The components of a typical refracting telescope are basically convex object and convex eyepiece. The correct option is 1.
A typical refracting telescope is made up of a series of convex lenses. The objective lens is a convex lens positioned at the front of the telescope that collects and focuses light from distant objects. At the focus point, it creates an inverted actual picture.
The eyepiece, which is located at the telescope's back end, is likewise a convex lens. Its goal is to amplify the picture created by the objective lens so that the viewer may see a bigger, upright, magnified image.
In a standard refracting telescope, the correct combination is a convex objective lens and a convex eyepiece.
Thus, the correct option is 1.
For more details regarding refracting telescope, visit:
https://brainly.com/question/33083140
#SPJ6
Your question seems incomplete, the probable complete question is:
Which are the components of a typical refracting telescope?
1.convex object and convex eyepiece
2. concave object and convex eyepiece
3. convex object and concave eyepiece
At one point in the pipe the radius is 0.180 m . what is the speed of the water at this point if water is flowing into this pipe at a steady rate of 1.80 m3/s ?
At a point the radius of the pipe is 0.180 m then the speed of the water at that point will be equal to 17.69 m/s.
What is Speed?The amount of the shift in approach per unit of time or the size of the displacement over time for an object can be used to describe speed, which would be a scalar quantity in everyday language and kinematics.
The maximum speed that can be maintained when a period grows closer to zero is the starting speed.
By dividing the object's distance traveled by the duration of the interval, the mean pace of the object for the given period is calculated. Speed and velocity are not always the same thing.
As per the given information in the question,
Radius, r = 0.180 m
Steady rate = 1.80 m³/s
Use the formula of steady rate,
Steady rate = AV
1.80 = π(0.180)² × V
V = 1.80/0.101736
V = 17.69 m/s.
Therefore, the speed of the water will be 17.69 m/s.
To know more about Speed:
https://brainly.com/question/28224010
#SPJ5
What fundamental belief explains the european exploitation of non-western cultures such as those in the americas and africa?
Since 1 pound = 4.45 newton, what is your earth weight in newtons?
A baby elephant is stuck in a mud hole. to help pull it out, game keepers use a rope to apply a force f with arrowa, as part a of the drawing shows. by itself, however, force f with arrowa is insufficient. therefore, two additional forces f with arrowb and f with arrowc are applied, as in part b of the drawing. each of these additional forces has the same magnitude f. the magnitude of the resultant force acting on the elephant in part b of the drawing is k times larger than that in part
a. find the ratio f fa when k = 2.10. (take θ = 18.0°.) f fa = 1.05 incorrect: your answer is incorrect.
When k = 2.40 and [tex]\rm \( \theta = 18.0^\circ \)[/tex], the ratio [tex]\rm \( \frac{F}{F_A} \)[/tex] is approximately 0.7368.
Work through the calculation step by step to find the ratio [tex]\rm \( \frac{F}{F_A} \)[/tex] when k = 2.40 and the angle [tex]\rm \( \theta = 18.0^\circ \)[/tex].
Given:
Magnitude of the additional forces [tex]\rm \( F_B = F_C = F \)[/tex]
Magnitude of the resultant force in part b Resultant Force = [tex]\rm 2.4 \cdot F_A \)[/tex]
Angle [tex]\rm \( \theta = 18.0^\circ \)[/tex]
Step 1: Decompose Forces
Let's first decompose the additional forces [tex]\rm \( F_B \)[/tex] and [tex]\rm \( F_C \)[/tex] into components parallel and perpendicular to the direction of [tex]\rm \( F_A \)[/tex].
The component of [tex]\rm \( F_B \)[/tex] perpendicular to [tex]\rm \( F_A \)[/tex] is [tex]\rm \( F_B \cdot \sin(\theta) \)[/tex].
The component of [tex]\rm \( F_C \)[/tex] perpendicular to [tex]\rm \( F_A \)[/tex] is [tex]\rm \( F_C \cdot \sin(\theta) \)[/tex].
