What observations led to the periodic law? what observations led to the periodic law? observation that certain elements possess such property as radioactivity observation that the all halogen elements have similar properties observation that the all metals have similar properties observation that the properties of elements recur and certain elements have similar properties?

Answers

Answer 1
Final answer:

The periodic law was derived from the observation of recurring similar properties among elements when arranged by atomic mass, which then shifted to atomic number. This led to the development of the modern periodic table where elements are grouped based on their properties, as demonstrated by groups of elements like the halogens exhibiting closely related characteristics.

Explanation:

The observations that led to the periodic law were predicated on the identification of patterns in the properties of elements when arranged by increasing atomic mass, which was later refined to atomic number. Early chemists noticed that elements with similar properties occurred at regular intervals, a concept known as periodicity. Dmitri Mendeleev, in particular, played a pivotal role, noting the regular occurrence of properties and organizing elements into a table accordingly, even leaving gaps for then-undiscovered elements, predicting their existence and properties. His work was critical in developing the modern periodic table, where elements are positioned in order of increasing atomic number, and housed in groups and periods where elements in the same group exhibit similar chemical properties.

Examples confirming periodic law include the observation that all halogen elements in group 17 show similar properties, such as being non-metals and forming salts with metals. Additionally, the observation that all metals display metallic characteristics and parallel reactivity patterns supported the formulation of the periodic table. Moreover, advancements like the discovery of radioactivity, while not a direct observation leading to the periodic law, provided further insight into the atomic structure and properties of elements.


Related Questions

The specific heat of aluminum is 0.215 ???????????? ????????????−℉ . what is the specific heat of aluminum in ???????????? ????????????−°???? , ???? ????????−℃ , and ???? ????????−????

Answers

Q = mass x sph x temp change 
temp change = Q/(mass x sph) 
Temp change =57/(22 x .903) 
Temp Change = 2.97 ∘C 
Temp change 3.0 ∘C

which of these is an element, oxygen,sodium chloride,water,or air

Answers

oxygen and sodium are the only ones that are elements here example like the others air is a mixture of a compound and an element

What volume of concentrated hcl (12.1m) is necessary to make a 0.250m hcl solution in a 5l volume?

Answers

By using the following formula we can calculate the volume;
C1V1 = C2V2
let V1 is the volume we have to find, then
C1 = 12.1m
C2 = 0.250m
V2 = 5 l
Now, C1V1 = C2V2
12.1 x V1 = 0.250 x 5
V1 = 1.25 / 12.1 
V1 = 0.1033 l
thus, the 0.1033 liter of HCl is necessary.

Approximately 103.14 mL of concentrated HCl is necessary to make a 0.250 M HCl solution in a 5 L volume.

To determine the volume of concentrated HCl required to make a 0.250 M HCl solution in a 5 L volume, we can use the dilution formula:

[tex]\[ C_1V_1 = C_2V_2 \][/tex]

First, we need to ensure that all volumes are in the same unit, so we convert 5 L to milliliters:

[tex]\[ 5 \text{ L} \times 1000 \text{ mL/L} = 5000 \text{ mL} \][/tex]

Now we can plug the values into the dilution formula:

[tex]\[ (12.1 \text{ M})(V_1) = (0.250 \text{ M})(5000 \text{ mL}) \][/tex]

Solving for [tex]\( V_1 \):[/tex]

[tex]\[ V_1 = \frac{(0.250 \text{ M})(5000 \text{ mL})}{12.1 \text{ M}} \][/tex]

[tex]\[ V_1 = \frac{1250}{12.1} \text{ mL} \][/tex]

[tex]\[ V_1 \approx 103.14 \text{ mL} \][/tex]

What is the density of a sample of an unknown metal has a mass of 35.4 g and a volume of 3.11 cm3?

Answers

Density = Mass/Volume. Rounded to 3 significant figures, the density is 11.4 g/cm3

The density of the unknown metal, calculated using the formula density = mass / volume with the given mass of 35.4 g and volume of 3.11 cm³, is 11.382 g/cm³.

To calculate the density of the unknown metal, you can use the density formula
which is density = mass / volume. Given that the mass of the metal is 35.4 g and the volume is 3.11 cm³, the calculation would be as follows:

Density = mass / volume
Density = 35.4 g / 3.11 cm³
Density = 11.382 g/cm³

Therefore, the density of the sample of the unknown metal is 11.382 g/cm³.

The atomic number of krypton (Kr) is 36, and its mass number is 84. How many neutrons does it have?



18



36



48



72

Answers

mass # - atomic # =
# neutrons

84 - 36 = 48

Answer = 48 neutrons
The answer is letter c 48 

What is the pH of a 0.025 M [OH] solution?

