is doubled, the pressure will be halved.

Learn more about Boyle's Law here:

https://brainly.com/question/21184611

#SPJ3

Whenever dry nitrogen from a portable cylinder is used in service and installation practice, what item is of most importance in consideration of safety?

Answers

Answer:

a relief valve is inserted in the downstream line from the pressure regulator.

Explanation:

Whenever dry nitrogen from a portable cylinder is used in service and installation practice the item of most importance in consideration of safety is a relief valve is inserted in the downstream line from the pressure regulator.

Final answer:

The most important item to consider for safety when using dry nitrogen from a portable cylinder in service and installation practice is a pressure regulator, which controls the flow and release of the gas. It is also crucial to inspect the system for leaks regularly.

Explanation:

When using dry nitrogen from a portable cylinder in service and installation practice, the most important item to consider for safety is a pressure regulator. A pressure regulator is used to control the flow and release of nitrogen gas from the cylinder. It ensures that the pressure does not exceed safe limits and reduces the risk of an explosion or other accidents.

Additionally, it is crucial to always check for leaks in the system before using dry nitrogen. Leaks can result in the accumulation of nitrogen gas, which can displace oxygen in the air and lead to asphyxiation. Therefore, regularly inspecting the system and using appropriate leak detection methods, such as soapy water or a leak detection solution, is essential for safety.

In summary, when working with dry nitrogen from a portable cylinder, the two most important safety considerations are the use of a pressure regulator and regular inspection for leaks.

Learn more about safety here:

https://brainly.com/question/33045744

#SPJ3

A student measured the length of a piece of paper and determined it to be 21.6cm using a metric measurement and 8 1/2 inches using the English measurement. What is the ratio of cm/inch using the students data.Do not give a fraction answer, calculate it to get an answer with 2 digits past the decimal

Answers

Explanation:

As per the measurements that are made by the student are as follows.

        21.6 cm is equivalent to 8.5 inch

Therefore, 1 cm for the given situation will be equivalent to inch as follows.

              1 cm = [tex]\frac{8.5}{21.6}[/tex] inch

                      = 0.393 inch

Hence, we will calculate the ratio of cm : inch as follows.

               Ratio of cm : inch = [tex]\frac{8.5}{21.6}[/tex]

                                             = 0.39

Thus, we can conclude that the ratio of cm/inch using the students data is 0.39.

Why do the deprotonated organic acid (RCO2-) and protonated organic base (RNH3+) go into the aqueous layer?

Answers

Answer:

The deprotonated organic acid (RCO2-) and protonated organic base (RNH3+) go into the aqueous layer because Organic compounds that are neither acids or bases do not react with either NaOH or HCl and, therefore remain more soluble in the organic solvent and are not extracted.

Explanation:

The volume density of atoms for a bcc lattice is 5 x 1026 m-3. Assume that the atoms are hard spheres with each atom touching its nearest neighbors. Determine the lattice constant and effective radius of the atom.

Answers

Explanation:

It is known that for a body centered cubic unit cell there are 2 atoms per unit cell.

This means that volume occupied by 2 atoms is equal to volume of the unit cell.

So, according to the volume density

        [tex]5 \times 10^{26} atoms = 1 [tex]m^{3}[/tex]

        2 atoms = [tex]\frac{1 m^{3}}{5 \times 10^{26} atoms} \times 2 atoms[/tex]

                     = [tex]4 \times 10^{-27} m^{3}[/tex]

Formula for volume of a cube is [tex]a^{3}[/tex]. Therefore,

           Volume of the cube = [tex]4 \times 10^{-27} m^{3}[/tex]

As lattice constant (a) = [tex](4 \times 10^{-27} m^{3})^{\frac{1}{3}}[/tex]

                                   = [tex]1.59 \times 10^{-9} m[/tex]

Therefore, the value of lattice constant is [tex]1.59 \times 10^{-9} m[/tex].

And, for bcc unit cell the value of radius is as follows.

                 r = [tex]\frac{\sqrt{3}}{4}a[/tex]

Hence, effective radius of the atom is calculated as follows.

                 r = [tex]\frac{\sqrt{3}}{4}a[/tex]

                   = [tex]\frac{\sqrt{3}}{4} \times 1.59 \times 10^{-9} m[/tex]

                   = [tex]6.9 \times 10^{-10} m[/tex]

Hence, the value of effective radius of the atom is [tex]6.9 \times 10^{-10} m[/tex].

A certain metal M crystallizes in a lattice described by a body-centered cubic (bcc) unit cell. The lattice constant a has been measured by X-ray crystallography to be 409. Calculate the radius of an atom of M.

Answers

Final answer:

To calculate the radius of an atom in a body-centered cubic (BCC) structure, we can use the formula: radius (r) = √(3/4) * a/2, where a is the lattice constant.

