Final answer:
To compute the flea's acceleration, Newton's second law is employed, considering the vertical and horizontal forces separately, and then combining these to find the magnitude and direction using trigonometry.
Explanation:
The question involves calculating the direction and magnitude of the acceleration of a flea, considering both the force exerted by the flea and the force of the breeze, as well as the gravitational force. To find the acceleration, we apply Newtons second law, which states that the acceleration of an object is equal to the net force acting upon it divided by the object's mass, or № = F / m. We can break down the forces into two components: vertical and horizontal.
Vertically, the flea exerts a force downward and gravity pulls it downward, while horizontally, the breeze exerts a force. To find the acceleration in the vertical direction, add the force exerted by the flea to the weight of the flea (mass times gravitational acceleration) and divide by the flea's mass. For the acceleration in the horizontal direction, divide the force of the breeze by the mass of the flea. Since these accelerations are perpendicular, we can use Pythagorean theorem to find the resultant magnitude and trigonometry to find the overall direction of the acceleration.
A car traveling at speed v takes distance d to stop after the brakes are applied. What is the stopping distance if the car is initially traveling at speed 7.0v? Assume that the acceleration due to the braking is the same in both cases.
Express your answer using two significant figures.
49d
Further explanationThis case is about uniformly accelerated motion.
Given:
The initial speed was v takes distance d to stop after the brakes are applied.
Question:
What is the stopping distance if the car is initially traveling at speed 7.0v?
Assume that the acceleration due to the braking is the same in both cases. Express your answer using two significant figures.
The Process:
The list of variables to be considered is as follows.
[tex]\boxed{u \ or \ v_i = initial \ velocity}[/tex][tex]\boxed{u \ or \ v_t \ or \ v_i = terminal \ or \ final \ velocity}[/tex][tex]\boxed{a = acceleration \ (constant)}[/tex][tex]\boxed{d = distance \ travelled}[/tex]The formula we follow for this problem are as follows:
[tex]\boxed{ \ v^2 = u^2 + 2ad \ }[/tex]
a = acceleration (in m/s²)u = initial velocity v = final velocityd = distance travelledStep-1
We substitute v as the initial speed, distance of d, and zero for final speed into the formula.
[tex]\boxed{ \ 0 = v^2 + 2ad \ }[/tex]
[tex]\boxed{ \ v^2 = -2ad \ }[/tex]
Both sides are divided by -2d, we get [tex]\boxed{ \ a = \Big( -\frac{v^2}{2d} \Big) \ . . . \ (Equation-1) \ }[/tex]
Step-2
We substitute 7.0v as the initial speed, zero for final speed, and Equation-1 into the formula.
[tex]\boxed{ \ 0 = (7.0v)^2 + 2 \Big( -\frac{v^2}{2d} \Big)d' \ }[/tex]
Here d' is the stopping distance that we want to look for.
[tex]\boxed{ \ 2 \Big( \frac{v^2}{2d} \Big)d' = (7.0v)^2 \ }[/tex]
We crossed out 2 in above and below.
[tex]\boxed{ \ \Big( \frac{v^2}{d} \Big)d' = 49.0v^2 \ }[/tex]
We multiply both sides by d.
[tex]\boxed{ \ v^2 d' = 49.0v^2 d \ }[/tex]
We crossed out v^2 on both sides.
[tex]\boxed{\boxed{ \ d' = 49.0d \ }}[/tex]
Hence, by using two significant figures, the stopping distance if the car is initially traveling at speed 7.0v is 49d.
Learn moreDetermine the acceleration of the stuffed bear brainly.com/question/6268248Particle's speed and direction of motion brainly.com/question/2814900About the projectile motion https://brainly.com/question/2746519Keywords: a car traveling at speed v, takes distance d to stop after the brakes are applied, the stopping distance, if the car is initially traveling at speed 7.0v, the acceleration due to the braking is the same, two significant figures.