Answers

The answer is 12.4.I think its correct answer.

Draw the electron-dot structure for chclo. draw the molecule by placing the atoms on the grid and connecting them with bonds. include all lone pairs of electrons.

Answers

Answer :

Electron-dot structure : It is also known as Lewis-dot structure. It shows the bonding between the atoms of a molecule and it also shows the unpaired electrons present in the molecule.  The valence electrons are represented by 'dot'.

The given molecule is, [tex]CHClO[/tex]

As we know that carbon has '4' valence electrons, hydrogen has '1' valence electron, chlorine has '7' valence electrons and oxygen has '6' valence electrons.

Therefore, the total number of valence electrons in, [tex]CHClO[/tex] = 4 + 1 + 7 + 6 = 18

According to electron-dot structure, there are 8 number of bonding electrons and 10 number of non-bonding electrons.

The electron-dot structure of [tex]CHClO[/tex] is shown below.

Lewis-dot structure is another name for the electron-dot structure. It displays the bonds that exist between a molecule's atoms, as well as the unpaired electrons that are present there. 'Dot' stands in for the valence electrons.

The electrons that make up an atom's valence shell are shown by an electron dot structure, commonly referred to as a Lewis dot formula. Knowing the compound's chemical formula makes drawing electron dot diagrams possible.

The diagram of the electron-dot structure for CHClO is attached in the image below.

Learn more about electron-dot structure, here:

https://brainly.com/question/5429287

#SPJ6

Which of these is an example of a physical change?
A. wood burning
B. a piece of metal rusting
C. sugar dissolving in water
D. a mineral weathering to form another mineral

Answers

An example of a Physical Change is:

C. sugar dissolving in water

Physical Change:

To determine which of the options represents a physical change, it's important to understand the difference between physical and chemical changes:

1) Physical Change: A change that affects one or more physical properties of a substance without altering its chemical composition. Examples include changes in state (like melting or dissolving), shape, or size.

2) Chemical Change: A change that results in the formation of new chemical substances. This often involves a reaction that alters the chemical structure of the original substance.

Let's analyze each option:

A. Wood Burning

Type: Chemical Change

Reason: Burning wood transforms it into ash, smoke, and gases, changing its chemical composition.

B. A Piece of Metal Rusting

Type: Chemical Change

Reason: Rusting involves the reaction of metal with oxygen, resulting in the formation of iron oxide, which is a different substance.

C. Sugar Dissolving in Water

Type: Physical Change

Reason: When sugar dissolves, it forms a solution but retains its chemical composition. No new substances are formed.

D. A Mineral Weathering to Form Another Mineral

Type: Chemical Change

Reason: Weathering often involves chemical reactions that change the mineral's composition.

The last step is to calculate the percent by mass of each element in ammonium nitrate (NH4NO3). The masses of the elements in one mole of the compound are: mass N = 28.0 g mass H = 4.0 g mass O = 48.0 g The molar mass of the compound is 80.0 g/mol. What is the mass of one mole of the compound?

Answers

The last step is to calculate the percent by mass of each element in ammonium nitrate (NH4NO3). The masses of the elements in one mole of the compound are: mass N = 28.0 g mass H = 4.0 g mass O = 48.0 g The molar mass of the compound is 80.0 g/mol. What is the mass of one mole of the compound? 80.0g

Answer: 80 g

Explanation:Molar mass of the compound is the mass of 1 mole of compound which is the sum of masses of each element.

Mass of 1 mole of compound=mass of nitrogen + mass of hydrogen+ mass of oxygen= 28+4+48 = 80 g.

Percentage by mass of nitrogen=[tex]\frac{\text {mass of nitrogen}}{\text {Total mass}}\times 100\ %[/tex]

Percentage by mass of nitrogen=[tex]\frac{28}{80}\times 100\%=35\%[/tex]

Percentage by mass of hydrogen=[tex]\frac{\text {mass of hydrogen}}{\text {Total mass}}\times 100\%[/tex]

Percentage by mass of hydrogen=[tex]\frac{4}{80}\times 100\%=5\%[/tex]

Percentage by mass of oxygen=[tex]\frac{\text {mass of oxygen}}{\text {Total mass}}\times 100\%[/tex]

Percentage by mass of oxygen=[tex]\frac{48}{80}\times 100\%=60\%[/tex]

At a certain temperature, the ph of a neutral solution is 7.78. what is the value of kw at that temperature? express your answer numerically using two significant figures.

Answers

Final answer:

The autoionization constant Kw can be calculated at different temperatures, given a pH value, using the relationships between pH, pOH, the ion concentrations and Kw itself. For a neutral solution with a pH of 7.78, Kw can vary from standard values due to temperature changes.

