Answer: An iron atom emits particles when it is struck by light (by the photoelectric effect)
Explanation:
The first atomic model was the one proposed by Jhon Dalton, according to which it is postulated that:
"Matter is made up of indivisible, indestructible and extremely small particles called atoms."
That is, the atom is a solid and indivisible mass.
However, the fenomenom by which an iron atom emits particles when it is struck by light (known as the photoelectric effect) can not be explaind by this indivisible atom model.
To understand it better:
The photoelectric effect consists of the emission of electrons (electric current) that occurs when light falls on a metal surface under certain conditions.
This is possible by considering light as a stream of photons, where each of them has energy. This energy is be able to pull an electron out of the crystalline lattice of the metal and communicate, in addition, a kinetic energy. This means the atom is not indivisible, but it is a composition of different particles.
In fact, currently it is known that each atom is composed of a nucleus and one or more electrons attached to the nucleus, which is composed of one or more protons and typically a similar number of neutrons.
A 60-vibration-per-second wave travels 30 meters in 1 second. Its frequency is
It really doesn't matter how long it takes it to travel what distance.
You said the wave vibrates 60 times per second. That right there is a pretty fair intuitive description of what "frequency" means.
If it vibrates 60 times per second, then its frequency is 60 per second.
(The unit "per second" has a special name: "Hertz", abbreviated "Hz" .)
If the resistance in a circuit connected to a constant current is halved, how is the voltage in the circuit affected?1. The voltage remains constant.2. The voltage is reduced by a factor of 4.3. The voltage is quadrupled.4. The voltage is reduced by a factor of 2.5. The voltage is doubled.
Answer:
4. The voltage is reduced by a factor of 2
Explanation:
The relationship between voltage, current and resistance in a circuit is given by Ohm's law:
V = RI
where
V is the voltage
R is the resistance
I is the current
In this problem,
the resistance in the circuit is halved: R' = R/2
the current is constant : I' = I
So the new voltage is
[tex]V' = I' R' = I (\frac{R}{2})=\frac{1}{2} (IR) = \frac{V}{2}[/tex]
so the voltage is reduced by a factor 2.
Which is the correct answer?
Answer:
Point A
Explanation:
The work done by stretching or compressing a spring is given by E=1/2kx²
The potential energy is numerically equal to the work done.
This means that the higher the bigger the value of the extension, x, the higher the energy contained.
In this scenario the modulus of x is considered.
Among the given values of x the modulus of -5 is the largest.
thus it gives the highest value of energy.
Which color of visible light has the shortest wavelength?
Answer: violet!
Explanation:
Which best describes what solid-state physics studies?
- how quantum theory explains the large-scale properties of solids
- how the atomic scale structure of solids explains their large-scale properties
- how the large-scale structure of solids explains their atomic scale structure
- how the large-scale properties of solids explains quantum theory
Answer: how the atomic scale structure of solids explains their large-scale properties
Explanation:
Solid state physics is a branch of physics (specifically condensed matter) that studies solids (rigid or semi-rigid matter), through its atomic description.
Then, it can be said that it studies the properties the solids present when they are gathered in a remarkable number of atoms.
This means, solid state physics fundamentally studies the properties due to the periodic ordering of the atoms in a solid.
Which one of the following can the transit method tell us about a planet? -its mass-its size-the eccentricity of its orbit
The "transit method" means doing very careful precise measurements as the planet passes in front of its star.
It's too far away for us to see it directly, but when it "transits" the star, the brightness of the star decreases by a tiny tiny tiny bit, which we can measure.
If we can measure that dip with good enough precision, it tells us how much of the star's photosphere was blocked from our view when the planet temporarily got in the way. From that, we can estimate the planet's size.
The distance from the bottom of the objective lens to the surface of the slide is called the
Answer:
It's called the working distance .
The distance from the bottom of the objective lens to the surface of the slide is called the working distance, which decreases with higher magnification and requires careful focusing.
The working distance is the length of time between the objective lens's bottom and the slide's surface. This distance is critical in microscopy as it can affect the focus and resolution of the image being observed.