The stopping distance when a car is initially traveling at speed 7.0v is (7.0v^2)/d.
Explanation:To determine the stopping distance when a car is initially traveling at speed 7.0v, we can use the fact that the acceleration due to braking is the same in both cases. Since the distance it takes to stop at speed v is d, we can set up a proportion: v/d = 7.0v/x, where x represents the stopping distance when the car is initially traveling at speed 7.0v. We can solve for x by cross multiplying and then dividing: x = (7.0v^2)/d. Therefore, the stopping distance when the car is initially traveling at speed 7.0v is (7.0v^2)/d.
Learn more about Stopping distance here:https://brainly.com/question/33440464
#SPJ3
Facial recognition and emotional perception are all tasks that are primarily associated with the __________.
A.
left hemisphere
B.
right hemisphere
C.
cerebral cortex
D.
corpus callosum
A car travels 20 km north. It then turns around and travels 30 km south. What is the car's displacement?
A gymnast practices two dismounts from the high bar on the uneven parallel bars. during one dismount, she swings up off the bar with an initial upward velocity of + 4.0 m/s. in the second, she releases from the same height but with an initial downward velocity of −3.0 m/s. what is her acceleration in each case? how do the final velocities of the gymnast as she reaches the ground differ?
The density of water is 1.00 g/cm3. What is its density in kg/m3?
The density of water is 1.00 g/cm3, then in kilograms per centimeter cube unit, its density would be 1000 kg/m³.
What is density?It can be defined as the mass of any object or body per unit volume of the particular object or body. Generally, it is expressed as in gram per cm³ or kilogram per meter³.
As given in the problem we have to calculate the density of water in kilogram per centimeter cube,
1 cm³ = 1×10⁻⁶ m³
1 gram = 1×10⁻³ kg
The density of the water= mass of the water /volume of the water
=1.00 g/cm3
=1×10⁻³ kg /1×10⁻³ kg
=1000 kg/m³
Thus, if the density of water is 1.00 g/cm3, then in kilograms per centimeter cube unit its density would be 1000 kg/m³.
Learn more about density from here,
brainly.com/question/15164682
#SPJ2
Which parameter of a projectile depends on the horizontal as well as the vertical component of velocity of projection?
hang time
range
height
angle of launch
Answer:
range and angle of launch
Explanation:
Let the horizontal component of velocity be VCosθ = Vx and the vertical component of velocity is VSinθ = Vy.
Here , θ be the angle of projection.
So, if we divide the VSinθ by VCosθ, we get the value of Tanθ, i.e., we get the value of angle of launch.
Now we know that the formula fr the range is given by
[tex]R = \frac{V^{2}\times Sin2\Theta }{g}[/tex]
We can write it as
[tex]R = \frac{V^{2}\times 2\times Sin\Theta \times Cos\Theta }{g}[/tex]
Again we rewrite as
[tex]R = \frac{2\times Vx\times Vy}{g}[/tex]
It shows that the range also depends on the horizontal and vertical component of velocity.
Ismarelda has enough money to purchase 27 bottles of root beer for her party at her home she is expecting 4 guests.
What is the largest numbers of bottles of root beer she needs to purchase if she want every one ( including herself ) to have equal number of root beers
The vestibulo-ocular reflex ensures stable vision by moving the eyes in the opposite direction of the head. Please select the best answer from the choices provided T F
Answer:
The statement is true. The vestibulo-ocular reflex ensures stable vision by moving the eyes in the opposite direction of the head.
Explanation:
The vestibulo-ocular reflex is a reflection of ocular movement that stabilizes the image in the retina during the movement of the head, producing an eye movement in the opposite direction to the movement of the head, conserving the image in the center of the visual field. For example, when the head moves to the right, the eyes move to the left, and vice versa. As there are slight movements of the head at all times, the RVO is very important to stabilize the vision: patients who have damaged RVO find it difficult to read printed media, because they can not stabilize the eyes during small tremors of the head.
