Plyometric helps strengthen your bones true or false
"if the left-hand mass is 2.3 kg ,what should the right-hand mass be so that it accelerates downslope at 0.64 m/s2?"
In order to maintain equilibrium and have a downslope acceleration of 0.64 m/s² with a 2.3 kg mass, the right-hand mass should be approximately 0.15 kg.
Explanation:In physics, the question is referring to the concept of equilibrium through the force of gravity. When a downtrend pushes left-hand mass with a certain acceleration, it implies that any other force (potentially from another mass on the opposite direction) counteracts. This counteraction or the right-hand mass is what we are now to calculate.
Assuming there is no friction, the force acting on the left-hand mass (F1) can be calculated using Newton's second law of motion, F = ma where m is the mass and a is the acceleration, yielding F1 = 2.3 kg * 0.64 m/s² = 1.472 N
For equilibrium to be maintained, the force due to the right-hand mass (F2) must equal F1. Therefore, if g is the acceleration due to gravity (9.81 m/s²), the right-hand mass (m2) can be found using the formula m2 = F1 / g, simplifying to m2 = 1.472 N / 9.81 m/s² = 0.15 kg.
Learn more about Equilibrium through Force of Gravity here:https://brainly.com/question/32135519
#SPJ12
The MSDS for chloroform indicates that it is a clear liquid that has a pleasant smell and substantial vapor pressure. People should avoid inhaling its vapors, and it is sensitive to light.
Michael jordan's vertical leap is reported to be 47.2 inches. what is his takeoff speed? give your answer in meters per second
Michael Jordan's takeoff speed for his 47.2-inch vertical leap would be approximately 4.85 m/s, calculated using the kinematic equation for vertical motion.
To find Michael Jordan's takeoff speed, we can use the kinematic equation for vertical motion without air resistance: vf^2 = vi^2 + 2 * a * d, where vf is the final velocity (0 m/s at the peak of the jump), vi is the initial velocity (takeoff speed we want to find), a is the acceleration due to gravity (-9.81 m/s^2), and d is the vertical leap distance.
First, we convert the vertical leap from inches to meters: 47.2 inches = 1.2 meters (approximately).
Now, we can set vf to 0 m/s and solve for vi:
0 = vi^2 + 2 * (-9.81) * 1.2
vi^2 = 2 * 9.81 * 1.2
vi = sqrt(2 * 9.81 * 1.2)
vi ≈ 4.85 m/s (rounded to two decimal places)
Therefore, Michael Jordan's takeoff speed would be approximately 4.85 m/s.
How much energy does the electron have initially in the n=4 excited state?what is the change in energy if the electron from part a now drops to the ground state?
Answer:
Energy the electron have initially [tex]E_4=-0.85 \rm ev[/tex],
The change in energy if the electron from part a now drops to the ground state is [tex]12.75\rm ev[/tex]
Explanation:
Given information:
Electron have initially in the n=4 excited state,
We know,
Energy of an electron is given by,
[tex]E_n=-13.6\rm ev\times\frac{z^2}{n^2}[/tex]
On substituting n=4 for excited state energy,
[tex]E=-13.6\rm ev\times\frac{1^2}{4^2}=-0.85\rm ev[/tex]
Change in energy from excited state to ground state,
For ground state n=1,
[tex]E=-13.6\rm ev\times z^2\times( \frac{1}{(n_2)^2}-\frac{1}{(n_1)^2})[/tex]
On substituting [tex]n_1=1[/tex],[tex]n_2=4[/tex],
[tex]\Delta E=E_4-E_1=-13.6\rm ev\times 1^2\times( \frac{1}{(4)^2}-\frac{1}{(1)^2})=12.75ev[/tex]
Hence, energy the electron have initially [tex]E_4=-0.85 \rm ev[/tex],
NOTE:- [tex]1\rm ev=-1.602\times 10^{-19}joule[/tex]
Energy the electron have initially [tex]E_4=-0.85 \rm ev[/tex],
The change in energy if the electron from part a now drops to the ground state is [tex]12.75\rm ev[/tex]
For more details refer the link:
https://brainly.com/question/13818669?referrer=searchResults
A crate pushed along the floor with velocity v⃗ i slides a distance d after the pushing force is removed. if the mass of the crate is doubled but the initial velocity is not changed, what distance does the crate slide before stopping?