In general, as you increase the magnification by switching to a higher power objective lens, the working distance decreases. This means that there is less space between the objective lens and the specimen, resulting in a closer and more magnified view of the specimen.
However, a higher magnification also increases the risk of bringing the lens too close to the specimen, potentially damaging both the specimen and the lens if not handled carefully.
Therefore, when using high magnification, only minor adjustments should be made using the fine focus knob to avoid collision between the lens and the slide.
J. J. Thomson’s experiment disproved the theory that an atom
Explanation:
The first atomic model was the one proposed by Jhon Dalton, according to which it is postulated that:
"Matter is made up of indivisible, indestructible and extremely small particles called atoms."
That is, the atom is a solid and indivisible mass.
However, at the end of 19th century the physicist J.J. Thomson began experimenting with cathode ray tubes and found out that atoms contain small subatomic particles with a negative charge (later called electrons).
This means the atom was not indivisible as Dalton proposed. So, Thomson developed in 1904 a new atomic model that was called the raisin pudding atomic model.
Therefore:
J. J. Thomson’s experiment disproved the theory that an atom is indivisibleIS INDIVISIBLE
Previously it was thought that atoms were indivisible, but his experiment exposed electrons to the world, disproving such a theory.
Shiny reflective clothing allows a firefighter to get closer to a fire. What type of heat transfer is reduced because of this material?
A.Conduction
B.Insulation
C.Radiation
D.Convection
Answer:
radiation
Explanation:
Answer:
C.Radiation
Explanation:
dude above was correct, took the test on apex and got this one correct..ty
A 710kg car drives at a constant speed of 23m/s . It is subject to a drag force of 500 N. What power is required from the car's engine to drive the car (a) on level ground? (b) up a hill with a slope of 2.0∘ ?
(a) 11500 W
The power required for the car's engine is given by
P = Fv
where
F is the force that the engine must apply
v = 23 m/s is the velocity of the car
In this situation,the car is moving at constant velocity: this means that its acceleration is zero, so the net force on the car must be zero. Since there is a drag force of 500 N against the motion of the car, this means that the force applied by the engine in the forward direction must also be 500 N:
F = 500 N
So the power erogated by the engine is
P = (500 N)(23 m/s)= 11500 W
(b) 17084 W
In this situation, there is not only the drag force opposing the motion of the car, but also the component of the weight which is parallel to the incline.
This component is given by
[tex]W_p = mg sin \theta[/tex]
where
m = 710 kg is the mass
g = 9.8 m/s^2 is the acceleration of gravity
[tex]\theta=2^{\circ}[/tex] is the slope of the incline
Substituting,
[tex]W_p = (710 kg)(9.8 m/s^2)sin 2^{\circ} =242.8 N[/tex]
So now the total backward force against the motion of the car is the sum of the drag force (500 N) and this force:
F = 500 N + 242.8 N = 742.8 N
And so the force applied by the engine must be the same; so the power erogated will be
P = (742.8 N)(23 m/s)= 17,084 W
To maintain its speed, the car's engine needs to provide power to overcome opposing forces. On level ground, the power needed is 11.5 kW, which is used to overcome the drag force. On a slope of 2°, the power needed is 17.23 kW, used to overcome both the drag force and the additional force due to the uphill angle.
Explanation:To calculate the power required to maintain the car's constant speed, we need to use the formula for power, which is Power (P) = Force (F) x Velocity (v). In this scenario, the force is the drag force namely the air resistance opposing the car's motion.
(a) On level ground, the power required would be P = F x v = 500 N x 23 m/s = 11,500 W or 11.5 kW. So, the car's engine needs to provide a power of 11.5 kW to maintain its speed on level ground.
(b) When the car is driving uphill, the engine needs to work against the gravitational force as well. The additional force due to the uphill slope can be calculated using F = m x g x sin(θ), where m is the car's mass, g is the acceleration due to gravity, and θ is the slope angle.
Applying the values, F = 710 kg x 9.8 m/s² x sin(2°) = 249.2 N. Thus, the total force the engine needs to overcome is 500 N (drag) + 249.2 N (gravity) = 749.2 N. Using the power formula, P = F x v = 749.2 N x 23 m/s = 17,231.6 W or 17.23 kW. Therefore, the car's engine needs to provide a power of 17.23 kW to drive up a 2° hill.
