Answer: 3808 ml
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number [tex]6.023\times 10^{23}[/tex] of particles.
Standard condition of temperature (STP) is 273 K and atmospheric pressure is 1 atm respectively.
To calculate the moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text {Molar mass}}=\frac{4.03}{24}=0.17moles[/tex]
[tex]2Mg+O_2\rightarrow 2MgO[/tex]
2 moles of magnesium react with= [tex[2\times 22.4=44.8L[/tex] of oxygen at STP
Thus 0.17 moles of magnesium react with=[tex]\frac{44.8}{2}\times 0.17=3.8L=3808ml[/tex]
Thus the volume of oxygen required to react with 4.03 g of magnesium at STP is 3808 ml.
Convert 870 kg to pounds
(4 ten thousands 7 tens) × 10
If a room is 212 m long how many hm is it
The room is approximately 0.0212 hectometers long.
To convert the length of the room from meters to hectometers, we need to know that 1 hectometer (hm) is equal to 100 meters (m). Therefore, to convert meters to hectometers, we divide the length in meters by 100.
Given that the room is 212 meters long, we perform the following calculation:
[tex]\[ \text{Length in hectometers} = \frac{\text{Length in meters}}{100} \][/tex]
[tex]\[ \text{Length in hectometers} = \frac{212 \text{ m}}{100} \][/tex]
[tex]\[ \text{Length in hectometers} = 2.12 \text{ hm} \][/tex]
However, to express this length in a more standard form, we can write 2.12 hectometers as 212/10000 hectometers, which simplifies to 212 hm divided by 100, or 2.12 hm. To be more precise, we can express this as a decimal:
[tex]\[ \text{Length in hectometers} = 0.0212 \text{ hm} \][/tex]
Thus, the room is approximately 0.0212 hectometers long.
In 1986 an electrical power plant in taylorsville, georgia, burned 8,376,726 tons of coal, a national record at that time. assuming that the coal was 80.7 % carbon by mass and that combustion was complete, calculate the number of tons of carbon dioxide produced by the plant during the year. if 71.0 % of the so2 could be removed by reaction with powdered calcium oxide, cao, via the reaction
297440787 tons of carbon dioxide is produced by the plant after a combustion reaction taking place.
How to calculate mass from combustion reaction?Reaction which takes place in presence of air is combustion reaction.When carbon burns in air it produces carbon dioxide .
C+O₂[tex]\rightarrow[/tex]CO₂
80.7% mass of carbon means 80.7/100×12=9.684 g
12 g C is present in 44 g carbon dioxide
∴9.684 g of C is present in 9.684×44/12=35.508 g
As 9.6854 g carbon/coal produces 35.508 g carbon dioxide ,
∴35.508×8376726=297440787 tonnes of carbon dioxide.
Combustion reactions are reactions which take place at high temperatures and are exothermic and produce products which are oxidized.In combustion reactions ,chemical equilibrium is difficult to achieve. There are 3 types of combustion:
1) rapid combustion
2) explosive combustion
3) spontaneous combustion
Learn more about combustion,here:
https://brainly.com/question/14335621
#SPJ5
List the subatomic particles in terms of their mass from least to greatest.
At what temperature does water evaporate?
calculate the number of Kilojoules to warm 125 g of iron from 23.5 C to 78.0 C
Observation and assessment are most effective when
A. tools are appropriate for the children in your setting and meet professional requirements for quality.
B. the state has selected them as an appropriate tool for you to use.
C. parents select the tools you use.
D. assessments are formal and gather focused information.
Answer:
A. Tools are appropriate for the children in your setting and meet professional requirements for quality.
Explanation:
This is correct! C::
Element x reacts with oxygen to produce x2o3 in an experiment it is found that 1.0000 g of x produces 1.1xxx g of x2o3 what is the molar mass of x?
The molar mass of element X is determined in g/mol by taking into account the mole ratio in the X₂O₃ compound. The mass of X (1.0000 g) is first divided by the moles of X, which is two-thirds of the moles of Oxygen, calculated by dividing the mass of Oxygen in X₂O₃ by its molar mass.