If the mass of the crate is doubled but the initial velocity is not changed, the crate slides distance d before stopping.
[tex]\texttt{ }[/tex]
Further explanationLet's recall the formula of Kinetic Energy as follows:
[tex]\large {\boxed {E_k = \frac{1}{2}mv^2 }[/tex]
Ek = Kinetic Energy ( Newton )
m = Object's Mass ( kg )
v = Speed of Object ( m/s )
Let us now tackle the problem !
[tex]\texttt{ }[/tex]
Given:
initial height = h₁ = 26 m
final height = h₂ = 16 m
initial speed = v₁ = 0 m/s
coefficient of friction = μ
gravitational acceleration = g
distance = d
Asked:
final speed = v₂ = ?
Solution:
We will use Work and Energy formula to solve this problem as follows:
[tex]W = \Delta Ek[/tex]
[tex]-f d = Ek_{final} - Ek_{initial}[/tex]
[tex]-\mu N d = \frac{1}{2}m (v_f)^2 - \frac{1}{2} m (v_i)^2[/tex]
[tex]-\mu mg d = \frac{1}{2}m (v_f)^2 - \frac{1}{2} m (v_i)^2[/tex]
[tex]-\mu mg d = \frac{1}{2}m (0)^2 - \frac{1}{2} m (v_i)^2[/tex]
[tex]-\mu mg d = \frac{1}{2} m (v_i)^2[/tex]
[tex]\mu g d = \frac{1}{2} (v_i)^2[/tex]
[tex]d = \frac{1}{2} (v_i)^2 \div ( \mu g )[/tex]
[tex]\boxed {d = \frac { (v_i)^2 } { 2 \mu g } }[/tex]
[tex]\texttt{ }[/tex]
From information above we can conclude that the distance is independent to the mass of the crate.
If the mass of the crate is doubled but the initial velocity is not changed, the crate slides the same distance d before stopping.
[tex]\texttt{ }[/tex]
Learn moreImpacts of Gravity : https://brainly.com/question/5330244Effect of Earth’s Gravity on Objects : https://brainly.com/question/8844454The Acceleration Due To Gravity : https://brainly.com/question/4189441Newton's Law of Motion: https://brainly.com/question/10431582Example of Newton's Law: https://brainly.com/question/498822[tex]\texttt{ }[/tex]
Answer detailsGrade: High School
Subject: Physics
Chapter: Dynamics
If the mass of the crate is doubled while maintaining the same initial velocity, the stopping distance will be halved. This is due to the doubled frictional force from the increased mass. Therefore, the crate will slide a distance of d/2 before coming to a stop.
Initial situation: Crate pushed with initial velocity v_i slides distance (d) after force is removed.Kinetic energy: [tex]\( K = \frac{1}{2} m v_i^2 \).[/tex]Friction stops crate: Work done by friction equals kinetic energy.- Frictional force proportional to normal force; if mass doubles, frictional force doubles.- Work done by friction over distance [tex]\( d \): \( W = \mu m g d \)[/tex] where [tex]\( \mu \)[/tex] is the coefficient of friction and g is acceleration due to gravity.- When mass doubles, frictional force becomes [tex]\( 2 \mu m g \)[/tex], work done becomes [tex]\( 2 \mu m g d \)[/tex]- To stop crate with doubled mass: [tex]\( \mu (2m) g d' = m v_i^2 \)[/tex]- Solving for new stopping distance [tex]\( d' \): \( d' = \frac{d}{2} \)[/tex]Thus, the crate will slide half the distance before stopping if the mass is doubled but the initial velocity is unchanged.