A car starts from rest and after 7 seconds it is moving at 42 m/s. what is the carâs average acceleration?
The acceleration of the car is the ratio of its change in velocity to the change in time. The acceleration of the car is 6 m/s².
What is acceleration?Acceleration of a moving body is the rate of change in its velocity. Acceleration is a vector quantity and is characterised by a magnitude and direction. The change in magnitude or direction or both in velocity results in an acceleration of for the body.
Acceleration is the ratio of the change in a velocity to the change in time. Hence the expression relating the time, velocity and acceleration is given by,
a = U - V/ t0 - T
Where, u be the initial velocity and v is final velocity. T0 is initial time and T be the final time .
Given that the car is starts from rest. Hence initial time and velocity is zero. The final velocity is 42 m/s and time is 7 seconds.
Then, acceleration = velocity / time
= 42 m/s / 7 s = 6 m/s².
Therefore, the acceleration of the car is 6 m/s².
To find more on acceleration, refer here:
https://brainly.com/question/3046924
#SPJ5
Ingrid kicks a football with an initial velocity of 12 m/s at an angle of 45 degrees relative to the ground. What is the horizontal component of the initial velocity?
Answer:
8.5 m/s
Explanation:
What s the density of a gasoline sample that has a volume of 13.3 ml and a mass of 8.86g?
What are the units of ppb mass mass/mass?
This map shows the Mid-Atlantic Ridge, which spreads approximately 2.5 cm/year. What is the rate of the spread in m/month?
A) .002
B) .3
C) 216
D) 777600
The answer is A 00.2
An automobile tire is rated to last for 35,000 miles. to an order of magnitude, through how many revolutions will it turn?
Heat is most closely related to blank energy
Answer:
Heat is most closely related to THERMAL ENERGY.
Explanation:
As we know that heat is a dynamic nature of energy in which heat will flow from high temperature to low temperature.
As we know that thermal energy is the energy due to the kinetic energy of all molecules of the given system
This thermal energy is exchanged from one system to other system only due to the temperature gradient.
So here heat always flows from high temperature system to low temperature system.
So here correct answer would be
Heat is most closely related to THERMAL ENERGY.
which of the following descriptions could apply to an accelerating car
Two students are working together on an experiment that measures the effect of different liquid fertilizers on the thickness of plants’ stems. Which is most likely to result in the greatest amount of error in their scientific experiment?
One student measures the plant stem widths by using calipers. The other student measures the widths of the same plant stems again by using a different pair of calipers.
One student measures the plant stem widths by using calipers. The other student types the measurements as they are taken into a computer spreadsheet.
One student measures liquids for the experiment by holding the flask up at eye level. The other student measures liquids for the experiment while the flask sits on the table.
One student weighs liquids for the experiment by using a calibrated scale. The other student weighs liquids for the experiment by using a different calibrated scale.
One student uses a flask held up at eye level to measure liquids for the experiment.
The second student measuring the liquids for the experiment while the flask is on the table will probably cause the largest amount of inaccuracy, hence option C is the right response.
What is the scientific claim?Scientific claims are statements made in science based on an experiment.
As given in the problem statement One student uses a flask held up at eye level to measure liquids for the experiment.
The other student measuring the experiment's liquids while the flask is on the table is most likely to introduce the highest amount of mistakes.
Thus, therefore the correct answer is option C.
To learn more about the scientific claims here, refer to the link;
brainly.com/question/11088441
#SPJ2
The blade on a typical table saw rotates at 3300 revolutions per minute. calculate the linear velocity in miles per hour of one of the teeth at the edge of the 14 inch diameter blade.
Final answer:
The linear velocity of a tooth at the edge of the 14 inch diameter blade on a typical table saw can be calculated by converting the blade's rotational speed from revolutions per minute to radians per second and using the formula for linear velocity. The calculated value will give the speed of the tooth in miles per hour.