Explanation:

The subject of your question is related to the pH level, the autoionization constant Kw, and the temperature of a solution. These topics fall under

Chemistry

at the high school level. To calculate the Kw for a solution with a pH of 7.78, we first need to understand the relationship between the pH and pOH values. The sum of the pH and pOH is always equal to 14, a fact known as the ion-product constant for water. Using this relationship, we can solve for the pOH value, which is 14 - pH.

In this case, the pOH value would be 14 - 7.78 = 6.22. Then, we obtain the concentrations of OH- and H3O+ ions from the expressions [H3O+] = 10^-pH and [OH-] = 10^-pOH. However, given this is a neutral solution, they should be equal. Substituting these values in Kw = [H3O+][OH-], we can calculate the value of Kw which should be near to 1.0 × 10^-14, the standard Kw value at 25 °C, but may vary due to the different temperature causing the change in pH.

Learn more about Autoionization Constant here:

https://brainly.com/question/31038353

#SPJ12

The value of Kw at this temperature is approximately 2.8 × 10⁻¹⁶ .

To find the value of Kw at a given temperature where the pH of a neutral solution is 7.78, calculate pKw (which is the sum of pH and pOH), and then use it to determine Kw.

For a pH of 7.78, Kw is approximately 2.8 × 10⁻¹⁶To determine the value of Kw at a temperature where the pH of a neutral solution is 7.78, we can use the relationship between pH, pOH, and Kw.In a neutral solution, pH = pOH. Therefore, if the pH is 7.78, the pOH is also 7.78.

We can use the formula:

Kw = 10(-pKw)

Since pKw = pH + pOH:

pKw = 7.78 + 7.78 = 15.56

Thus,

Kw = 10⁽⁻¹⁶⁾ ≈ 2.8 × 10⁻¹⁶

Hence, the value of Kw at this temperature is approximately 2.8 × 10⁻¹⁶

Which wave corresponds to the higher-energy radiation? which wave corresponds to the higher-energy radiation? wave (b) has the higher energy. wave (a) has the higher energy?

Answers

The wave with the smaller wavelength will have the higher-energy radiation since they are inversely proportional. Also note that the height of the wave contributes to the amplitude.

Why do beryllium and calcium have similar chemical properties

Answers

The elements in a group all have the same number of electrons in their highest occupied energy level (also referred to as the outer shell). This is why they have similar chemical properties.

Beryllium and calcium have similar chemical properties because they both have two valence electrons as alkaline earth metals. Beryllium forms more covalent bonds due to its small ionic size and high charge density.

Beryllium and calcium have similar chemical properties because they are both alkaline earth metals and share the same number of valence electrons, which is two. This similarity is due to their position in the same group (Group 2) of the periodic table. Elements within the same group have the same number of valence electrons, which significantly influences their chemical behavior. It's the loss, gain, or sharing of these electrons that determines how elements react with one another.

However, due to the small size of the beryllium ion, which results in a high charge density, beryllium tends to form more covalent compounds, behaving somewhat differently than calcium. Beryllium is somewhat unique among its group in that it forms covalent bonds more readily than its group members, a property it shares with aluminum, which lies diagonally to it on the periodic table. Both beryllium and aluminum can form polar highly covalent compounds, for example, polymeric hydrides, chlorides, and alkyls.

how many moles of oxygen atoms are in 2 moles of Na3PO4?

Answers

Ans.) There are 8 moles of oxygen atoms in 2 moles of Na3PO4 One molecule of Na3PO4 contains 4 oxygen atom. => One mole of Na3PO4 molecule contain (1*4) mole oxygen atom => Two mole of Na3PO4 molecule contain (2*4) mole oxygen atom So, 2 mole of Na3PO4 molecule contain 8 moles of oxygen atom

In 2 moles of Na₃PO₄ the number moles of oxygen atom is c. 8.

To determine the number of moles of oxygen atoms in 2 moles of Na₃PO₄, we first need to understand the chemical formula of sodium phosphate (Na₃PO₄).

The chemical formula of sodium phosphate is Na₃PO₄.

This means that in one molecule of Na₃PO₄ , there are 3 sodium (Na) atoms, 1 phosphorus (P) atom, and 4 oxygen (O) atoms.