You are in a hot air balloon, 100 m above the flat Texas plains. You look out toward the horizon.
How far out can you see-that is, how far is your horizon? The Earth's radius is about 6400 km.
Express your answer using one significant figure.
Actually we could create a triangle in this case. The hypotenuse is the radius of Earth plus the height above the earth, while the two sides are the radius of Earth and the scope of vision.
That is:
(6,400,000 m + 100 m)^2 = (6,400,000 m)^2 + b^2
b^2 = 1,280,010,000
b = 35,777.23 m
You can see 35,777.23 m far.
A place kicker must kick a football from a point 36.0 m (about 40 yards) from the goal. half the crowd hopes the ball will clear the crossbar, which is 3.05 m high. when kicked, the ball leaves the ground with a speed of 23.4 m/s at an angle of 50.0° to the horizontal. (a) by how much does the ball clear or fall short of clearing the crossbar
The tropical year, the time from vernal equinox to the next vernal equinox, is the basis for our calendar. it contains 365.242199 days. find the number of seconds in two and a half tropical years.
The length of a tropical year is approximately 365.242199 days, or approximately 31556926 seconds. Therefore, the number of seconds in two and a half tropical years is approximately 78892315 seconds.
Explanation:The tropical year is based on the time it takes the Earth to revolve around the sun, and is the basis of our calendar. This time period lasts approximately 365.242199 days. To find the number of seconds in a tropical year, we need to first convert this period into hours, minutes, and then seconds. There are 24 hours in a day, 60 minutes in an hour, and 60 seconds in a minute. Here's the calculation:
1 tropical year = 365.242199 days = 365.242199 x 24 = 8765.812776 hours8765.812776 hours = 8765.812776 x 60 = 525948.76656 minutes525948.76656 minutes = 525948.76656 x 60 = 31556925.9936 secondsSo, one tropical year is approximately 31556926 seconds.
To find out the number of seconds in two and a half tropical years, we simply multiply this number by 2.5:
2.5 tropical years = 2.5 x 31556926 = 78892315 secondsLearn more about Time Conversion here:https://brainly.com/question/30761848
#SPJ12
the quality and pitch of a note depends respectively on?
The pitch of a note is determined by its frequency, with higher frequencies leading to higher pitches. The quality, or timbre, of a note depends on the shape of the waveform, influenced by various frequencies and phases of sound waves. These aspects combine to give each note its unique character.
Explanation:The quality and pitch of a note depend on different aspects of sound waves. The pitch of a note is primarily determined by its fundamental frequency, which is measured in hertz (Hz). A higher frequency results in a higher pitch, making a note sound “sharper” or higher on the musical scale. For example, the piano note middle C has a frequency of 261.63 Hz. Musical intervals, like the octave, are based on the doubling of frequencies.
On the other hand, the quality or timbre of a note depends on the waveform's shape, which is influenced by the frequencies and phases of other sound waves produced alongside the fundamental frequency. This complexity allows us to distinguish between different instruments playing the same note due to the variety in waveforms. The timbre is what makes the same note played on a trumpet distinctly different from the same note played on a clarinet.
In summary, while pitch is a direct correlation to the frequency of sound, quality or timbre involves the intricate interplay of multiple frequencies and their waveform shapes, contributing to the unique character of each musical note.
What best explains why a person can become sunburned by spending too much time at the beach
If the work put into a lever is 25.0 joules and the work done by the lever is 20.0 joules, what is the efficiency of the lever? 100% because energy must be conserved. 80.0% 45.0% 5.0%
Answer: The efficiency of the lever is 80%.
Explanation:
An efficiency is the measure of how much wok or energy is conserved in a given process. It is defined as the ratio of output work and input work. If the energy is totally conserved in a process, the the percentage efficiency will be 100%.