Since [tex]\rm \( F_B \)[/tex] and [tex]\rm \( F_C \)[/tex] are on opposite sides of [tex]\rm \( F_A \)[/tex] and make the same angle with [tex]\rm \( F_A \)[/tex], these perpendicular components will cancel each other.
Step 2: Calculate Resultant Force
The resultant force Resultant Force is the sum of [tex]\rm \( F_A \)[/tex] and the components of [tex]\rm \( F_B \)[/tex] and [tex]\rm \( F_C \)[/tex] along [tex]\rm \( F_A \)[/tex].
[tex]\rm \[ \text{Resultant Force} = F_A + F_B \cdot \cos(\theta) + F_C \cdot \cos(\theta) \]\\\ \text{Resultant Force} = F_A + 2F \cdot \cos(\theta) \][/tex]
Step 3: Equate Resultant Forces
We are given that Resultant Force = [tex]\rm 2.4 \cdot F_A[/tex], so we can equate the two expressions for the resultant force:
[tex]\rm \[ F_A + 2F \cdot \cos(\theta) = 2.4 \cdot F_A \][/tex]
Step 4: Solve for [tex]\rm \( \frac{F}{F_A} \)[/tex]
Now, solve for [tex]\rm \( \frac{F}{F_A} \)[/tex]:
[tex]\rm \[ 2F \cdot \cos(\theta) = 1.4 \cdot F_A \\\ \\\frac{F}{F_A} = \frac{1.4}{2 \cdot \cos(\theta)}\\\ \\\frac{F}{F_A} = \frac{1.4}{2 \cdot \cos(18.0^\circ)}\\\\\ \frac{F}{F_A} \approx 0.7368 \][/tex]
Therefore, when k = 2.40 and [tex]\rm \( \theta = 18.0^\circ \)[/tex], the ratio [tex]\rm \( \frac{F}{F_A} \)[/tex] is approximately 0.7368.
Know more about force:
https://brainly.com/question/13191643
#SPJ12
Which forces include attractive and repulsive interactions? A. electric and magnetic forces B. static friction and air resistance C.rolling friction and fluid friction D. gravitational and spring forces
Answer: A. electric and magnetic forces
Explanation:
Magnetic force acts between two magnetic objects. A magnet has two poles- North pole and South pole. Like poles repel each other and unlike poles attract each other. Electric force acts between two charged objects. Two similarly charged bodies have repulsive force between them and attractive force exists between two dissimilar charged objects.Thus, an electric force and magnetic force are repulsive and attractive in nature.
To measure the height of a building without a ruler or tape measure, an engineer drops a rock off the top of the building and finds out it takes 4.9 seconds for the rock to reach the ground. How high is the building
Could you please tell me the steps, as well? I kind of understand how to do it, but some help would be greatly appreciated (:
Thanks.
The relevant equation we can use in this problem is:
h = v0 t + 0.5 g t^2
where h is height, v0 is initial velocity, t is time, g is gravity
Since it was stated that the rock was drop, so it was free fall and v0 = 0, therefore:
h = 0 + 0.5 * 9.81 m/s^2 * (4.9 s)^2
h = 117.77 m
Final answer:
To find the height of the building, the formula for the distance an object falls due to gravity is used: d = 1/2 g t². Inserting the given time of 4.9 seconds and the gravitational constant of 9.8 m/s² the calculated height of the building is approximately 117.549 meters.
Explanation:
To measure the height of a building by dropping a rock and timing its fall, we use the physics of free fall motion. The equation to find the distance an object falls due to gravity (when air resistance is negligible) is:
d = ½ g t²
where:
d is the distance the object falls (height of the building in this case),
g is the acceleration due to gravity (approximately 9.8 m/s² on Earth), and
t is the time it takes for the object to reach the ground.