Learn more about Power Calculation here:https://brainly.com/question/33381197
#SPJ3
Which scientist used cepheid variables to measure the distance to faint "nebulas" in our sky, proving they were actually whole other galaxies?
Cepheids variables are stars of variable luminosity (like a lighthouse), pulsing with specific periods. That is, these are stars that periodically change their brightness (from the perspective of an observer on Earth).
Then, by measuring this period of variation of brightness we can have a measure of the brightness of the star. And knowing this brightness, this can be compared with the star's apparent brightness in the sky to obtain a measure of the distance to the star; thus indicating the distance at which the star is in the Universe.
To understand it better and returning to the comparison with the lighthouse:
If we know how bright is the light of a lighthouse at a specific distance (two meters, for example) and we also know how that brightness changes with distance, as we move away from the lighthouse we will know how much its brightness has been reduced. In this way we can use this measure as a pattern to calculate the luminosity of the object as a function of distance.
Well, this is what Edwin Hubble did to measure the variable brightness of the star Cepheid V1, discovering that the nebula in which it was found was actually a galaxy (Andromeda galaxy), showing that there were more galaxies in the universe and that the Milky Way was not the only one.
Then Hubble continued progressively its measurements with Cepheid variables in more distant galaxies measuring their periods, managing to formulate the famous Hubble law, which would open the way to the knowledge that our universe is expanding.
Edwin Hubble used cepheid variables to measure the distance to faint 'nebulas', showing they were other galaxies. This led to our understanding of the expanding universe.
Explanation:The scientist who used cepheid variables to measure the distance to faint 'nebulas' in our sky, ultimately determining that they were actually other galaxies, was Edwin Hubble. Hubble's work led to the understanding that the universe is constantly expanding. Cepheid variables are stars that pulse at a rate proportional to their intrinsic brightness, thus by observing the pulsation period of these variables, Hubble was able to determine their distance from Earth. This use of cepheid variables led to the revolutionary discovery of other galaxies beyond the Milky Way.
Learn more about Edwin Hubble here:https://brainly.com/question/32500263
#SPJ3
What are atoms of the same element with different numbers of neutrons called?
Answer:
These are called isotopes.
Explanation:
Please mark brainliest and have a great day!
In a simple DC motor, the ____ reverses the current every half revolution of the loop.
a. battery
b. wire
c. armature
d. stator
In a simple DC motor, the Armature reverses the current every half revolution of the loop.
Answer : Option C
Explanation:
DC motor works on the principle of electromagnetic induction that when a current carrying conductor placed in a magnetic field is said to exert a mechanical force.
It converts electrical energy into mechanical energy. In dc motor, the armature rotates in clockwise or anti clockwise direction. When the armature rotates the current reverses its direction for every half rotation which then passes on to the commutators, brushes and slip rings.
Assume that two of the electrons at the negative terminal have attached themselves to a nearby neutral atom. There is now a negative ion with a charge -2e at this terminal. What are the electric potential and electric potential energy of the negative ion relative to the electron?
The electric potential and the electric potential energy are both twice as much.
The electric potential is twice as much and the electric potential energy is the same.
The electric potential is the same and the electric potential energy is twice as much.
The electric potential and the electric potential energy are both the same.
The electric potential is the same and the electric potential energy is increased by the mass ratio of the oxygen ion to the electron.
The electric potential is twice as much and the electric potential energy is increased by the mass ratio of the oxygen ion to the electron.
The electric potential remains the same, while the electric potential energy of the ion is twice that of a single electron, because potential energy is proportional to the charge of the ion.
Explanation:When a neutral atom gains two electrons at a negative terminal, it becomes a negative ion with a charge of -2e. The electric potential at a point is defined as the electric potential energy (EPE) per unit charge at that point. Since potential energy is related to the force and distance between charges, it is useful to refer to the formula for the Coulomb energy of two particles having opposite elementary charges Epot=-e2/(4πε0r). In this case, when the charge of an ion becomes -2e, the electric potential at the position of the ion remains the same, because it is dependent on the electric field and the distance from the charge, not on the amount of charge on the ion itself.