Mathematically,
[tex]\%\text{ efficiency}=\frac{W_{out}}{W_{in}}\times 100[/tex]
Where,
[tex]W_{out}[/tex] = Work done by the lever = 20 J
[tex]W_{in}[/tex] = Work put in the lever = 25 J
Putting values in above equation, we get:
[tex]\%\text{ efficiency}=\frac{20}{25}\times 100\\\\\%\text{ efficiency}=80\%[/tex]
Hence, the efficiency of the lever is 80%.
The specific heat of ice is 0.5 calories/gram°C. 20 grams of ice will require _____ calories to raise the temperature 1°C. 0.5 1.0 5.0 10
Answer:
10 calories
Explanation:
The thermal energy needed to increase the temperature of a substance is given by
[tex]Q=m C \Delta T[/tex]
where
m is the mass of the substance
C is the specific heat of the substance
[tex]\Delta T[/tex] is the increase in temperature
In this problem, the mass of the ice is m=20 g, the specific heat is C=0.5 calories/gram°C, and the increase in temperature is [tex]\Delta T=1^{\circ}[/tex]. Therefore, the energy required is
[tex]Q=(20 g)(0.5 cal/g^{\circ}C)(1^{\circ}C)=10 cal[/tex]
Estimate by what factor a person can jump farther on the moon as compared to the earth if the takeoff speed and angle are the same. the acceleration due to gravity on the moon is one-sixth what it is on earth.
By six times, a person should jump farther on the moon as compared to the earth if the takeoff speed and angle are the same.
The height of the earth can be computed using the third equation of motion. The third equation of motion, referred to as one of the kinematic equations, relates the final velocity, initial velocity, acceleration, and displacement of an object.
The height of the earth is given as:
[tex]v^2-u^2= 2gH_e\\v^2 = 2\times9.8\timesH_e\\H_e = v^2/2g[/tex]
The height of the moon is given as:
[tex]v^2-u^2 = 2(g/6)H_m\\v^2 = g/3H_m\\H_m = 3v^2/g[/tex]
The ratio of both heights is given as:
[tex]H_m/H_e = 3v^2/g/(v^2/2g)\\H_m/H_e = 6\\H_m = 6H_e[/tex]
Hence, by six times, a person should jump farther on the moon as compared to the Earth if the takeoff speed and angle are the same.
To learn more about Speed, here:
https://brainly.com/question/28224010
#SPJ12
A person can jump about six times further on the Moon compared to Earth given the same initial angle and speed. This is because the acceleration due to gravity on the moon is one-sixth that of Earth, resulting in a weaker gravitational pull.
Explanation:The topic in question involves the concept of gravitational forces and its influence on the jump length of a person on Earth versus the Moon. The acceleration due to gravity on the Moon is about one-sixth that of Earth, meaning the gravitational force is much weaker. Therefore, if a person jumps with the same speed and angle on the moon as on Earth, they would be able to jump approximately six times farther due to the weaker gravitational pull.
For better understanding, consider this example. If a person jumps and covers a certain distance on Earth in a given time, the same person would be airborne six times as long on the Moon if they jumped with the same velocity. This is due to the inverse relationship between the time of flight (airborne time) and acceleration due to gravity (g). Since g for the Moon is one-sixth that of Earth, a person can jump about six times further.
Learn more about Gravity on the Moon here:https://brainly.com/question/23765204
#SPJ11
Alice and tom dive from an overhang into the lake below. tom simply drops straight down from the edge, but alice takes a running start and jumps with an initial horizontal velocity of 25 m/s. neither person experiences any significant air resistance. compare the time it takes each of them to reach the lake below. alice and tom dive from an overhang into the lake below. tom simply drops straight down from the edge, but alice takes a running start and jumps with an initial horizontal velocity of 25 m/s. neither person experiences any significant air resistance. compare the time it takes each of them to reach the lake below. tom reaches the surface of the lake first. alice reaches the surface of the lake first. alice and tom will reach the surface of the lake at the same time.
Alice and Tom reach the lake simultaneously due to gravity's independence from their initial horizontal velocities. The correct answer is (E).