Given that we have 2 moles of Na₃PO₄, we can calculate the total number of oxygen atoms present in these 2 moles by using the following steps:

1. Calculate the molar mass of Na₃PO₄:

Molar mass of Na = 22.99 g/molMolar mass of P = 30.97 g/molMolar mass of O = 16.00 g/molMolar mass of Na₃PO₄ = (3 molar mass of Na) + molar mass of P + (4 molar mass of O)Molar mass of Na₃PO₄ = (3 22.99 g/mol) + 30.97 g/mol + (4 16.00 g/mol)Molar mass of Na₃PO₄ = 69.0 g/mol + 30.97 g/mol + 64.00 g/molMolar mass of Na₃PO₄ = 163.97 g/mol

2. Calculate the number of moles of oxygen atoms in 2 moles of Na3PO4:

Given that 1 mole of Na₃PO₄ contains 4 moles of oxygen atoms, we can set up a proportion:

1 mole of Na₃PO₄ / 4 moles of O = 2 moles of Na₃PO₄ / x moles of O

By cross-multiplying, we get:

1 x = 2 4x = 8 moles of O

Therefore, there are 8 moles of oxygen atoms in 2 moles of Na₃PO₄.


Correct question is: How many moles of oxygen atoms are in 2 moles of Na₃PO₄?

a. 3

b. 3

c. 8

d. 6

how could you separate a mixture of acetone and a-naph
thol

Answers

You could use distillation.

Hope this helps

How many grams of li3n can be formed from 1.75 moles of li? assume an excess of nitrogen. 6 li(s) + n2(g) â 2 li3n(s) how many grams of li3n can be formed from 1.75 moles of li? assume an excess of nitrogen. 6 li(s) + n2(g) â 2 li3n(s) 18.3 g li3n 61.0 g li3n 58.3 g li3n 20.3 g li3n 15.1 g li3n?

Answers

20.3 g First, determine how many moles of Li3N you can produce from 1.75 moles of Li. Since each molecule of Li3N requires 3 atoms of Li, that means that from 1.75 moles of Li, you can only produce 1.75 / 3 = 0.5833 moles of Li3N. Now compute the molar mass of Li3N Atomic weight of Lithium = 6.941 Atomic weight of Nitrogen = 14.0067 Molar mass of Li3N = 3 * 6.941 + 14.0067 = 34.8297 g/mol Now multiply the molar mass by the number of moles 34.8297 * 0.5833 = 20.316 g Of the available 5 choices, only 20.3 g is correct.

which compound has the highest melting point

Answers

The answer is Lithium Fluoride, with a meltingpoint of 1,553°F (or 845°C).

A stock solution of na3c16h9n4o9s2 (tartrazine, or yellow no. 5) was prepared by placing 0.035- g in a 500 ml volumetric flask and diluting to 500 ml with distilled water. what is the molar concentration?

Answers

Final answer:

The molar concentration of the tartrazine solution is calculated by dividing the number of moles of tartrazine by the volume of the solution in liters. After converting the given mass of tartrazine to moles and the volume to liters, the molar concentration comes out to be approximately 0.000131 M.

Explanation:

To solve this problem, you must first identify the molar mass of the tartrazine, which is

534.37 g/mol

. The molar concentration, also known as molarity, is calculated by dividing the number of moles of solute by the volume of the solution in liters. First, convert the mass of tartrazine to moles by dividing the given mass (0.035g) by its molar mass,

0.035 g ÷ 534.37 g/mol ≈ 0.0000655 mol

. The volume is given as 500 mL, which is equal to 0.5 liters, To find molarity, divide the number of moles by the volume in liters,

0.0000655 mol ÷ 0.5 L = 0.000131 M

. Therefore, the molar concentration of the solution is approximately 0.000131 M.

Learn more about Molar Concentration here:

https://brainly.com/question/15532279

#SPJ12

The attraction of water molecules to one another is known as:

Surface tension
Cohesion
Capillary action
Adhesion

Answers

Cohesion is the answer to this question
i think the answer is cohesion 

What is the approximate difference in energy between the two chair conformations of trans-2-methyl-1-isopropylcyclohexane?

Answers

In the conformer I, both the substituents are in axial positions. Methyl group has two 1, 3 diaxial (H----CH_3) interactions and isopropyl group has two 1, 3 diaxial (H----pr) interactions. Therefore, the energy of these interactions is given as (2x0.9) + (2x1.1) = 4.0kCal/mol.

In conformer II both the substituents are equatorial positions. So, axial interactions are absent and one gauche interaction between isopropyl and methyl groups exists therefore, the energy of this interaction is given as 1.1kCal/mol. The difference in the energy of two conformations is calculated as

E = (1.0 – 1.1) kCal/mol = 2.9 kCal/mol


The answer to the question is 2.9 kCal/mol

How many grams of ammonia must you start with to make 900.00 l of a 0.140 m aqueous solution of nitric acid? assume all the reactions give 100% yield?

Answers

Final answer:

To make 900 L of a 0.140 M aqueous solution of nitric acid, 2142 g or 2.142 kg of ammonia (NH3) is required, assuming a 100% yield in the chemical reaction.