However, the electric potential energy is proportional to the amount of charge on the ion. Therefore, if a single electron has a certain potential energy, a negative ion with a charge of -2e will have twice that potential energy. Hence, the correct statement is that the electric potential remains the same, while the electric potential energy is twice as much as that of a single electron.
The mass ratio of the oxygen ion to the electron is irrelevant to this question, as it does not factor into the calculations of electric potential and electric potential energy in this context.
Which president is linked to the trickle-down theory of economics?
Answer:
Ronald Regan
Explanation:
Ronald Regan is the president linked to the trickle-down theory of economics.
Answer:
The answer is President Ronald Reagan.
Explanation:
Reaganomics is the term used when refering to the economic policies instituted by former President Ronald Reagan.
Reaganomics was part of the Economic Recovery Tax Act of 1981-Title I: Individual Income Tax Provisions-Subtitle A-Tax Reductions.
The Economic Recovery Tax Act of 1981-Title I: Individual Income Tax Provisions-Subtitle A-Tax Reductions states the following:
"Economic Recovery Tax Act of 1981 - Title I: Individual Income Tax Provisions - Subtitle A - Tax Reductions - Amends the Internal Revenue Code to reduce individual and estate and trust income tax rates for 1982, 1983, 1984 and thereafter."
Hope this helps!!!
Please give me brainliest!!
Have a GREAT day and remember to take care of yourself!
Both the electrical force and the gravitational force between two objects share which relationship?
A. They are directly proportional to mass.
B. They are inversely proportional to the square of the distance.
C. They are inversely proportional to charge.
D. They are directly proportional to the square of the distance.
Answer:
B. They are inversely proportional to the square of the distance.
Explanation:
The gravitational force between two objects is given by:
[tex]F_G = G \frac{m_1 m_2}{r^2}[/tex]
where
G is the gravitational constant
m1, m2 are the masses of the two objects
r is the distance between the two objects
While the electrical force is given by
[tex]F_E = k \frac{q_1 q_2}{r^2}[/tex]
where
k is the Coulomb's constant
q1, q2 are the charges of the two objects
r is the distance between the two objects
As we see from the two equations, both forces are inversely proportional to the square of the distance, so the correct option is
B. They are inversely proportional to the square of the distance.
Answer:
b
Explanation:
Both the electrical force and the gravitational force between two objects share which relationship?
They are directly proportional to mass.
They are inversely proportional to the square of the distance.
They are inversely proportional to charge.
They are directly proportional to the square of the distance.
The star Betelgeuse is about 600 light-years away. If it explodes tonight,
A. we'll know because debris from the explosion will rain down on us from space.B. we'll know it immediately because it will be brighter than the full Moon in the sky.C. we won't know about it until 600 years from now.D. none of the above.
Answer:
C
Explanation:
It has to travel 600 light years before we would be able to observe the explosion.
The star Betelgeuse is about 600 light-years away.
If it explodes tonight, we won't know about it until 600 years from now. (C)
(Maybe it already has. If it exploded any time after the year 1419, we have no way to know it yet.)
Each water molecule is joined to _____ other water molecules by ____ bonds.
Answer:
D) four ... hydrogen
Explanation:
Each water molecule is joined to four other water molecules through hydrogen bonds. The polar nature of water and difference in electronegativities between hydrogen and oxygen causes a dipole-dipole interaction, forming hydrogen bonds.
Explanation:Each water molecule is joined to four other water molecules by hydrogen bonds. Water has a polar nature due its structure and the difference in electronegativities between hydrogen and oxygen. This causes a dipole-dipole interaction within and between the water molecules. The slightly positive hydrogen atoms of one molecule attract the slightly negative oxygen atoms of the nearby molecules, forming what is commonly known as a hydrogen bond. The connectivity within the water molecules could be depicted as a tetrahedron with the hydrogen-bonded water molecules on the vertices.