Explanation:To calculate the molar mass of element X, the mole ratio in the X₂O₃compound needs to be considered. This mole ratio suggests that for every 1 mole of X, 1.5 moles of Oxygen is used given that from the formula of X₂O₃hat would be 2 moles of X for every 3 moles of oxygen (2:3).
The mass of Oxygen in the compound can be calculated by subtracting the mass of X from the total compound weight. Given that 1.1xxx grams of X₂O₃ was obtained from 1.0000 grams of X, the mass of Oxygen in the compound would be 1.1xxx g - 1.0000 g giving a mass of Oxygen in the compound as 0.1xxx grams.
We know that the molar mass of Oxygen (O) is 16.00 g/mol. So, the number of moles of Oxygen in the compound can be calculated as (0.1xxx g)/(16.00 g/mol) which gives the number of moles for Oxygen. Given the mole ratio from the X₂O₃ formula, the number of moles of X will be two-thirds of the moles of Oxygen.
Finally, the molar mass of X can be calculated by dividing the mass of X (1.0000 g) by the number of moles of X calculated. This will give the answer for the molar mass of X in g/mol.
Learn more about Molar Mass Calculation here:https://brainly.com/question/25879634
#SPJ12
For most compounds in which a nitrogen atom bears no formal charge, the valence of this nitrogen atom is
Answer:
3
Explanation:
Hello,
In this case, as nitrogen is not bearing any formal charge, we apply its mathematical definition to find such oxidation state:
Formal charge= # of valence electrons - # of lone-pair electrons - 1/2 # of bond pair electrons
Since no formal charge is born, no lone-pair electrons are formed and 6 bond pair electrons are always present for the nitrogen to complete the octate, the valence turns out into:
# of valence electrons = 0 + 0 + 1/2 * 6
# of valence electrons = 3
Best regards.
In a chemical reaction, water decomposes to form hydrogen and oxygen. Which term names the water? A. an element B. an atom C. a product D. a reactant
The term that name the water in a chemical reaction that water decomposes is.
reactant ( answer D)
Explanation
Reactant is a substance that take part in and undergoes change during a reaction. In other words reactant are consumed to form product.
water is reactant when it decomposes because it is consumed to form hydrogen and oxygen.
The decomposition of water is as below equation,
2H2O→ 2 H2 + O2
Water is formed when two hydrogen atoms bond to an oxygen atom.
The hydrogen and the oxygen in this example are different
A) complexes.
B) compounds.
C) elements.
D) mixtures.
Provide three different examples of how minerals can form on earth
Based on the answers to parts (a)-(c), explain why cinnamaldehyde is not miscible with water. incorporate relevant intermolecular forces in your answer.
The combination of a single polar group and dominant non-polar regions prevents effective hydrogen bonding with water, leading to the immiscibility of cinnamaldehyde in water.
**Structure:**
O
|
C=CH-CH=CH-CH2-CH2-CH3
|
H
**Analysis:**
a) **Non-polar regions:**
* **Double bonds:** The double bonds (C=C) have evenly distributed electron density, making them non-polar. Circle both double bonds.
* **Alkyl chains:** The aliphatic chains (CH2-CH2-CH3) also have similar electron densities across their C-H bonds, making them non-polar. Circle both alkyl chains.
b) **Polar region:**
* **Carbonyl group (C=O):** The carbonyl group has a significant dipole moment due to the electronegativity difference between oxygen and carbon. This creates a partial positive charge on the carbon and a partial negative charge on the oxygen. Circle the carbonyl group (C=O).
c) **Water's preferred intermolecular force:**
* **Hydrogen bonding:** Water molecules are highly polar due to their lone pairs and O-H bonds, enabling strong hydrogen bonding with other polar molecules.
d) **Cinnamaldehyde's immiscibility with water:**
* Although the carbonyl group is polar, its interaction with water is significantly weakened by the extensive non-polar regions (double bonds and alkyl chains) dominating the molecule.