Explanation:

In a body-centered cubic (BCC) unit cell, the atoms in the corners do not touch each other but contact the atom in the center. The unit cell contains two atoms: one-eighth of an atom at each of the eight corners and one atom in the center. An atom in a BCC structure has a coordination number of eight. To calculate the radius of an atom in a BCC structure, we can use the formula:

Radius (r) = √(3/4) * a/2

where a is the lattice constant. Plugging in the given value of the lattice constant as 409, we can calculate the radius of the atom of metal M in a BCC structure using this formula.

Start with 100.00 mL of 0.10 M acetic acid, CH3COOH. The solution has a pH of 2.87 at 25 oC. a) Calculate the Ka of acetic acid at 25 oC. b) Determine the percent dissociation for the solution.

Answers

Answer: a) The [tex]K_a[/tex] of acetic acid at [tex]25^0C[/tex] is [tex]1.82\times 10^{-5}[/tex]

b) The percent dissociation for the solution is [tex]4.27\times 10^{-3}[/tex]

Explanation:

[tex]CH_3COOH\rightarrow CH_3COO^-H^+[/tex]

 cM              0             0

[tex]c-c\alpha[/tex]        [tex]c\alpha[/tex]          [tex]c\alpha[/tex]

So dissociation constant will be:

[tex]K_a=\frac{(c\alpha)^{2}}{c-c\alpha}[/tex]

Give c= 0.10 M and [tex]\alpha[/tex] = ?

Also [tex]pH=-log[H^+][/tex]

[tex]2.87=-log[H^+][/tex]  

[tex][H^+]=1.35\times 10^{-3}M[/tex]

[tex][CH_3COO^-]=1.35\times 10^{-3}M[/tex]

[tex][CH_3COOH]=(0.10M-1.35\times 10^{-3}=0.09806M[/tex]

Putting in the values we get:

[tex]K_a=\frac{(1.35\times 10^{-3})^2}{(0.09806)}[/tex]

[tex]K_a=1.82\times 10^{-5}[/tex]

b)  [tex]\alpha=\sqrt\frac{K_a}{c}[/tex]

[tex]\alpha=\sqrt\frac{1.82\times 10^{-5}}{0.10}[/tex]

[tex]\alpha=4.27\times 10^{-5}[/tex]

[tex]\% \alpha=4.27\times 10^{-5}\times 100=4.27\times 10^{-3}[/tex]

Final answer:

The Ka of acetic acid is calculated using the pH and the definition of Ka using an ICE table, then percent dissociation is calculated using the initial concentration and the concentration of H+ found. We first calculate [H+] using the pH, then input those values into the Ka expression to find Ka, then use the formula for percent dissociation to find the percent dissociation.

Explanation:

To solve this problem, we will first calculate the Ka using the known pH and the equilibrium relationship between the pH, Ka and [H+] concentration. Then we will calculate the percent dissociation of the acetic acid.

Given that pH = 2.87, we can use the pH definition pH=-log[H+] to find that [H+] = 10^-2.87. Knowing that acetic acid dissociates as CH3COOH ⇌ H+ + CH3COO-, and given that the initial concentration of the acetic acid is 0.1 M, the equilibrium concentrations are 0.1–x for CH3COOH and x for both H+ and CH3COO-.From the ICE table, we know that [H+] = x = 10^-2.87. Substituting this into the Ka expression gives Ka = ([H+][CH3COO-])/([CH3COOH]) = x^2 / (0.1 - x). Solving this gives the Ka of acetic acid.To find the percent dissociation, we can use the formula %Dissociation = ([H+]/initial concentration of acid)*100%. Substituting the respective values will give the %Dissociation.

Learn more about Acid Dissociation here:

https://brainly.com/question/33454852

#SPJ3

Sucralfate (molecular weight: 2087 g/mol) is a major component of Carafate®, which is prescribed for the treatment of gastrointestinal ulcers. The recommended dose for a duodenal ulcer is 1.0g taken orally in 10.0 mL (2 teaspoons) of a solution four times a day. Calculate the molarity of the solution.a. 0.0005 Mb. 0.048 Mc. 0.02087 Md. 0.010 M

Answers

Answer:

Option b. 0.048 M

Explanation:

We have the molecular weight and the mass, from sulcralfate.

Let's convert the mass in g, to moles

1 g . 1 mol / 2087 g = 4.79×10⁻⁴ moles.

Molarity is mol /L

Let's convert the volume of solution in L

10 mL . 1L/1000 mL = 0.01 L

4.79×10⁻⁴ mol / 0.01 L = 0.048 mol/L

Solid silver chloride, AgCI(s), decomposes to its elements when exposed to sunlight Write a balanced equation for this reaction with correct formulas for the products. What is the coefficient in front of AgCI(s) when the equation is properly balanced? 01 03 02 04

Answers

Answer: The coefficient in front of AgCl when the equation is properly balanced is 2.

Explanation:

According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.

Decomposition is a type of chemical reaction in which one reactant gives two or more than two products.

Decomposition of silver chloride is represented as:

[tex]2AgCl(s)\rightarrow 2Ag(s)+Cl_2(g)[/tex]

Thus the coefficient in front of AgCl when the equation is properly balanced is 2.

Answer:

the coefficient in front of AgCl(s) when the equation is properly balanced is 2.