Let us consider the concept of horizontal motion and vertical motion of a projectile (in this case, Alice and Tom) are independent of each other when there is no air resistance.
This means that the horizontal velocity does not affect the vertical motion.
Both Alice and Tom are subject to the same gravitational acceleration, and since they are both falling vertically, they will reach the surface of the lake at the same time.
So, the correct answer is (E). Alice and Tom will reach the surface of the lake at the same time.
To learn more on Speed click:
https://brainly.com/question/28224010
#SPJ12
Alice and tom dive from an overhang into the lake below. tom simply drops straight down from the edge, but alice takes a running start and jumps with an initial horizontal velocity of 25 m/s. neither person experiences any significant air resistance. compare the time it takes each of them to reach the lake below.
(A) alice and tom dive from an overhang into the lake below.
(B) tom simply drops straight down from the edge, but alice takes a running start and jumps with an initial horizontal velocity of 25 m/s.
(c) neither person experiences any significant air resistance. compare the time it takes each of them to reach the lake below. tom reaches the surface of the lake first.
(D) alice reaches the surface of the lake first.
(E) alice and tom will reach the surface of the lake at the same time.
Both Alice and Tom will reach the surface of the lake at the same time because their times to hit the water depend only on the vertical distance and gravitational acceleration.
Alice and Tom both dive from the same overhang into a lake below.
Although Alice takes a running start and has an initial horizontal velocity of 25 m/s, the time it takes both of them to reach the lake is the same. This is because the vertical motion for both divers is under uniform acceleration due to gravity, which is not affected by their horizontal velocities.The time it takes to reach the surface is dictated by the height of the overhang and gravity alone.Both Alice and Tom experience the same vertical acceleration and fall the same vertical distance, hence, they will both reach the surface of the lake at the same time.
Determine the vertical motion of each diver, which is independent of horizontal motion.Use the kinematic equation for vertical motion: h = 1/2 * g * t².Since both Alice and Tom start from the same height and are only influenced by gravity (9.8 m/s²), their times to hit the water are the same.A football player carrying the ball runs straight ahead at the line of scrimmage and directly into a wall of defensive linemen. The ball carrier has an initial speed of 7.68 m/s and is stopped in a time interval of 0.202 s. Find the magnitude and direction of his average acceleration.
Final answer:
The magnitude of the average acceleration the football player experiences is 38.02 m/s², and the direction of the acceleration is backward, towards the line of scrimmage.
Explanation:
To calculate the magnitude and direction of the average acceleration experienced by the football player, we use the following kinematic equation:
a = (v_f - v_i) / t
Where:
v_f is the final velocityv_i is the initial velocityt is the time taken to stopGiven:
v_i = 7.68 m/s (Initial speed of the player)v_f = 0 m/s (The player comes to a stop)t = 0.202 s (Time interval)Now we can plug these values into our equation to find a:
a = (0 - 7.68 m/s) / 0.202 s
a = -7.68 m/s / 0.202 s
a = -38.02 m/s2
The negative sign indicates that the acceleration is in the opposite direction of the player's initial motion. Since the player was moving forward and came to a stop, the acceleration is directed backward, towards the line of scrimmage.
A thief plans to steal a gold sphere with a radius of 28.5 cm from a museum. if the gold has a density of 19.3 g/cm3, what is the mass of the sphere in pounds? [the volume of a sphere is v=(4/3)Ïr3.]
A basketball referee tosses the ball straight up for the starting tip-off. at what velocity (in m/s) must a basketball player leave the ground to rise 1.23 m above the floor in an attempt to get the ball?
If a microwave oven produces electromagnetic waves with a frequency of 2.70 ghz, what is their wavelength?
If the total charge on a rod of length 0.4 m is 2.6 nc, what is the magnitude of the electric field at a location 3 cm from the midpoint of the rod?
Final answer:
To calculate the electric field magnitude at a distance from a charged rod, determine the charge per unit length and use the electric field formula.