* These non-polar regions prefer London dispersion forces (weak attractive forces between all molecules due to temporary fluctuations in electron density) over the stronger hydrogen bonding with water.
* The weak London dispersion forces cannot overcome the stronger intermolecular hydrogen bonding network of water, resulting in immiscibility.
Therefore, the combination of a single polar group and dominant non-polar regions prevents effective hydrogen bonding with water, leading to the immiscibility of cinnamaldehyde in water.
The probable question may be:
1. Re-draw the chemical structure of cinnamaldehyde and use it to answer the following solubility-based questions:
a) Circle and label all regions of the molecule that exhibit non-polar behavior.
b) Circle and label the region of the molecule that exhibits polar behavior.
c) Water prefers to interact with solute molecules with what type of intermolecular force (choose one answer): hydrogen bonding, dipole- induced dipole, or induced dipole-induced dipole (London dispersion)?
d) Based on the answers to parts (a)-(c), explain why cinnamaldehyde is NOT miscible with water. Incorporate relevant intermolecular forces in your answer.
Water boils at 373 K. The molar enthalpy of vaporization for water is 40.7 kJ/mol. If one mole of water is at 373 K when it starts to boil, its temperature when it all has boiled will be ____________________. a. 273 K c. 373 K b. 343 K d. 413 K
Answer: c. 373 K
Explanation:
Insulin, adrenaline, and estrogen are examples of
In the given question, Insulin, adrenaline, and estrogen are examples of hormones. Each hormone has a specific function and plays an important role in maintaining homeostasis in the body.
Insulin is a hormone made up of 51 amino acids and is released by the beta cells of pancreas. It helps in regulating blood glucose level.
Adrenaline is also known as epinephrine. It is produced by the adrenal glands and is involved in the body's "fight or flight" response to stress.
Estrogen is a female sex hormone produced by the ovaries and is involved in the development of female secondary sexual characteristics, such as breast development and the menstrual cycle.
Therefore, examples of hormones are insulin, adrenaline, and estrogen, which are chemical messengers that regulate many physiological processes in the body.
Learn more about Insulin here:
https://brainly.com/question/31251025
#SPJ6
Which characteristic best explains the difference in melting behavior of covalent substances and ionic substances?
Answer:
C
Explanation:
Why are covalent bonds between hydrogen and nitrogen or oxygen polar? see section 2.1 ( page 57) ?
Mastering chemistry if the new ring is indeed pure platinum (density = 21.4 g/cm3), what is its mass?
Complete and balance the molecular equation, including phases, for the reaction of aqueous iron(III) nitrate, Fe(NO3)3 and aqueous lithium hydroxide, LiOH.
The Complete balanced equation for the reaction of Aqueous iron (iii) nitrate, Fe(NO3)3 and aqueous lithium hydroxide, LiOH, is given by;
Fe(NO₃)₃(aq) + 3LiOH(aq) → 3LiNO₃(aq) + Fe(OH)₃(s)
Further Explanation:Chemical equations Chemical equations are equations showing reactions between reactants to form products. Chemical equations show the reactants or starting substances and products or substances formed during the reaction.Law of conservation of mass The law of conservation requires that when writing chemical equations, the mass of the reactants should be equal; to the mass of the products.This is done by making sure the number of atoms of each element involved in the chemical equation is equal on both sides of the equation.To ensure the law of conservation in chemical equations is observed we balance chemical equations.Balancing chemical equation:Balancing chemical equations is a try and error method that ensures the number of atoms in the side of the reactants is equal to the number of atoms in the side of products.Balancing chemical equations may also require inclusion of state symbols which shows the state of each compound or element involved in the chemical reactions.For example; the equation; Fe(NO₃)₃(aq) + 3LiOH(aq) → 3LiNO₃(aq) + Fe(OH)₃(s), is balanced as there are equal number of atoms of any given element on both sides; A single atom of Fe, six oxygen atom, 3 nitrogen atoms and 3 lithium atoms on both side of the equation.