Given the time of 4.9 seconds for the rock to reach the ground, we plug in the values:
d = ½ (9.8 m/s²) (4.9 s)²
This gives us:
d = ½ (9.8) (24.01)
d = 117.549 m
By using this formula, we can find that the building is approximately 117.549 meters high.
Calculate the deceleration (in m/s2) of a snow boarder going up a 2.65° slope assuming the coefficient of friction for waxed wood on wet snow. the equation a = g(sin(θ) − μk cos(θ)) for a snow boarder going downhill may be useful, but be careful to consider the fact that the snow boarder is going uphill. (enter the magnitude.) m/s2
To calculate the deceleration of a snowboarder going uphill on a 5.0° slope, use the formula a = g(sin(θ) − μk cos(θ)), where θ is the angle of the slope, g is the acceleration due to gravity, and μk is the coefficient of kinetic friction for waxed wood on wet snow.
Explanation:Calculation of Deceleration of a Snowboarder Going Uphill
To calculate the deceleration of a snowboarder going uphill on a 5.0° slope, we can use the formula a = g(sin(θ) − μk cos(θ)). Here, θ is the angle of the slope, g is the acceleration due to gravity (9.8 m/s²), and μk is the coefficient of kinetic friction for waxed wood on wet snow.
Plugging in the values, we have a = 9.8(sin(5.0°) − μk cos(5.0°)). However, since the snowboarder is going uphill, the acceleration will be in the opposite direction of motion, so the magnitude will be the negative value of a. Hence, the deceleration will be -9.8(sin(5.0°) − μk cos(5.0°)).
Remember to substitute the appropriate value for μk based on the coefficient of friction for waxed wood on wet snow.
A wildlife researcher is tracking a flock of geese. the geese fly 3.5 km due west, then turn toward the north by 40 ∘ and fly another 4.5 km, what is the magnitude of their displacement
To solve this problem, we can use the cosine formula for calculating the length of the displacement:
c^2 = a^2 + b^2 – 2 a b cos θ
where c is the displacement, a = 3.5 km, b = 4.5 km, and θ is the angle inside the triangle
Since the geeze turned 40° from west to north, so the angle inside the triangle must be:
θ = 180 – 40 = 140°
c^2 = 3.5^2 + 4.5^2 – 2 (3.5) (4.5) cos 140
c^2 = 56.63
c = 7.53 km
So the magnitude of the displacement is 7.53 km
The magnitude of their displacement is 7.5 km
Further explanationVector is a quantity that has a magnitude and direction.
A vector in a cartesian coordinate is represented by an arrow in which the slope of the arrow shows the direction of the vector and the length of the arrow shows the magnitude of the vector.
A position vector of a point is a vector drawn from the base point of the coordinates O (0,0) to that point.
The addition of two vectors can be done in the following ways:
[tex]\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC}[/tex]
A negative vector is a vector with the same magnitude but in opposite direction.
[tex]\overrightarrow {AB} = -\overrightarrow {BA}[/tex]
Let's tackle the problem!
First, let's look at the picture in the attachment!
Let:
[tex]\overrightarrow{d_1} = -3.5 \widehat{i}[/tex]
[tex]\overrightarrow{d_2} = -(4.5 \cos 40^o) \widehat{i} + (4.5 \sin 40^o) \widehat{j}[/tex]
Then:
[tex]\overrightarrow{d} = \overrightarrow{d_1} + \overrightarrow{d_2}[/tex]
[tex]\overrightarrow{d} = -3.5 \widehat{i} + -(4.5 \cos 40^o) \widehat{i} + (4.5 \sin 40^o) \widehat{j}[/tex]
[tex]\overrightarrow{d} = -(3.5 + 4.5 \cos 40^o)\widehat{i} + (4.5 \sin 40^o) \widehat{j}[/tex]
[tex]|\overrightarrow{d}| = \sqrt{ (3.5 + 4.5 \cos 40^o)^2 + (4.5 \sin 40^o)^2}[/tex]
[tex]|\overrightarrow{d}| \approx 7.5 ~ km[/tex]
Learn moreVelocity of Runner : https://brainly.com/question/3813437Kinetic Energy : https://brainly.com/question/692781Acceleration : https://brainly.com/question/2283922The Speed of Car : https://brainly.com/question/568302Magnitude of A Vector : https://brainly.com/question/2678571Answer detailsGrade: High School
Subject: Physics
Chapter: Vectors
Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle , Speed , Time , Rate , Vector , Scalar
HELP ME PLS
Which label belongs in the area marked Z?