Explanation:

The production of aqueous nitric acid involves a sequence of chemical reactions, the first of which is the combustion of ammonia: 4NH3(g) + 502(g) => 4NO(g) + 6H₂O(g). This means that 4 moles of ammonia (NH3) react to form 4 moles of nitric oxide (NO) which then further reacts to form nitric acid (HNO3).

Given that the molarity (M) of the solution is defined as the number of moles of solute per liter of solution, a 0.140 M solution of nitric acid means there are 0.140 moles of nitric acid per liter of solution. So, if we require 900.00 L of this solution, we will need 900*0.140 = 126 moles of nitric acid.

From the combustion reaction, we know that 1 mole of NH3 reacts to produce 1 mole of NO, and therefore 1 mole of HNO3. As a result, to achieve 126 moles of HNO3, we will need the same amount of NH3. Ammonia has a molar mass of approximately 17 g/mol, hence we require 126 moles * 17 g/mol = 2142 g or 2.142 kg of ammonia, assuming 100% yield in the reaction.

Learn more about Ammonia for Nitric Acid Production here:

https://brainly.com/question/34442970

#SPJ11

Final answer:

You would need approximately 2142 grams of ammonia to produce 900.00 l of a 0.140 M solution of nitric acid, assuming 100% yield in the chemical reactions.

Explanation:

To determine how many grams of ammonia you would need to form 900.00 l of a 0.140 M solution of nitric acid, you must first understand that the main chemical reaction involved in the production of nitric acid is the combustion of ammonia (4NH3(g) + 5O2(g) -> 4NO(g) + 6H2O(g)).

This balanced equation tells us that for every 4 moles of ammonia (NH3), 4 moles of nitric oxide (NO) are produced. Using the molarity of the nitric acid solution which is M = mol/L, we can calculate the moles of nitric acid to be 0.140 mol/l * 900.00 l = 126 mol. Assuming a 100% yield, we would need the same amount of moles of ammonia. The molar mass of NH3 is approximately 17 g/mol, so the mass of ammonia needed would be 126 mol * 17 g/mol = 2142 grams.

Learn more about Stoichiometry here:

https://brainly.com/question/30218216

#SPJ11

Which of the following is true in regard to ions?

A. An ionized atom has a number of protons that is unequal to the number of electrons.
B. Losing one or more electrons will turn an atom into an anion.
C. Ions can only carry positive charges.
D. A cation will hold a positive charge if it gains one or more electrons.

Answers

Answer: The correct answer is Option A.

Explanation:

There are 3 subatomic particles present in an atom. They are: protons, electrons and neutrons.

Protons carry positive charge, electrons carry negative charge and neutrons does not carry any charge.

Any neutral atom has an equal number of protons and electrons.  An ion is formed when atom looses or gain electron.

If an atom gains electrons, it will have more number of electrons than protons. Thus, it will carry negative charge and form an anion.If an atom looses electrons, it will have less number of electrons than protons. Thus, it will carry positive charge and forms a cation.

Thus, an ionized atom will always have unequal number of protons and electrons.

Hence, the correct answer is Option A.

Among the given statements, the true statement regarding ion is option A. An ionized atom has a number of protons that is unequal to the number of electrons.

An ion is an atom or molecule that has gained or lost one or more electrons, which changes the overall charge of the atom or molecule.

Losing one or more electrons will turn an atom into a cation, which is a positively charged ion. An anion, on the other hand, is a negatively charged ion that is formed when an atom gains one or more electrons.Ions can carry both positive and negative charges, depending on whether they are cations or anions.Cations hold a positive charge when they lose one or more electrons, while anions hold a negative charge when they gain one or more electrons.

Therefore, an ionized atom has a number of protons that is unequal to the number of electrons. Option A is the correct answer.

Learn more about ions here:

https://brainly.com/question/30663970

#SPJ6

How to easily determine if a molecule is a strong nucleophile?

Answers

Nucleophile is a species that donates a pair of electrons to form a new covalent bond. Nucleophilicity is measured by comparing reaction rates; the faster the reaction, the better (or, “stronger”) the nucleophile.

To quickly determine: Nucleophiles will have a free lone pair electron to attack the electrophile. Check for the lone pairs.

In class, sam learned that some theorists link happiness to productivity. from this, he developed the thought that happy employees in a factory will produce more products per hour. in this example, sam's theory led him to _____.

Answers

In the given example, it led Sam’s theory to produce a hypothesis. It is because the educated guess that he has made has been linked to the theory where in the theory is about happiness and production that led him to think that having happy employees will make more products to be produced.