Keywords: Chemical equations, balancing of chemical equations
Learn more about:Chemical equations: brainly.com/question/5297242Balancing of chemical equations: brainly.com/question/5297242Law of conservation of mass: brainly.com/question/5297242Level: high school
Subject: Chemistry
Topic: Chemical equations
Sub-topic: Balancing chemical equations
The balanced chemical equation between aqueous iron(III)nitrate and aqueous lithium hydroxide is Fe(NO₃)₃[tex]_(aq)[/tex] + 3 LiOH [tex]_(aq)[/tex][tex]\rightarrow[/tex] 3 LiNO₂ [tex]_(aq)[/tex] +Fe(OH)₃[tex]_(s)[/tex].
What is a chemical equation?Chemical equation is a symbolic representation of a chemical reaction which is written in the form of symbols and chemical formulas.The reactants are present on the left hand side while the products are present on the right hand side.
A plus sign is present between reactants and products if they are more than one in any case and an arrow is present pointing towards the product side which indicates the direction of the reaction .There are coefficients present next to the chemical symbols and formulas .
The first chemical equation was put forth by Jean Beguin in 1615.By making use of chemical equations the direction of reaction ,state of reactants and products can be stated. In the chemical equations even the temperature to be maintained and catalyst can be mentioned.
Learn more about chemical equations,here:
https://brainly.com/question/28294176
#SPJ2
A 1.248 g sample of limestone rock is pulverized and then treated with 30.00 ml of 1.035 m hcl solution. the excess acid then requires 11.56 ml of 1.010 m naoh for neutralization. part a calculate the percent by mass of calcium carbonate in the rock, assuming that it is the only substance reacting with the hcl solution.
The percentage by mass of calcium carbonate present in rock is [tex]\boxed{{\mathbf{77}}{\mathbf{.62 \% }}}[/tex].
Further Explanation:
First, we have to find the excess number of moles of HCl acid that are neutralized by NaOH.
The number of moles of NaOH in 11.56 ml of 1.010 M NaOH solution is calculated as follows:
[tex]\begin{aligned}{\text{Number of moles of NaOH}}\left({{\text{mol}}}\right)&={\text{Concentration }}\left( {{\text{mol/L}}}\right) \times{\text{Volume }}\left({\text{L}} \right)\\&= 1.010{\text{ mol/L}}\left({11.56{\text{ ml}}\times \frac{{1{\text{ L}}}}{{1000{\text{ml}}}}}\right)\\&=0.011676{\text{ mol}}\\\end{aligned}[/tex]
The balanced chemical reaction of NaOH and HCl is as follows:
[tex]{\text{NaOH}}\left({aq}\right)+{\text{HCl}}\left({aq}\right)\to{\text{NaCl}}\left({aq} \right) +{{\text{H}}_{\text{2}}}{\text{O}}\left( l \right)[/tex]
Since NaOH and HCl are reacted in 1:1 ratio, therefore, the excess number of moles of HCl are equal to number of moles of NaOH that is 0.011676 mol.
Now, we have to find how many moles of HCl initially reacted with limestone.
The initial number of moles of HCl in 30.00 ml of 1.035 M HCl solution is calculated as follows:
[tex]\begin{aligned}{\text{Number of moles of HCl}}\left( {{\text{mol}}}\right)&={\text{Concentration }}\left( {{\text{mol/L}}}\right) \times {\text{Volume }}\left({\text{L}} \right)\\&= 1.035{\text{ mol/L}} \times \left( {30.00{\text{ ml}}\times \frac{{1{\text{ L}}}}{{1000\,{\text{ml}}}}}\right)\\&=0.03105{\text{ mol}}\\\end{aligned}[/tex]
Therefore, the number of moles of HCl initially reacted with limestone is calculated as follows:
[tex]\begin{aligned}{\text{Number of moles of HCl reacted with CaC}}{{\text{O}}_3}&=\left({0.03105{\text{ mol}} - 0.011676{\text{ mol}}}\right)\\&={\text{0}}{\text{.019374 mol of HCl}}\\\end{aligned}[/tex]
Therefore, the number of moles of HCl initially reacted with limestone is 0.019374 mol.