Explanation:
To calculate the linear velocity of a tooth at the edge of the blade, we need to first convert the blade's rotational speed from revolutions per minute to radians per second. We can do this by multiplying the revolutions per minute (rpm) by 2π (since there are 2π radians in one revolution) and dividing by 60 (to convert minutes to seconds). So, the angular velocity of the blade is:
ω = (3300 rpm) x (2π rad/rev) / (60 s/min)
Next, we can use the formula for linear velocity to find the speed of a point on the edge of the blade. The formula is:
v = ω x r
where v is the linear velocity, ω is the angular velocity, and r is the radius. In this case, the blade has a diameter of 14 inches, so the radius is half of that, which is 7 inches or 0.5833 feet. Converting this to miles, we get:
r = 0.5833 ft x (1 mile/5280 ft)
Finally, we can substitute the values into the formula:
v = (3300 rpm) x (2π rad/rev) / (60 s/min) x 0.5833 ft x (1 mile/5280 ft)
Calculating this equation gives the linear velocity of a tooth at the edge of the blade.
The __________ houses the nucleus and other cell parts.
A.
neural receptor
B.
myelin sheath
C.
cell body
D.
axon terminal
The part of the neuron that houses the nucleus and other cell parts is the cell body that is in Option c, as the cell body, also known as the soma, is a central part of a eukaryotic cell.
What is the cell body?The cell body includes the nucleus and other organelles like the mitochondria, endoplasmic reticulum, Golgi apparatus, and cytoplasm. The cell body is the main site for the metabolic and biochemical processes of the cell, and it is responsible for maintaining the integrity of the cell and regulating its activities. In the case of neurons, the cell body also contains the genetic information of the neuron in the form of DNA, which is used to synthesize the proteins and other molecules needed for the growth, repair, and maintenance of the neuron.
Hence, the part of the neuron that houses the nucleus and other cell parts is the cell body that is in Option c.
Learn more about the cell body here.
https://brainly.com/question/16932346
#SPJ7
The main reason for positioning many radio telescopes across a large area and combining the signals is
The Doppler Effect means that all observers of a moving wave source detect the same wave frequency.
True or False... Please explain
Answer:
False
Explanation:
The observers will detect different frequencies based whether the source is approaching them or receding from them. Based on the location of observer, the source may either approach the observer or recede from the observer.
If the source is receding
[tex]f_{observed}=f_{source}(\frac{v}{v+v_{source}} )[/tex]
if the source is approaching
[tex]f_{observed}=f_{source}(\frac{v}{v- v_{source}} )[/tex]
For example, consider a scenario where an ambulance moves from west to east.
There are two observers one located west of the ambulance and other located east of the ambulance The ambulance is receding from the west side observer and approaching the east side observer.
The observer west of the ambulance will hear lower pitch and the observer eat of the ambulance will hear higher pitch.
The outer planets are mostly formed of the lighter elements, hydrogen and helium, because these elements condense at a __________ temperature, further from the Sun.
1. Lower
2.Equal
3.Higher
the correct answer is A *LOWER*
Find the equivalent capacitance of a 4.20 uf capacitor and an 8.50 uf in parallel and in series
We are given that there are two capacitors:
4.20 uf
8.50 uf
A. In parallel
The equivalent capacitance of capacitors is similar to calculating that of a current, they are added when in parallel. Therefore the equivalent capacitance is:
equivalent capacitance = C1 + C2 + C3 + ...
equivalent capacitance = 4.20 uf + 8.50 uf
equivalent capacitance = 12.70 uf
B. In series
When the capacitors are placed in series, the formula for the equivalent capacitance is:
equivalent capacitance = 1 / (1/C1 + 1/C2 + 1/C3 + ...)
equivalent capacitance = 1 / (1/4.20 + 1/8.50)
equivalent capacitance = 2.81 uf
For capacitors in parallel, the equivalent capacitance is the sum of individual capacitances, so we get 12.70 µF. For capacitors in series, we calculate using the reciprocal formula and get approximately 2.79 µF.