Learn more about Water Molecule Bonding here:https://brainly.com/question/33855867
#SPJ6
A bumper cart has a mass of 200 kg and has a protective bumper around it that behaves like a spring. The spring constant is 5000 n/m. If the cart is moving at a speed of 8 m/s towards a solid barrier, and upon impact, is momentarily brought to rest.
a) How much elastic potential energy will be stored in the spring when it is fully compressed?
b) What is the average force exerted by the spring if it is compressed by a distance of 0.2 meters?
Al and Ben are drivers for SD Trucking Company. One snowy day, Ben left SD at 8:00 a.m. heading east and Al left SD at 11:00 a.m. heading west. At a particular time later that day, the dispatcher retrieved data from SD’s vehicle tracking system. The data showed that, up to that time, Al had averaged 40 miles per hour and Ben had averaged 20 miles per hour. It also showed that Al and Ben had driven a combined total of 240 miles. At what time did the dispatcher retrieve data from the vehicle tracking system? A. 1:00 p.m. B. 2:00 p.m. C. 3:00 p.m. D. 5:00 p.m. E. 6:00 p.m.
Answer:
B
Explanation:
Let's say Da is the distance Al drives and Db is the distance Ben drives. And let's say that t is the amount of time that Al drives.
Using the distance equation, we can say:
Da = 40t
Db = 20(t + 3)
We know that Da + Db = 240, so:
240 = 40t + 20(t + 3)
240 = 40t + 20t + 60
180 = 60t
t = 3
So Al had been driving for 3 hours when the dispatcher retrieved the data. Al started driving at 11 AM, so the dispatcher must have retrieved the data at 2 PM.
In a system with only a single force acting upon a body, what is the relationship between the change in kinetic energy and the work done by the force?Answers:Work is equal to the change in kinetic energy.Work depends on the square of the change in potential energy.Work is equal to the negative of the change in kinetic energy.Work is equal to the square of the change in kinetic energy
Answer:
Work is equal to the change in kinetic energy.
Explanation:
Since energy cannot be created nor destroyed, and work is a form of energy, the work done by a force acting on an object must be equal to the kinetic energy gained by the object.
This is summarized by the work-energy theorem, which can be written as:
[tex]W=\Delta K = K_f - K_i = \frac{1}{2}mv^2 - \frac{1}{2}mu^2[/tex]
where
W is the work done on the object
m is the mass of the object
v is the final speed of the object
u is the initial speed of the object
Final answer:
The work done by a force on a body is equal to the change in that body's kinetic energy, according to the work-energy theorem.
Explanation:
In a system where only a single force is acting upon a body, the work done by that force is equal to the change in kinetic energy of the body. This is known as the work-energy theorem, which can be mathematically expressed as the total work done on the system being equal to the change in kinetic energy. If the force is in the direction of the motion, the work done on an object increases its kinetic energy. However, if the force is opposite the direction of motion, it does negative work, and the kinetic energy decreases. No other forms of energy, such as potential energy, are taken into account in this particular relationship.
A main difference between gravitational and electric forces is that electrical forcesA. attract. B. repel or attract. C. obey the inverse-square law. D. act over shorter distances. E. are weaker.
Answer is :
repel or attract- B.
the heat Fusion is the amount of heat required to__
A- evaporate 1 g of liquid into gas
B-make a substance subliminate
C- melt 1g of solid into liquid
D-Make material combust
Whereas the vast majority of astrophysicists support the big bang theory, many nonscientists consider the theory to be controversial. Why do you think so many people might object to the theory?
Undoubtedly because they lack the education, experience, subject knowledge, or raw brain cells to comprehend the evidence on which the theory rests. OR they just haven't taken the time to READ the evidence yet.
It's the same thing that you find in the areas of the shape of the Earth, or the existence and causes of climate change. It's always the people with the least to say who are doing the most, loudest talking.
Here's an example: I'm writing this in early June, 2019. There's a group of these people who, when Climate Change comes up for discussion and action, beg themselves out of the discussion, saying "I'm not a scientist.". But only a short time later, when it comes to debate and legislation on abortion rights, those are the SAME people who suddenly claim to possess the knowledge and informed judgement of competent gynecologists.