The balanced chemical equation for the reaction of limestone [tex]\left( {{\text{CaC}}{{\text{O}}_{\text{3}}}}\right)[/tex] with HCl is as follows:
[tex]{\text{CaC}}{{\text{O}}_3}\left( s \right) + 2{\text{HCl}}\left( {aq} \right)\to{\text{C}}{{\text{O}}_{\text{2}}}\left( g \right) + {{\text{H}}_{\text{2}}}{\text{O}}\left( l \right) + {\text{CaC}}{{\text{l}}_2}\left( {aq} \right)[/tex]
The balanced chemical equation shows that 1 mole of [tex]{\text{CaC}}{{\text{O}}_3}[/tex] reacted with 2 moles of HCl to neutralize the reaction completely, therefore, the number of moles of [tex]{\text{CaC}}{{\text{O}}_3}[/tex] neutralized by 0.019374 mol of HCl are calculated as follows:
[tex]\begin{aligned}{\text{Amount of CaC}}{{\text{O}}_3}\left( {{\text{mol}}}\right)&= \left( {{\text{0}}{\text{.019374 mol of HCl}}}\right)\left({\frac{{1{\text{ mol CaC}}{{\text{O}}_3}}}{{{\text{2 mol HCl}}}}}\right)\\&=0.009687{\text{ mol CaC}}{{\text{O}}_3}\\\end{aligned}[/tex]
The molar mass of [tex]{\text{CaC}}{{\text{O}}_3}[/tex] is 100.0 g/mol.
Mass of 0.009687 mol of [tex]{\text{CaC}}{{\text{O}}_3}[/tex] is calculated as follows:
[tex]\begin{aligned}{\text{Mass}}\left( {\text{g}}\right)&={\text{Number of moles}} \times{\text{Molarmass}}\left({{\text{g/mol}}}\right)\\&=0.009687{\text{mol}}\times{\text{100}}{\text{.0 g/mol}}\\&=0.9687{\text{g}}\\\end{aligned}[/tex]
The percentage by mass can be calculated as follows:
[tex]\begin{aligned}{\text{Percent by mass}}\left( \%\right)&=\frac{{{\text{Mass of CaC}}{{\text{O}}_3}}}{{{\text{Mass of lime stone}}}}\times 100\\&=\frac{{0.9687{\text{ g}}}}{{1.248{\text{ g}}}}\times 100\\&=77.62{\text{ }}\%\\\end{aligned}[/tex]
Learn more:
1. Best cleaning agent for burned-on grease: https://brainly.com/question/3789105
2. Calculation of moles of NaOH: https://brainly.com/question/4283309
Answer details:
Grade: Senior School
Subject: Chemistry
Chapter: Mole concept
Keywords: Percentage by mass, calcium carbonate in rock, number of moles of HCl, excess number of moles, CaCO3, balance chemical equation, limestone.
Final answer:
To calculate the percent by mass of calcium carbonate in the limestone, we calculate the moles of HCl that reacted with the limestone, subtract the moles neutralized by NaOH, convert this to grams of CaCO₃, and divide by the sample mass.
Explanation:
To calculate the percent by mass of calcium carbonate in the limestone rock, we need to find out how much of the HCl was used to react with the calcium carbonate and not neutralized by NaOH, and then convert this amount to grams of CaCO3.
We start by calculating the number of moles of NaOH that reacted with the excess HCl:
Number of moles of NaOH = Volume (L) × Molarity (M)
Number of moles of NaOH = 0.01156 L × 1.010 M = 0.0116776 mol
Since the reaction between NaOH and HCl is 1:1, the moles of HCl that were neutralized by NaOH are also 0.0116776 mol.