Explanation:To solve this problem, we need to know the formulas to calculate capacitance in a series and parallel circuit. For capacitors in parallel, the total equivalent capacitance (Ceq) is the sum of the capacitors, so Ceq = C1 + C2, where C1 and C2 are the capacitances of your individual capacitors. Here, C1 is 4.20 µF and C2 is 8.50 µF. So, Ceq = 4.20 µF + 8.50 µF which equals 12.70 µF.
For capacitors in a series connection, the total equivalent capacitance is calculated using the reciprocal formula: 1/Ceq = 1/C1 + 1/C2. So, 1/Ceq = 1/4.20 µF + 1/8.50 µF. Solving for Ceq gives us an equivalent capacitance of about 2.79 µF.
Learn more about capacitance here:https://brainly.com/question/31871398
#SPJ6
Which planet do most known extrasolar planets most resemble?
Most known extrasolar planets resemble Earth, with a significant number also resembling what we call "super Earths", or planets with two to ten times the mass of Earth. Our solar system may be unusual, with many systems potentially hosting Earth-like planets closer to their respective stars.
Explanation:The student asks which planet most known extrasolar planets most resemble. Based on the available data from missions like Kepler, it is clear that the majority of these extrasolar planets or exoplanets most closely resemble Earth. Analyses of the data show that small planets, like the terrestrial ones in our system, are much more common than giant ones. Also relatively common are the so-called "super Earths", which are planets with two to ten times the mass of our planet. In this respect, it is important to note that our solar system may actually be unusual in the organization and types of its planets, and that a large number of planetary systems in our galaxy could potentially host Earth-like planets closer to their star.
Learn more about Extrasolar Planets here:https://brainly.com/question/32889401
#SPJ12
a man stands on a flat surface and shoots an arrow vertically into the sky at avelocity of 60 meters per second. calculate the maximum height the arrow reached. what was the velocity of the car when it hit the ground?
The maximum height reached by the arrow shot vertically at 60 meters per second is 183.67 meters. Upon returning to the ground, the arrow's velocity will be -60 meters per second.
Explanation:The student is dealing with a problem that involves projectile motion, a topic within physics. To calculate the maximum height the arrow reached when shot vertically into the sky at a velocity of 60 meters per second, we use the kinematic equation that ignores air resistance:
Maximum height (h) = (v^2) / (2g)
where v is the initial velocity and g is the acceleration due to gravity (9.8 m/s^2). Substituting the given values:
h = (60^2) / (2*9.8) = 3600 / 19.6 = 183.67 meters
The maximum height reached by the arrow is 183.67 meters. When the arrow hits the ground, the velocity will be the same as the initial velocity in magnitude but in the opposite direction, so the velocity of the arrow when it hits the ground is -60 meters per second (the negative sign indicates the direction is downward).
an object travels 10 meters in the first second of travel, 10 meters again during the second second of travel, and 10 meters again during the third second of travel. what is the objects accelaration of the object?
A) 0 m/s2
B) 20m/s2
C) 10m/s2
D) 30m/s2
Final answer:
The object's velocity remains constant as it covers the same distance each second, implying that the acceleration is zero (0 m/s^2). So the correct option is A.
Explanation:
The question relates to constant velocity and acceleration and to identifying the acceleration of an object moving 10 meters each second for three seconds. Since the object travels the same distance in each second, it means that its velocity remains constant. Therefore, the rate of change of velocity, which is acceleration, is zero. The correct answer to the question is A) 0 m/s2. To understand this, consider the definition of acceleration: a change in velocity over some time. Since there is no change in velocity here (the object keeps moving at a constant rate), there is no acceleration.
Viteza de aterizare a unui avion este de 45 m/s iar timpul deplasarii pe pista aerodromului este egal cu 30 s
The landing speed of the airplane is 1.5 m/s.