An airplane cabin is pressurized to 640mmHg what is the pressure inside the cabin in atmosphere

Answers

1 atm= 760 mmHg
640mmHg/760mmHg= .84 atm

Answer: 0.84 atmosphere

Explanation:

Pressure of the gas is defined as the force exerted by the particles on the walls of the container. It is expressed in various terms like 'mmHg', 'atm', 'kiloPascals' etc..

All these units of pressure are inter convertible.

We are given:

Pressure of the gas = 640 mmHg

Converting this unit of pressure into 'atm' by using conversion factor:

[tex]760mmHg=1atm[/tex]

[tex]640mmHg=\frac{1}{760}\times 640=0.84atm[/tex]

Thus there will be 0.84 atm.

A 0.070 M solution of the salt NaB has a pH of 9.60. Calculate the pH of a 0.010 M solution of HB.

Or, what is the Kb of HB?

Answers

Answer:

pH=3.68

Explanation:

Hello,

At first, by knowing the 9.60-pH of the 0.070M solution of NaB, we can compute the Kb as the B contained into the NaB behaves as a base:

[tex]B^-+H_2O(l)<-->HB+OH^-[/tex]

Now, one can compute concentration of the OH ions because it is the same concentration of the HB based on the aforementioned chemical reaction:

[tex]pH=-log([H^+])\\\\ H^+=10^{-pH}=10^{-9.60}=2.51x10^{-10}\\OH^-=\frac{Kw}{[H^+]} =\frac{1x10^{-14}}{2.51x10^{-10}} =3.98x10^{-5}[/tex]

[tex][OH^-]=[HB]=3.98x10^{-5}M[/tex]

The Kb is then:

[tex]Kb=\frac{[HB][OH^-]}{[B^-]}=\frac{(3.98x10^{-5})^2}{0.070-3.98x10^{-5}} =2.264x10^{-8}[/tex]

After doing that, the Ka for the acid, taking into account its dissociation is:

[tex]HB<-->H^++B^-\\Ka=\frac{Kw}{Kb}=\frac{1x10^{-14}}{2.264x10^{-8}} =4.42x10^{-7}[/tex]

Based on the ICE conditions and table, one states the change during the dissociation of HB:

[tex]Ka=\frac{[H^+][B^-]}{[HB]}\\4.42x10^{-6}=\frac{x^2}{0.010-x} \\x=2.08x10^-4M[/tex]

Finally, the found value for x equals to the H+ concentration, so we compute the pH:

[tex][H^+]=2.08x10^{-4}\\pH=-log(2.08x10^{-4})\\pH=3.68[/tex]

Best regards.

Th pH of a 0.010 M solution of HB is 3.68 and value of Kb for HB is 2.26×10⁻⁸.

How de we calculate pH?

pH of any solution is define as the negative logarithm of the concentration of H⁺ ion in the solution.

Given that, pH = 9.6

9.6 = -log[H]

[H] = [tex]10^{-9.6}[/tex] = 2.51×10⁻¹⁰

Also we know that,

[H⁺][OH⁻] = 10⁻¹⁴

[OH⁻] = 10⁻¹⁴ / 2.51×10⁻¹⁰ = 3.98×10⁻⁵

Now we calculate the value of Kb for HB following the below equation:
                                     B⁻  +  H₂O(l)  →  HB  +  OH⁻

Initial:                        0.070                      0         0

Equilibrium:        0.070-3.98×10⁻⁵   3.98×10⁻⁵ 3.98×10⁻⁵

Kb = [3.98×10⁻⁵]² / (0.070-3.98×10⁻⁵)

Kb = 2.26 × 10⁻⁸

Also we know the relation Ka × Kb = 10⁻¹⁴

Ka = 10⁻¹⁴/2.26 × 10⁻⁸ = 4.42×10⁻⁷

For the below equation, value of Ka will be:

                              HB  ↔  H⁺  +  B⁻

Initial:                   0.010      0       0

Equilibrium:        0.010-x    x        x

Ka = x² / (0.010-x)

We can neglect the value of x as it is very small as compare to 0.010.

4.42×10⁻⁷ = x² / 0.010

x = 2.08×10⁻⁴ M

So, the pH of the HB solution is:

pH = -log(2.08×10⁻⁴)

pH = 3.68

Hence required pH is 3.68.

To know more about Kb & Ka, visit the below link:

https://brainly.com/question/26998

Find and report the reduction potentials of lithium, sodium, and potassium.

Answers

Reduction potential (V) Li -3.045 Na -2.7109 K -2.924 Rb -2.925 Cs -2.923

The electrode potential values of [tex]{\text{L}}{{\text{i}}^ + }[/tex], [tex]{\text{N}}{{\text{a}}^ + }[/tex] and [tex]{{\text{K}}^ + }[/tex] are [tex]\boxed{ - 3.045{\text{ V}}}[/tex], [tex]\boxed{ - {\text{2}}{\text{.714 V}}}[/tex] and [tex]\boxed{ - {\text{2}}{\text{.925 V}}}[/tex] respectively.