Explanation:
Electric Field and Charged Rod:
To find the magnitude of the electric field at a distance from a charged rod, you can use the formula for the electric field of a long, charged rod. Given the total charge on the rod and its length, you can calculate the charge per unit length. Then, apply the formula to find the electric field at the specified location.
Let the rod be on the x-axes with endpoints -L/2 and L/2 and uniform charge density lambda (2.6nC/0.4m = 7.25 nC/m).
The point then lies on the y-axes at d = 0.03 m.
from symmetry, the field at that point will be ascending along the y-axes.
A charge element at position x on the rod has distance sqrt(x^2 + d^2) to the point.
Also, from the geometry, the component in the y-direction is d/sqrt(x^2+d^2) times the field strength.
All in all, the infinitesimal field strength from the charge between x and x+dx is:
dE = k lambda dx * 1/(x^2+d^2) * d/sqrt(x^2+d^2)
Therefore, upon integration,
E = k lambda d INTEGRAL{dx / (x^2 + d^2)^(3/2) } where x goes from -L/2 to L/2.
This gives:
E = k lambda L / (d sqrt((L/2)^2 + d^2) )
But lambda L = Q, the total charge on the rod, so
E = k Q / ( d * sqrt((L/2)^2 + d^2) )
Bernoulli equation deals with the law of conservation of
Final answer:
Bernoulli's equation is a form of the conservation of energy principle in fluid flow. It states that the sum of pressure, kinetic energy, and potential energy is constant at any two points in an incompressible, frictionless fluid.
Explanation:
Bernoulli's equation is a form of the conservation of energy principle in fluid flow. It states that the sum of pressure, kinetic energy, and potential energy is constant at any two points in an incompressible, frictionless fluid.
For example, if a fluid flows through a pipe with varying diameters, according to Bernoulli's equation, the pressure decreases as the fluid velocity increases.
This concept is important in the study of fluid mechanics and is used to analyze and predict the behavior of fluids in various applications.
Mayan kings and many school sports teams are named for the puma, cougar, or mountain lion felis concolor, the best jumper among animals. it can jump to a height of 13.7 ft when leaving the ground at an angle of 42.7°. with what speed, in si units, does it leave the ground to make this leap? m/s
The puma, cougar, or mountain lion leaves the ground to make a leap with a speed of approximately 8.32 m/s.
Explanation:To find the speed at which the animal leaves the ground, we can use the kinematic equation for projectile motion:
[tex]\[v = \sqrt{2gh},\][/tex]
where [tex]\(v\)[/tex] is the speed, [tex]\(g\)[/tex] is the acceleration due to gravity (approximately [tex]\(9.81 \, \text{m/s}^2\))[/tex], and [tex]\(h\)[/tex] is the vertical height.
Given that the height [tex]\(h\)[/tex] is 13.7 ft, we first convert it to meters:
[tex]\[h = 13.7 \, \text{ft} \times 0.3048 \, \text{m/ft} = 4.1756 \, \text{m}.\][/tex]
Substituting [tex]\(h\)[/tex] into the equation, we have:
[tex]\[v = \sqrt{2 \times 9.81 \, \text{m/s}^2 \times 4.1756 \, \text{m}} \approx 8.32 \, \text{m/s}.\][/tex]
The average distance between the variable scores and the mean in a set of data is the __________. A. range B. standard deviation C. mean D. median
Answer: B. standard deviation
Explanation:
In statistics , Standard deviation is a term which is used to to represent the measure of dispersion of data from the mean-value.
It is used to determine how closely the data values are with the mean of the entire data.
It is the average distance from each data value to the mean.
Hence, the average distance between the variable scores and the mean in a set of data is the standard deviation.
If a 1.50 kg mass revolves at the end of a string 0.50 m long, and its tangential speed is 6.0 m/s, calculate the centripetal force.