Explanation:The question is asking for the landing speed of an airplane given its landing time and the distance traveled on the airstrip. To find the landing speed, we can use the formula:
Speed = Distance / Time
Plugging in the values given:
Using the formula:
Landing Speed = 45 m/s / 30 s = 1.5 m/s
Therefore, the landing speed of the airplane is 1.5 m/s.
Learn more about Landing speed of an airplane here:https://brainly.com/question/33602393
#SPJ12
The question pertains to the deceleration of an airplane after it lands, specifically calculating the final velocity given an initial velocity and a constant deceleration over a certain time span.
Explanation:The student's question is related to the deceleration of an airplane after landing. An airplane that lands with an initial velocity of 70.0 m/s, and then decelerates at 1.50 m/s2 for 40.0 s, will have a final velocity that can be calculated using the following formula: final velocity = initial velocity + (acceleration × time). Here, the acceleration is negative because it is opposite the direction of motion (deceleration).
In the example given, if an airplane lands with a velocity of 70.0 m/s and decelerates at 1.50 m/s2, the final velocity after 40 seconds can be found by:
Final Velocity = 70.0 m/s - (1.50 m/s2 × 40.0 s) = 70.0 m/s - 60.0 m/s = 10.0 m/s. The plane would slow down to 10.0 m/s before heading to the terminal.
1. Some wooden rulers do not start with 0 at the edge, but have it set on a few millimeters. How could this improve the accuracy of the ruler?
2. You find a micrometer that has been badly bent. How would it compare to a new, high-quality meter stick in terms of precision? Its accuracy?
3. Does parallax affect the precision of a measurement that you make? Explain.
4. A box has a length of 18.1 cm and a width of 19.2 cm and it is 20.3 cm tall.
a. what is the volume?
b. how precise is the measure of length? Of volume?
c. How tall is a stack of 12 of these boxes?
d. how precise is the measure of the height of one box? Of 12 boxes?
1. Some wooden rulers do not start with 0 at the edge, but have it set on a few millimeters because the cut of the woof alters the length of the first measures. Moreover, some objects are difficult to be aligned on the ruler, thus, in order to remove this difficulty, some wooden rulers do not start with 0 at the edge.
2. The micrometer has been badly bent which means that it will not measure properly and will not be perfectly parallel with the surface to be measured. This distortion will change its precision. The device should be parallel with the surface to be measured in order to maintain its accuracy.
3. No, the parallax will not affect the precision of a measurement that we take as precision is the closeness of the readings and the readings are already precise, thus taking the reading with the same parallax won't impair the precision but decreases the accuracy.
4. Length of box=18.1 cm, width= 19.2 cm and height=20.3 cm, then the a.volume=length×width×height
=[tex]18.1{\times}19.2{\times}20.3[/tex]
=[tex]7050cm^{3}[/tex]
b. The reading of the length is precise to 0.1 centimeters, while the volume's reading is precise to 10 cm³.
c. The stack of 12 of the boxes has height=[tex]12{\times}19.3[/tex]
=[tex]232cm[/tex]
d.The measure of one box is precise to 0.1 cm, while the measurement of the combined boxes is precise to 1 cm.
Two planes leave wichita at noon. one plane flies east 30 mi/h faster than the other plane, which is flying west. at what time will they be 1200 mi apart?
The time they will be 1200 mi apart is [tex]\(12:00 PM + \frac{1200}{2S + 30}\)[/tex] hours.
Let's denote the speed of the slower plane as [tex]\(S\) (in mi/h)[/tex]. The faster plane, which is flying east, will have a speed of [tex]\(S + 30\) mi/h[/tex].
The relative speed between the two planes is the sum of their individual speeds:
[tex]\[ \text{Relative speed} = S + (S + 30) = 2S + 30 \, \text{mi/h} \][/tex]
Now, we know that the planes leave at noon, and we want to find the time it takes for them to be 1200 mi apart. Let t be the time in hours.