take in from atmosphere
produce themselves
eat other organisms
absorb from soil
it won't let me insert it, but the category is producers so what do producers do
The label which belongs in the area marked Z having characteristics as
take in from atmosphereproduce themselveseat other organismsabsorb from soilare producers.
What are producers?Autotrophs, also called as primary producers are organisms that acquire their energy from sunlight and materials from nonliving sources. Algae, and some bacteria are important autotrophs in running waters.
Heterotrophs obtain energy and materials by taking living or dead plants or animals matter.
Producers create their own food using sunlight and absorb water from the soil.
Thus, the category labelled as producers.
Learn more about producers.
https://brainly.com/question/4975822
#SPJ2
When a water gun is fired while being held horizontally at a height of 1.00 m above ground level, the water travels a horizontal distance of 5.00 m. a child, who is holding the same gun in a horizontal position, is also sliding down a 45.0° incline at a constant speed of 2.00 m/s.if the child fires the gun when it is 1.00 m above the ground and the water takes 0.329 s to reach the ground, how far will the water travel horizontally?
Final answer:
The water will travel a horizontal distance of 0.658 m.
Explanation:
To solve this problem, we need to find the horizontal distance traveled by the water in the same amount of time it takes for the child on the incline to slide down 1.00 m and fire the water gun. Since both the child on the incline and the water gun are moving horizontally, we can use the equation:
distance = speed * time
For the child on the incline, the horizontal speed is given as 2.00 m/s, so the time it takes to slide down 1.00 m is:
time = distance / speed = 1.00 m / 2.00 m/s = 0.50 s
Now, we can use this time to find the horizontal distance traveled by the water. The time it takes for the water to reach the ground is given as 0.329 s. So:
distance = speed * time = 2.00 m/s * 0.329 s = 0.658 m
Therefore, the water will travel a horizontal distance of 0.658 m.
The maximum efficiency of a heat engine operating between 2 degrees c and 200 degrees c will be about:
The maximum efficiency of heat is 72%.
To find the efficiency, the given values are:
Temperature T1 = 2 degree celsius,
Temperature T2 = 200 degree celsius.
What is Efficiency?The peak level of performance that uses the least amount of inputs to achieve the highest amount of output can be defined as the efficiency.
Usually the word efficient means as quality or being efficient.
Efficiency value will be calculated in percentage.
The formula of efficiency can be,
Efficiency =( T1 - T2/ T1) × 100
T1 - First temperature
T2 - Second temperature
Converting the values from degree celsius to Kelvin,
T1= 2+273 =275 K
T2 = 200 +273=473 K
Substituting the values in the formula,
Efficiency = (275 - 473 / 275)×100
= ( 198 ×100)/275
= 72 %
The maximum efficiency of a heat is 72%.
Learn more about efficiency,
https://brainly.com/question/4445895
#SPJ2
1. A wave has a wavelength of 14 mm and a frequency of 17 Hertz. What is its speed?
2. What is the wavelength of an earthquake wave if it has a speed of 5 km/s and a frequency of 11 Hz?
Can congress expand the scope of the supreme court’s original jurisdiction beyond what is specified in article iii of the constitution by simply passing a law?
The answer is No. The explanation behind this is found in Article III, it is stated there that the “Supreme Court shall have original jurisdiction in all circumstances touching ambassadors, other public ministers and diplomats, and those in which a state shall be a party. In all other circumstances the Supreme Court shall have appellate jurisdiction”. Therefore if the legislature augments to their jurisdictions, then there would be numerous courts with definite jurisdiction.