Now we can calculate the moles of HCl that reacted with the CaCO3:
Total moles of HCl initially = Volume (L) × Molarity (M)
Total moles of HCl = 0.03000 L × 1.035 M = 0.03105 mol
Moles of HCl that reacted with CaCO₃ = Total moles of HCl - Moles of HCl neutralized by NaOH
Moles of HCl that reacted with CaCO₃ = 0.03105 mol - 0.0116776 mol = 0.0193724 mol
The reaction between CaCO₃ and HCl is also 1:1:
CaCO₃ + 2HCl → CaCl₂ + H₂O + CO₂
Moles of CaCO₃ = Moles of HCl that reacted with CaCO₃ = 0.0193724 mol
To find the mass of CaCO₃ we multiply the moles of CaCO₃ by the molar mass of CaCO₃ (100.09 g/mol):
Mass of CaCO₃ = Moles of CaCO₃ × Molar Mass of CaCO₃
Mass of CaCO₃ = 0.0193724 mol × 100.09 g/mol = 1.93936 g
Finally, we calculate the percent by mass of CaCO₃ in the rock:
Percent by mass of CaCO₃ = (Mass of CaCO₃ / Mass of Rock Sample) × 100%
Percent by mass of CaCO₃ = (1.93936 g / 1.248 g) × 100% = 155.413%
However, a percent mass over 100% indicates an error in the calculation as it's not possible to have more calcium carbonate than the total mass of the rock. It likely means that we must take into account other substances in the limestone that might react with HCl or a calculation error.
A substance undergoes a change. Which of the following indicates that the change was a chemical change?
a. The substance changed shape.
b. New molecules formed.
c.The substance froze.
d. The substance changed size.
Answer:
The answer is B.
Explanation:
What mass of ammonium thiocyanate must be used if it is to react completely with 6.5 g barium hydroxide octahydrate?
What happens if you cool the crystallization solution in a container of ice that is too big?
Remember to use the proper number of significant figures and leading zeros in all calculations. A sample has a mass of 35.4 g and a volume of 36.82 mL. What is the density of the sample?
1.04011 g/mL
1.04 g/mL
0.96143 g/mL
0.961g/mL
Answer : The correct option is, 0.961 g/ml
Solution : Given,
Mass of sample = 35.4 g
Volume of sample = 36.82 ml
Formula used :
[tex]\text{Density of sample}=\frac{\text{Mass of sample}}{\text{Volume of sample}}[/tex]
Now put all the given values in this formula, we get the density of the sample.
[tex]\text{Density of sample}=\frac{35.4g}{36.82ml}=0.961g/ml[/tex]
Therefore, the density of the sample is, 0.961 g/ml
Answer:
The correct option is, 0.961 g/ml
Explanation:
Which of these is the lowest subgroup? kingdom, order, genus, or species.
Answer:
Species
Explanation:
The acronym, DKPCOFGS; Gives you an explanation of the subgroups highest - lowest.
Did
King
Phil
Come
Over
For
Good
Spagettii
Spagettii is species in the acronym
Enjoy your test :D
-Snooky
what type of equation is Cu + 2AgNO3=Cu(NO3)2 + 2Ag?
The given equation is a double-replacement reaction where solid copper reacts with an aqueous solution of silver nitrate to produce a solution of copper(II) nitrate and solid silver.
Explanation:The given equation is a chemical equation, specifically a double-replacement reaction. In this type of reaction, the cations are swapped between two compounds. In this case, solid copper (Cu) reacts with an aqueous solution of silver nitrate (AgNO3) to produce a solution of copper(II) nitrate (Cu(NO3)2) and solid silver (Ag). The balanced equation for this reaction is:
Cu + 2AgNO3 = Cu(NO3)2 + 2Ag
Why must you carry out the oxidation of cu with hno3 in a fume hood?
The perspective formula of threonine, an amino acid with two asymmetric centers, is provided below. perspective formula of threonine add either an h, oh, or nh2 group to complete the fischer projection for threonine.
A student titrates an unknown amount of potassium hydrogen phthalate (khc8h4o4, abbreviated khp) with 20.46 ml of 0.1000 m naoh solution. khp has one acidic hydrogen. what mass (in grams) of khp was titrated by the sodium hydroxide solution?