The distance traveled by the slower plane in t hours is [tex]\(S \cdot t\)[/tex], and the distance traveled by the faster plane is [tex]\((S + 30) \cdot t\)[/tex]. The sum of these distances is the total distance between the planes:
[tex]\[ S \cdot t + (S + 30) \cdot t = 1200 \][/tex]
Combine like terms:
[tex]\[ 2S \cdot t + 30 \cdot t = 1200 \][/tex]
Factor out t:
[tex]\[ t(2S + 30) = 1200 \][/tex]
Now, solve for t:
[tex]\[ t = \frac{1200}{2S + 30} \][/tex]
We know that when t is the time, it should be in hours, and we want to find at what time they will be 1200 mi apart. If they leave at noon, the time will be [tex]\(12:00 PM\) + \(t\) hours[/tex].
So, the time they will be 1200 mi apart is [tex]\(12:00 PM + \frac{1200}{2S + 30}\)[/tex] hours.
Calculate the period of a satellite orbiting the moon, 94 km above the moon's surface. ignore effects of the earth. the radius of the moon is 1740 km.
The period of a satellite orbiting the moon is 7048 s
Further explanationNewton's gravitational law states that the force of attraction between two objects can be formulated as follows:
[tex]\large {\boxed {F = G \frac{m_1 ~ m_2}{R^2}} }[/tex]
F = Gravitational Force ( Newton )
G = Gravitational Constant ( 6.67 × 10⁻¹¹ Nm² / kg² )
m = Object's Mass ( kg )
R = Distance Between Objects ( m )
Let us now tackle the problem !
To find the period of the satellite can be carried out in the following way:
[tex]F = G \frac{m_{moon} \times m_{satellite}}{R^2}[/tex]
[tex]m_{satellite} \times \omega^2 \times R = G \frac{m_{moon} \times m_{satellite}}{R^2}[/tex]
[tex]\omega^2 \times R = G \frac{m_{moon}}{R^2}[/tex]
[tex]\omega^2 = G \frac{m_{moon}}{R^3}[/tex]
[tex]\omega = \sqrt{G \frac{m_{moon}}{R^3}}[/tex]
[tex]\omega = \sqrt{6.67 \times 10^{-11} \frac{7.35 \times 10^{22}}{(1.834 \times 10^6)^3}}[/tex]
[tex]\omega = 8.91 \times 10^{-4}[/tex]
[tex]\frac{2 \pi}{T} = 8.91 \times 10^{-4}[/tex]
[tex]T = \frac{2 \pi}{8.91 \times 10^{-4}}[/tex]
[tex]\boxed {T \approx 7048 ~ seconds}[/tex]
Learn moreImpacts of Gravity : https://brainly.com/question/5330244Effect of Earth’s Gravity on Objects : https://brainly.com/question/8844454The Acceleration Due To Gravity : https://brainly.com/question/4189441Answer detailsGrade: High School
Subject: Physics
Chapter: Gravitational Fields
Keywords: Gravity , Unit , Magnitude , Attraction , Distance , Mass , Newton , Law , Gravitational , Constant
The period of a satellite orbiting the moon, 94 km above the moon's surface is 71903 seconds.
Given:
Distance, d = 94 km
Radius, R = 1740 km
Average distance = R + D
Average distance = 1740 km + 94 km = 1834 km
Convert average distance into meters:
Average distance = 1834 km × 1000 = 1,834,000 meters
The period is:
Period² = (4π² / G) (Average distance)³
Substituting the values, we get:
Period² = (4π² / (6.67430 × 10⁻¹¹ N·m²/kg²)) × (1,834,000 meters)³
Period² = 5180781218 seconds²
Period = √(5180781218 seconds²) = 71903 seconds
Hence, the period of a satellite orbiting the moon, 94 km above the moon's surface is 71903 seconds.
To learn more about the Period, here:
https://brainly.com/question/28103637
#SPJ6