A plane is flying east at 135 m/s. The wind accelerates it at 2.18 m/s^2 directly northeast. After 18 s, what is the magnitude of the displacement of the plane?
When we say directly northeast that is equivalent to 45˚ north of east.
First let us determine the north and east
components of the acceleration using cos and sin functions:
North = 2.18 * sin 45
East = 2.18 * cos 45
Then we set to determine the east component of the plane’s
displacement by calculating using the formula:
d = vi * t + ½ * a * t^2
d = 135 * 18 + ½ * 2.18 * cos 45 * 18^2
d = 2430 + 353.16 * cos 45 = 2679.72 m
Calculating for the north component:
North = ½ * 2.18 * sin 45 * 18^2
North = 249.72 m
Hence magnitude is:
Magnitude = sqrt (2679.72^2 + 249.72^2)
Magnitude = 2,691. 33 m
Calculating for angle:
Tan θ = North ÷ East
Tan θ = 249.72 m ÷ 2679.72 m
θ = 5.32°
So the plane was flying at 2,691. 33 m at 5.32°
Answer:
2,691.33 - magnitude
Explanation:
5.32 - direction
A gray kangaroo can bound across a fl at stretch of ground 810 with each j ump can-ying it 10 m from the takeoff point. if the kangaroo leaves the ground at a 20° angle, what are its (a) takeoff speed and (b) horizontal speed?
Which of these electronic transitions in hydrogen is exothermic? question 11 options:
a.from n=3 to n=2
b.from n=1 to n=3?
The electronic transition in a hydrogen atom from [tex]\boxed{{\text{a}}{\text{. n = 3 to n=2}}}[/tex] is an exothermic process.
Further explanation:
An electronic transition is a process when an electron undergoes emission or absorption from one energy level to another energy level.
When an electron undergoes a transition from lower energy to the higher energy level then it requires energy to complete the process. Thus this transition is an absorption process.
When an electron undergoes a transition from higher energy to lower energy level then it emits the energy to complete the process. Thus this transition is an emission process.
The formula to calculate the difference between two energy levels of a hydrogen atom is,
[tex]\Delta E={R_{\text{H}}}\left({\frac{1}{{{{\left({{{\text{n}}_{\text{i}}}}\right)}^2}}}-\frac{1}{{{{\left({{{\text{n}}_{\text{f}}}}\right)}^2}}}}\right)[/tex]
Where,
[tex]\Delta E[/tex] is the energy difference between two energy levels.
[tex]{R_{\text{H}}}[/tex] is a Rydberg constant.
[tex]{{\text{n}}_{\text{i}}}[/tex] is the initial energy level of transition.
[tex]{{\text{n}}_{\text{f}}}[/tex] is the final energy level of transition.
The endothermic reactions are the reaction that absorbs heat from its surroundings. The exothermic reactions are reactions that release the heat to its surroundings.
Solution:
Classification of transitions
1. In the transition from n=1 to n=3, electron goes from lower energy level (n=1) to higher energy level (n=3). Therefore, it needs to absorb the energy. Hence, this transition is classified as an absorption process. Since absorption process required the energy to complete the process thus it is an endothermic process.
2. In transition from n=3 to n=2, electron goes from higher energy level (n=3) to lower energy level (n=2), therefore, it needs to emit the energy. Hence, this transition is classified as an emission process. Since emission process releases the energy to surrounding thus it is an exothermic process.
Learn more:
1. Identify oxidation numbers: https://brainly.com/question/2086855
2. Calculation of volume of gas: https://brainly.com/question/3636135
Answer details:
Grade: Senior School
Subject: Chemistry
Chapter: Atomic structure
Keywords: transition, a hydrogen atom, transition from n=1 to n=3, transition from n=3 to n=2, hydrogen, absorption process, emission process, endothermic and exothermic process.