A projectile is launched at ground level with an initial speed of 54.5 m/s at an angle of 35.0° above the horizontal. It strikes a target above the ground 2.80 seconds later. What are the x and y distances from where the projectile was launched to where it lands?
Explanation:
This situation is a good example of the projectile motion or parabolic motion, in which we have two components: x-component and y-component. Being their main equations to find the position as follows:
x-component:
[tex]x=V_{o}cos\theta t[/tex] (1)
Where:
[tex]V_{o}=54.5m/s[/tex] is the projectile's initial speed
[tex]\theta=35\°[/tex] is the angle
[tex]t=2.80s[/tex] is the time since the projectile is launched until it strikes the target
[tex]x[/tex] is the final horizontal position of the projectile (the value we want to find)
y-component:
[tex]y=y_{o}+V_{o}sin\theta t-\frac{gt^{2}}{2}[/tex] (2)
Where:
[tex]y_{o}=0[/tex] is the initial height of the projectile (we are told it was launched at ground level)
[tex]y[/tex] is the final height of the projectile (the value we want to find)
[tex]g=9.8m/s^{2}[/tex] is the acceleration due gravity
Having this clear, let's begin with x (1):
[tex]x=(54.5m/s)cos(35\°)(2.8s)[/tex] (3)
[tex]x=125m[/tex] (4) This is the horizontal final position of the projectile
For y (2):
[tex]y=0+(54.5m/s)sin(35\°)(2.8s)-\frac{(9.8m/s^{2})(2.8s)^{2}}{2}[/tex] (5)
[tex]y=48.308m[/tex] (6) This is the vertical final position of the projectile
The x and y distances of projectile from the launching point to the landing point is 125 meters and 48.308 meters respectively.
What is projectile motion?Projectile motion is the motion of the body, when it is thrown in the air taking the action of gravity on it.
For the distance traveled by the object in a projectile motion, we use the following formula.
[tex]y=u_o+\dfrac{1}{2}gt^2[/tex]
Here, (g) is the gravity, ([tex]u_o[/tex]) is the initial velocity and (t) is time. The
In the given problem, projectile is launched at ground level with an initial speed of 54.5 m/s.
The initial angle of launching the projectile is 35.0° above the horizontal. The time taken to hit the target after the projectile launched is 2.80 seconds.
The x distance of the projectile is the distance traveled by the object in the horizontal direction. Thus the velocity of the projectile is,
[tex]v_x=54.5\cos (35^o)[/tex]
The x distance is the product of horizontal component of the velocity to the time taken by it. Therefore
[tex]x=54.5\cos(35)(2.8)\\x=125\rm m[/tex]
The y distance of the projectile is the distance traveled by the object in the vertical direction. Thus the initial velocity of the projectile is,
[tex]u_o=54.5\cos (35^o)[/tex]
Put this in the above formula for the y distance, we get,
[tex]y=54.5\sin(35)+\dfrac{1}{2}(-9.81)(2.8)^2\\y=48.308\rm m[/tex]
Hence, the x and y distances of projectile from the launching point to the landing point is 125 meters and 48.308 meters respectively.
Learn more about the projectile motion here;
https://brainly.com/question/24216590
20 POINTS! Two similar solids have heights of 6 cm and 9 cm. If the volume of the smaller solid is 88 cm^3, calculate the volume of the larger solid.
PLEASE give an explanation with your answer! PLEASE!
Answer: [tex]132cm^{3}[/tex]
Explanation:
The volume [tex]V[/tex] of a solid is given by the multiplication of its three dimensions:
[tex]V=(height)(widgth)(length)[/tex]
In this case we have two similar solids with volumes [tex]V_{1}=88cm^{3}[/tex] and [tex]V_{2}[/tex], and we only have information about the height of each solid [tex]h_{1}=6cm[/tex] and [tex]h_{2}=9cm[/tex].
Now, there is a theorem for similar solids, which establishes the ratio of their volume is [tex]\frac{V_{1}}{V_{2}}[/tex] and the ratio of one of their corresponding sides (the height in this case) is [tex]\frac{h_{1}}{h_{2}}[/tex].