Explanation:

The decomposition of solid silver chloride (AgCl) into its elements when exposed to sunlight can be represented by the following balanced chemical equation:

2AgCl(s) → 2Ag(s) + Cl2(g)

In this balanced equation:

The coefficient in front of AgCl(s) is 2.

The coefficient in front of Ag(s) is 2.

The coefficient in front of Cl2(g) is also 2.

more questions on balancing

https://brainly.com/question/14072552

#SPJ3

Other Questions
4/5 divided by 3/4 which equals something Find the missing number:QUICKLY PLEASE In a certain acidic solution at 25 C, [H+] is 100 times greater than [OH ]. What is the value for [OH ] for the solution? A building is 3 ft from an 8-ft fence that surrounds the property. A worker wants to wash a window in the building 13 ft from the ground. He plans to place a ladder over the fence so it rests against the building. (See the figure.) He decides he should place the ladder 8 ft from the fence for stability. To the nearest tenth of a foot, how long a ladder will he need? To find the equation of a line, we need the slope of the line and a point on the line. Since we are requested to find the equation of the tangent line at the point (4, 2), we know that (4, 2) is a point on the line. So we just need to find its slope. The slope of a tangent line to f(x) at x = a can be found using the formula PLEASE HELP ASAP!!!Two students, Adrian and Samantha, are determining the density of two different objects. Adrian is determine the density of a pencil. He measures the mass of the pencil on a scale. He determines the volume of the pencil by measuring its water displacement in a measuring container. Lastly, he calculates the density. Samantha is working to find the density of a metal cube. She measures the mass of the cube on a scale. To find the volume, Samantha measures the length, width, and height of the cube and then multiplies them together. Lastly, she calculates the density using these measurements. Describe two differences between the two experiments that Adrian and Samantha conducted. A) They both used a scale to weigh the objects and they both were using different objects. B) The experiments used two different objects and found the densities of both of those objects. C) They both were measuring the density of two objects and they both used a scale to weigh the objects. D) They found the volumes by two different methods and determined the densities of two different objects. Fatima conducts in experiment where she asked people to estimate the temperature of glasses of water. She recorded how far the estimates were from the actual temperatures, using positive values for guesses the were too high and negative values for guesses that were too low. Her results are in a table below. What is the mean value in Fatima results? (I can not send the whole pic) An exploration submarine should be able to descend 1200 m down in the ocean. If the ocean density is 1020 kg/m3, what is the maximum pressure on the submarine hull? A right rectangular prism's edge lengths are 2 1 2 inches, 2 inches, and 6 inches. How many unit cubes with edge lengths of 1 3 inch can fit inside the prism? Aspirin, like many pharmaceutical drugs, can access the cell because it is a weak acid. This occurs because Choose one: A. it is carried by water during osmosis. B. it is a small uncharged molecule. C. it disrupts the membrane enough to squeeze through. D. as a weak acid it can cross the membrane when in its uncharged form. pleaseeeee answer this questionnnn it would mean alot please show work and explain thanks What were the political leanings of Creoles and Peninsulares? A "New Age" bride and groom, who are enchanted by the Sun, want to get married on the day when it gets to be highest in the sky. If they live in the United States, around what day of the year will the wedding take place? Identify each of the following taxes as being either progressive or regressive. a. Personal income tax: . b. Sales taxes: . c. Payroll taxes: . d. Property taxes: . Reese, a calendar-year taxpayer, uses the cash method of accounting for her sole proprietorship. In late December, she received a $23,000 bill from her accountant for consulting services related to her small business. Reese can pay the $23,000 bill anytime before January 30 of next year without penalty. Assume Reese's marginal tax rate is 32 percent this year and 35 percent next year, and that she can earn an after-tax rate of return of 11 percent on her investments. a) What is the after-tax cost if Isabel pays the $34,000 bill in December?b) What is the after-tax cost if Isabel pays the $34,000 bill in January? What formal command would you use with your professor for the verb limpiar? Limpiamos Limpian Limpias Limpie During an evening hike, you see a shooting star just like the one pictured here. In which layer of the atmosphere does this shooting star occur? troposphere stratosphere mesosphere thermosphereThe answer is mesosphere When considering the purchase of a major software application, managers need to also consider the following potential downside:A) It is typically more expensive than custom development.B) The package seldom totally fits the company's needs.C) It takes much longer to implement because of the software's complexity.D) There is no documentation. Write three statements to print the first three elements of array runTimes. Follow each statement with a newline. Ex: If runTime = {800, 775, 790, 805, 808},print: 800 775 790import java.util.Scanner;public class PrintRunTimes {public static void main (String [] args) {int[] runTimes = new int[5];// Populate arrayrunTimes[0] = 800;runTimes[1] = 775;runTimes[2] = 790;runTimes[3] = 805;runTimes[4] = 808;/* Your solution goes here */return;}} By what factor does the energy of a 1-nm X-ray photon exceed that of a 10-MHz radio photon? How many times more energy has a 1-nm gamma ray than a 10-MHz radio photon? Steam Workshop Downloader