Two water jets are emerging from a vessel at a height of 50 centimeters and 100 centimeters. If their horizontal velocities at the point of ejection are 1 meter/second and 0.5 meters/second respectively, calculate the ratio of their horizontal distances of impact.
Answer:
1.41:1
Explanation:
Janessa got through high school easily because she could remember what her teachers said in class and their tests never covered anything else. but in college she is struggling with how to study more complex material, how to prepare for exams that demand that she apply what she is learning, and how to reconcile the apparent conflicts between what she learns in one course and what she learns in another. janessa's concerns fall into which domain?
A person stands on a bathroom scale in a motionless elevator. when the elevator begins to move, the scale briefly reads only 0.66 of the person's regular weight. calculate the acceleration of the elevator, and find the direction of acceleration. m/s2
To calculate the acceleration of the elevator, we can use Newton's second law, Fnet = ma, where Fnet is the net force acting on the person and m is the mass of the person. The acceleration of the elevator is equal to 0.34 times the person's weight divided by the person's mass.
Explanation:When the elevator starts to move, the scale briefly reads only 0.66 of the person's regular weight. To calculate the acceleration of the elevator, we can use Newton's second law, Fnet = ma, where Fnet is the net force acting on the person and m is the mass of the person. In this case, the net force is equal to the difference between the weight of the person and the scale reading, so we have Fnet = w - Fs. The scale reading is given as 0.66 of the person's weight, so Fs = 0.66w. Plugging this into the equation, we get Fnet = w - 0.66w = 0.34w. Since Fnet = ma, we can write 0.34w = ma. Dividing both sides by the mass, we get a = 0.34w/m. Therefore, the acceleration of the elevator is equal to 0.34 times the person's weight divided by the person's mass.
Learn more about Acceleration of elevator here:https://brainly.com/question/33808876
#SPJ12
Why can’t conductors generate static electricity when rubbed together?
Answer:
Like electric charges repel each other. ... Why can't conductors generate static electricity when rubbed together? They will direct excess charge to earth. Suppose you acquire a positive charge from walking across a carpet.
Explanation:
[tex]hope \: it \: helps \: you[/tex]
A miler covers one mile in training at a 6 minute pace ( 4 laps on a 1/4 mile track ). What is his speed in mph.
why is it incorrect to say "We ran out of gas." when referring to your cars energy source?
Answer:
Because when the gas runs out, there is still energy in the car, but another form of energy.
Explanation:
Car, motorcycle, bus, and truck engines produce motion from a chemical reaction known as combustion. We can say that the chemical energy of gas in a car is converted to thermal energy during the explosion of gasoline or diesel. This released thermal energy causes the engine to tighten the engine piston, producing movement and hence kinetic energy.
However, the car has other forms of energy as it needs an entire electrical system to function. For this reason, it is wrong to say that "We ran out of gas." when it comes to your car's energy source.
A sample of n2 effuses in 220 s. how long will the same size sample of cl2 take to effuse? a sample of n2 effuses in 220 s. how long will the same size sample of cl2 take to effuse? 86.8 s 388 s 350 s 558 s 138 s
Answer : The sample of [tex]Cl_2[/tex] effuses in, 350 seconds.
Solution : Given,
Effusion time of [tex]N_2[/tex] = 220 s
Molar mass of [tex]N_2[/tex] = 28 g/mole
Molar mass of [tex]Cl_2[/tex] = 71 g/mole
Rate of effusion : It is defined as the volume of gas effused in a given time 't'.
Formula used : [tex]Rate=\frac{Volume}{Time}[/tex]
Or,
Rate of effusion : It is defined as the rate of effusion is directly proportional to the square root of the mass of the gas.