Knowing this, we can write the following relation:
[tex]\frac{V_{1}}{V_{2}}=\frac{h_{1}}{h_{2}}[/tex]
Substituting the known values:
[tex]\frac{88cm^{3}}{V_{2}}=\frac{6cm}{9cm}[/tex]
Fially finding [tex]V_{2}[/tex]:
[tex]V_{2}=132cm^{3}[/tex]
Final answer:
The volume of the larger solid is found by cubing the linear dimension ratio (which is 2:3 for the heights of the two solids) and then multiplying by the volume of the smaller solid. This calculation results in a volume of 968 cm³ for the larger solid.
Explanation:
When comparing the volumes of two similar solids, the ratio of their volumes is the cube of the ratio of their corresponding linear dimensions. Since the heights of the two solids are 6 cm and 9 cm, we use the ratio of their heights (6:9) which simplifies to 2:3. The volume of the larger solid is then calculated by cubing the ratio (2:3) and multiplying it by the volume of the smaller solid:[tex]V_{smalller}[/tex]
[tex]V_{larger}[/tex] = (3/2)³ × [tex]V_{smalller}[/tex] = (27/8) × 88 cm³ = 11 × 88 cm³ = 968 cm³.
Therefore, the volume of the larger solid is 968 cm³.
Which of these best describes a situation where science is used?
A. choosing a career after graduation
B. brushing teeth after having dinner
C. ordering food in a restaurant by looking at a menu card
D.predicting the weather by looking at the clouds
Answer:
The correct answer will be option-B.
Explanation:
Science is a systematic approach to understand and explain the natural phenomenon occurring in an area.
The explanation of any phenomenon or process taking place can be approached through following scientific methods which include: asking a scientific question based on predictions, background research and formation of hypothesis which can be tested through experiments and observations.
In the given question, predicting the atmospheric weather after looking at the clouds in the sky is the situation where scientific methods can be applied as the situation starts with the observation and prediction of the atmosphere which could lead to the generation of a scientific question.
Thus, Option-B is the correct answer.
Which process is most commonly associated with the energy produced by our sun
A. Fusion of helium
B. Fusion of Hydrogen
C. Fission of Uranium
D. Fission of Helium
ASAP
The sun produces energy through a process called fusion of hydrogen. This involves hydrogen nuclei fusing into helium nuclei in a series of reactions known as the proton-proton cycle. While nuclear fission can also produce energy, it requires larger, complex nuclei and is not the primary process in stars like the sun.
Explanation:The process most commonly associated with the energy produced by our sun is B. Fusion of Hydrogen. The sun produces energy through a series of fusion reactions, specifically the proton-proton cycle, where protons or hydrogen nuclei fuse into helium nuclei. This energy production happens primarily at the boundary of the helium core of the sun, where temperature is highest, and sufficient hydrogen remains.
An important note to make is that heavy atomic nuclei can also produce energy when broken up into lighter ones, a process called nuclear fission. However, fission, familiar to us through its use in atomic bombs and nuclear reactors, requires big, complex nuclei, while stars like our sun are composed predominantly of small, simple nuclei, making fusion the primary source of energy for the sun and stars.
Learn more about Fusion of Hydrogen here:https://brainly.com/question/3834826
#SPJ3
Why is there lightning in volcanic eruptions
Answer:
Volcanic lightning is created when a volcano erupts and lots of tiny fine particles of volcanic ash form a cloud. Friction between the particles of ash and the gases emitted from the eruption cause differentces that create lightning. Friction between the particles of ash and the gases emitted from the eruption cause differentces that create lightning. The lightning usually occurs between clouds and from the eruption column to the crater.
Explanation:
please mark brainliest if this helped :)
What do sound waves and infrared waves have in common
Explanation:
Sound waves (mechanical waves) and infrared waves (electromagnetic waves), both can transfer energy through matter. However, there is a huge diference between them:
Mechanical waves only propagate through matter and can not propagate in vacuum. This means, they necessarily need a medium to propagate.
On the other hand, electromagnetic waves can propagate through matter and in vacuum, too. This means their propagation does not depend on the existence of a medium.