Answer:
[tex]108\ N[/tex]
Explanation:
Mass of object, [tex]m=1.50\ kg.[/tex]
Length of string, [tex]r=0.50\ m.[/tex]
Tangential speed, [tex]v_t=6.0\ m/s.[/tex]
Now, centripetal force F of a object moving in given radius r and mass m moving with velocity v.
Here , object moves along the ends of string. Therefore, radius is equal to length of string.
[tex]F=\dfrac{m \times v_t^2}{r}.[/tex]
Putting values of m,v and r in above equation.
We get, [tex]F=\dfrac{1.50\times (6.0)^2}{0.50} \ N=108 \ N.[/tex]
Hence, this is the required solution.
The gravitational strength at the poles is greater than the gravitational strength at the equator. What will happen to an object when it moves from the poles to the equator?
A.Its mass will increase.
B. Its mass will decrease.
C. Its weight will increase.
D.Its weight will decrease
We must always take note that mass is an inherent property of an object. It never change unless there is change in size of the object. While weight is the product of mass and gravity, so it changes depending on the gravitational pull.
If the gravitational pull decreases as he moves from the poles to the equator, therefore its weight will decrease.
Answer:
D.Its weight will decrease
A(n) ____ stores data as a trail of tiny pits or dark spots on its surface. select one:
a. hard disk
b. magnetic storage device
c. optical storage device
d. solid state storage device
if you used 16 gallons when driving 367 miles, what was your gas mileage over that distance
In 1967, new zealander burt munro set the world record for an indian motorcycle, on the bonneville salt flats in utah, with a maximum speed of 82.1 m/s. the one-way course was 8.045 km long. if it took burt 4.00 s to reach a velocity of 26.82 m/sec, how long (in seconds) did it take burt to reach his maximum speed? how far (in meters) did he travel during his acceleration? look at the equations in the last section. find acceleration first, then the time to accelerate to 82.1 m/s, then the x displacement during the time elapsed.
If one of the satellites is at a distance of 20,000 km from you, what percent accuracy in the distance is required if we desire a 2-meter uncertainty
The percent accuracy is 10⁻⁵%. It is determined by the formula of percent accuracy.
Given information:
Distance of satellite = 20,000km
= 2 x 10⁷ m
Uncertainty = 2 meter
Uncertainty refers to a lack of exactness or precision in measurement, calculation, or prediction. It represents the degree of doubt or error associated with a particular value or result. Uncertainty is an essential concept in various fields, including science, engineering, statistics, and decision-making.
The formula to determine percent accuracy is:
[tex]\rm Percent \ accuracy= \frac{Uncertainty}{Measured d\ distance} \times 100[/tex]
Substituting the values in the formula:
[tex]\rm Percent \ accuracy = \frac{2}{2\times 10^7}\times 100 \\\rm Percent \ accuracy = \frac{1}{10^5} \\[/tex]
Simplifying:
Percent accuracy = 10⁻⁵%.
Therefore, the percent accuracy is 10⁻⁵%.
Learn more about Percent accuracy, here:
https://brainly.com/question/33573107
#SPJ12
A brick is released with no initial speed from the roof of a building and strikes the ground in 2.50 s, encountering no appreciable air drag. (a) how tall, in meters, is the building? (b) how fast is the brick moving just before it reaches the ground? (c) sketch graphs of this falling brickâs acceleration, velocity, and vertical position as functions of time.
Answer:
Part a)
y = 30.625 m
Part b)
v = 24.5 m/s
Explanation:
Part a)
As we know that brick will hit the floor after t = 2.50 s
so here we will have
[tex]y = v_i t + \frac{1}{2}at^2[/tex]
[tex]y = 0 + \frac{1}{2}(9.8)(2.50^2)[/tex]
[tex]y = 30.625 m[/tex]
Part b)
velocity of the brick just before it will strike the ground is given as
[tex]v_f = v_i + at[/tex]
[tex]v_f = 0 + (9.8)(2.5)[/tex]
[tex]v_f = 24.5 m/s[/tex]
Part c)