[tex]\text{ Rate of effusion}\propto \frac{1}{\sqrt{\text{ Mass of gas}}}[/tex]
From the two expressions, we conclude that the relation between the time and the mass of gas is,
[tex]\sqrt{M}\propto t[/tex]
or, [tex]\sqrt{\frac{M_1}{M_2}}=\frac{t_1}{t_2}[/tex] .........(1)
where,
[tex]M_1[/tex] = molar mass of [tex]N_2[/tex] gas
[tex]M_2[/tex] = molar mass of [tex]Cl_2[/tex] gas
[tex]t_1[/tex] = time of effusion of [tex]N_2[/tex] gas
[tex]t_2[/tex] = time of effusion of [tex]Cl_2[/tex] gas
Now put all the given values in equation (1), we get
[tex]\sqrt{\frac{28g/mole}{71g/mole}}=\frac{220s}{t_2}[/tex]
By rearranging the terms, we get
[tex]t_2=349.8s=350s[/tex]
Therefore, the sample of [tex]Cl_2[/tex] effuses in, 350 seconds.
Suppose we are told that the acceleration of a particle moving in a circle of radius r withuniform speed v is proportional to some power of r, say r^n , and some power of v, say v^m , determine the powers of r and v
A ball is moving at 7.0 m/s and has a momentum of 100 kg•m/s. What is the ball's mass?
Answer:
14,286 kg
Explanation:
Mass and velocity, have a positive correlation to momentum.
The formula to determine momentum is:
Momentum = Mass x Velocity
So if we want to determine the mass of the object, the formula can be rearranged to look like this:
Momentum/Velocity = Mass
And can be solved by imputing the values given in the question:
Mass = (100 kg*m/s) ÷ (7 m/s)
Mass = 14,286 kg
Astronomers have seen stars forming within a nebular cloud. As the nebular cloud condenses and its own gravitational attraction collapses it, heat and energy build up creating _____.
nuclear fusion
a planet
nuclear differentiation
dust and gas
The more energy a wave carries the BLANK its amplitude.
Answer:
The more energy a wave carries the higher its amplitude.
Explanation:
The energy of a wave is defined by the equation:
[tex]E=\frac{1}{2} m\omega^2 A^2[/tex]
Where [tex]E[/tex] is energy, [tex]m[/tex] is mass, [tex]\omega[/tex] is angular velocity, and [tex]A[/tex] is amplitude.
The previous equation indicates that the energy is directly proportional to the amplitude; if the energy of a wave increases so does the amplitude, and if the energy of a wave decreases the amplitude also decreases.
Thus the answer is:
The more energy a wave carries the higher its amplitude.
A box has a length of 12 cm, a height of 22 cm, and a width of 18 cm. How tall would a stack of 12 of these boxes be?
a. 144 cm
b. 216 cm
c. 264 cm
d. 484 cm
What is the effect of sunlight on the earth? A. Sunlight warms the earth evenly. B. Sunlight warms the poles more than the equator. C. Sunlight warms the earth unevenly. D. Sunlight warms the poles first and then the equator.
The correct answer is C. Sunlight warms the Earth unevenly
Explanation:
The Sun is the main source of light that exists on Earth this occurs as this star produces ultraviolet radiation that reaches Earth, although this radiation is filtered in the atmosphere. Additionally, due to the shape of Earth that resembles a sphere and also due to the tilt or inclination of the planet the sunlight warms the Earth unevenly rather than evenly. This can be explained as zones in the Equator (zone in the middle of the Northern and Southern hemisphere) receive more sunlight than the zones located far from the Equator line, for example, the poles. This also explains why countries or zones near to the Equator line usually have tropical hot climates while the poles or zones near to them have cold climate.
What was the vertical component of her acceleration during push-off? the positive direction is upward?
The vertical component of her acceleration during push-off, when the positive direction is upward, is -9.8 m/s².
Explanation:The vertical component of her acceleration during push-off, when the positive direction is upward, is -9.8 m/s². In physics, the acceleration due to gravity is typically denoted by -9.8 m/s² when taken in the upward direction.