Further explanation:

Electrochemical cells are the devices that are used to generate an electric current from the energy released by the spontaneous redox reaction. Redox reactions involve the transfer of electrons between the chemical species by oxidation and reduction process. The oxidation process represents the loss of electrons and reduction process represents the gain of electrons.

In order to determine the standard reduction potential, the electrode is coupled with standard hydrogen electrode as illustrated in the attached image. The SHE acts as anode and the metal electrode acts as the cathode. The value of reduction potential for hydrogen has been assigned as 0.00 V.

The formula to calculate cell potential [tex]\left( {{E_{{\text{cell}}}}} \right)[/tex] of the reaction when the reduction occurs as cathode and oxidation occur at anode is as follows:

[tex]{E_{{\text{cell}}}} = {E_{{\text{cathode}}}} - {E_{{\text{anode}}}}[/tex]

The expression of Nernst equation that relates the reduction potential of a half or full electrochemical cell reaction to the standard electrode potential is given as,

[tex]{E_{{\text{cell}}}} = E_{{\text{cell}}}^\circ - \dfrac{{2.303RT}}{{nF}}\log \dfrac{{\left[ P \right]}}{{\left[ R \right]}}[/tex]               ……. (1)

Here,

[tex]{E_{{\text{cell}}}}[/tex] is cell potential.

[tex]E_{{\text{cell}}}^\circ[/tex] is standard cell potential.

[tex]R[/tex] is gas constant and is equal to [tex]8.314{\text{ J/K}} \cdot {\text{mol}}[/tex].

[tex]T[/tex] is temperature.

[tex]n[/tex] denotes the number of moles of electrons transferred in the reaction.

[tex]F[/tex] is Faraday constant and is equal to [tex]95484.56{\text{ C/mol}}[/tex].

[tex]\left[ P \right][/tex] is the concentration of product.

[tex]\left[ R \right][/tex] is the concentration of reactant.

At standard temperature [tex]25\;^\circ {\text{C}}\left( {298{\text{ K}}} \right)[/tex] the value of [tex]\dfrac{{2.303RT}}{F}[/tex] is equal to [tex]0.0592{\text{ V}}[/tex]. Thus the equation(1) is written as,

[tex]{E_{{\text{cell}}}} = E_{{\text{cell}}}^\circ - \dfrac{{0.0591}}{n}\log \dfrac{{\left[ P \right]}}{{\left[ R \right]}}[/tex]         …… (2)

Knowing the concentration of the electrolyte solutions taken in the cathodic compartment and substituting the values in the Nernst equation gives the reduction potential for the half cell.

The electrode potential values of [tex]{\mathbf{L}}{{\mathbf{i}}^{\mathbf{ + }}}[/tex], [tex]{\mathbf{N}}{{\mathbf{a}}^{\mathbf{ + }}}[/tex] and [tex]{{\mathbf{K}}^{\mathbf{ + }}}[/tex] are [tex]{\mathbf{ - 3}}{\mathbf{.045 V}}[/tex], [tex]{\mathbf{ - 2}}{\mathbf{.714 V}}[/tex] and [tex]{\mathbf{ - 2}}{\mathbf{.925 V}}[/tex] respectively as determined with respect to standard hydrogen electrode at [tex]{\mathbf{298 K}}[/tex].

Learn more:

1. Effectiveness of detergent: https://brainly.com/question/10136601

2. Scientific notation: https://brainly.com/question/4935921

Answer details:  

Grade: Senior School

Subject: Chemistry

Chapter: Electrochemistry

Keywords: Electrochemical cells, Redox reactions, Oxidation, reduction, cell potential, half-cell, Nernst equation, Faraday constant.

Using the balanced equation shown below, calculate the mass of c3h8 that must react in order to release 2.45×106 × 106 kj of heat. δhrxn = –2219.9 kj

Answers

Final answer:

Given the heat of reaction for C3H8 (-2219.9 kJ/mole), approximately 48.63 kg of C3H8 would need to react to release 2.45 x10^6 kJ of heat.

Explanation:

The balanced chemical reaction is C3H8 + 5O2 -> 3CO2 + 4H2O and its known enthalpy is -2219.9 kJ. If this amount of heat is released for the combustion of one mole of C3H8, to calculate the mass of propane (C3H8) needed to release 2.45 x10^6 kJ of heat, we need to consider the proportional relationship between heat and mass.

To release -2219.9 kJ of heat, 1 mole (or about 44.09 g) of C3H8 is needed. Therefore, to release -2.45 x10^6 kJ, you just multiply 2.45 x10^6 kJ by 44.09 g and then divide by 2219.9 kJ, which gives you approximately 48628.75 g or 48.63 kg. In summary, around 48.63 kg of C3H8 would need to react to release 2.45 x10^6 kJ of heat.

Learn more about Enthalpy Calculation here:

https://brainly.com/question/29254242

#SPJ12

To release 2.45×10⁶ kJ of heat, 2206.6 moles of C₃H₈ are required. Using the molar mass, this corresponds to 97,311.06 grams of C₃H₈. Therefore, the total mass needed is 97,311.06 grams.

To solve this problem, follow these steps:

First, understand the relationship given by the reaction's enthalpy change (ΔHrxn = –2219.9 kJ):

2 C₃H₈(g) + 7 O₂(g) → 6 CO₂(g) + 8 H₂O(g)

This equation indicates that when 2 moles of propane (C₃H₈) react, 2219.9 kJ of heat is released.Given that we need to release 2.45×10⁶ kJ of heat, calculate the moles of C₃H₈ required using the proportion:

moles of C₃H₈ = (2.45×10⁶ kJ) / (2219.9 kJ/2 moles) = 2206.6 moles of C₃H₈

To find the mass, use the molar mass of C₃H₈ (44.1 g/mol):

mass (g) = 2206.6 moles × 44.1 g/mol = 97,311.06 g

Therefore, the mass of C₃H₈ required to release 2.45×10⁶ kJ of heat is 97,311.06 grams.

What is the charge of a hypothetical ion with 85 protons and 87 electrons?

Answers

There is a charge of -2 on an ion.
A neutral atom always have equal number of protons and electrons. if an atom loses and electron, an ion gets positive charge and if an atom gains electron it gets negative charge.
An atom with 85 protons means it also have 85 electrons but when it gains two electrons it becomes ion and then the number of electrons is 87. So that is why an ion have -2 charge.

What information does DNA provide to each of the cells organelles?
A. Instructions for each specific function
B. How to use light in energy to make glucose
C. How to make proteins from RNA
D. How to process glucose to ATP

Answers

Answer:

The most correct would be option A.

Explanation:

More correct would be to say that DNA contains, among other things, the information needed to make proteins, which have various functions within cells and organelles.

How many milliseconds are there in 3.5 seconds

Answers

There are 3,500 milliseconds in 3.5 seconds. Hope this helps!
There are 3500 milliseconds.
Other Questions
Can you guys help me please ?(: what is the value of x (40x+15)135 after analyzing the graph, which statement best describes what is happening in the graph a) the negative trend of the graph shows oxygen becomes more soluble as the temperature increases b) the negative trend of the graph shows oxygen becomes less soluble as the temperature increasesc) the positive trend of the graph shows oxygen becomes more soluble as the temperature increases d) the positive trend of the graph shows oxygen becomes less soluble as the temperature increases Lisa has a certain amount of money. She spent 39 dollars and has 3/4 of the original amount left. How do you write this equation? Write a linear equation that models the cost y of one person going on x rides at the fair. Graph the equation. Admission is $12 and rides are a $1 each. Please help Write an equation of a parabola with vertex at the origin and the given focus (1, 0) A pipe is 10 ft long. It need to be cut into pieces that are each 2/5 feet long. How many pieces can be made from the pipe? Southwestern north america contains a large area called the basin and range province. what is the origin of this name? compare and contrast civilizations in the americans with civilizations in Africa and asia Which event was most influential in the rise of a more active national government? select one:a. the cold warb. world war ic. the war of 1812d. the civil ware. the great depression? Rukmani's struggle to feed her family during the drought is an example of _____. After a divorce, ______-year-old children feel pressured to choose sides between the mother and father, and may experience a degree of divided loyalty. Aaron, korben and zane are preparing to work on a big project for the firm. they meet to decide who is going to complete which tasks of the project. this activity is called Cheryl can travel 21.6 miles on one gallon of gas.How far can Cheryl travel on 6.2 gallons of gas? Write the ratio three sevenths37 to 6 as a fraction in simplest form. What was the effect of the founding of Constantinople?A.It divided the Roman Empire into the East and the West.B.It exhausted the military resources of the Roman Empire.C.It challenged the authority of the Roman emperors.D.It boosted international trade for the Roman Empire. Please Help. Please Explain your Answer Use any model you choose to solve the story problem.Anura found a can of paint that was full. She was able to paint 3 fence posts with the paint. What fraction of the can of paint did Anura use on each fence post? what happened to the sites of the clans that began settling the fertile crescent Why does elizabeth think that abigail wants to get rid of her? Steam Workshop Downloader