Which of the following should most favor the solubility of an ionic solid in water? Note: high and low refers to the magnitudes (i.e. the absolute value) of lattice and hydration energiesA. a small lattice energy for the solid and a small hydration energy for its ions B. a small lattice energy for the solid and a large hydration energy for its ions C. a large lattice energy for the solid and a small hydration energy for its ions D. a large lattice energy for the solid and a large hydration energy for its ions

Answers

Answer 1

Answer:

. a small lattice energy for the solid and a large hydration energy for its ions

Explanation:

Lattice energy refers to the energy that binds the ions together in the crystal lattice. This same energy must be supplied for the !active to disintegrate and release the ions to form a solution a solution by solvation involving solvent ions or dipoles. The hydration energy is the energy released on solvation of the ionic solid by the solvent. If the energy released during hydration is less than the lattice energy, the ionic solid cannot dissolve in the solvent since the hydration energy provides the energy required to collapse the ionic lattice and release the ions.

Answer 2

The solubility of an ionic solid in water is most favored by a combination of a small lattice energy and a large hydration energy, which facilitates the dissolution process causing a favorable overall enthalpy change. Option B is correct.

The solubility of an ionic solid in water should be most favored by a small lattice energy for the solid and a large hydration energy for its ions. This combination of energies facilitates the dissolution process.

The small lattice energy means less energy is required to break the ionic lattice of the solid, while the large hydration energy indicates that a substantial amount of energy is released when water molecules attach to the ions during the solvation process. Altogether, this leads to a favorable enthalpy change that promotes solubility.

Hence, B. is the correct option.


Related Questions

A sodium hydroxide solution that contains 24.8 grams of NaOH per L of solution has a density of 1.15 g/mL. Calculate the molality of the NaOH in this solution.

Answers

Final answer:

The molality of the sodium hydroxide (NaOH) solution is 0.54 mol/kg.

Explanation:

The molality of a solution is defined as the number of moles of solute per kilogram of solvent. In this case, the solute is sodium hydroxide (NaOH) and the solvent is water.

To calculate the molality, we need to first convert the given mass of NaOH to moles using its molar mass, which is 40.0 g/mol. Then, we need to convert the mass of the solution to kilograms using the density of the solution, which is 1.15 g/mL.

Using the given information:

Mass of NaOH = 24.8 g/L

Density of solution = 1.15 g/mL

Molar mass of NaOH = 40.0 g/mol

The molality can be calculated as follows:

Convert mass of NaOH to moles: 24.8 g/L x (1 mol NaOH / 40.0 g NaOH) = 0.62 mol/LConvert density of solution to mass of solution: 1.15 g/mL x 1000 mL/L = 1150 g/LConvert mass of solution to kilograms: 1150 g/L ÷ 1000 = 1.15 kg/LCalculate molality: 0.62 mol/L ÷ 1.15 kg/L = 0.54 mol/kg

The H atom and the Be3³⁺ ion each have one electron. Does the Bohr model predict their spectra accurately? Would you expect their line spectra to be identical? Explain.

Answers

Explanation:

a) Bohr model is perfect for atoms that have single electron and fortunately both Be3+ ion and H atom have one electron so, Bohr model can easily and accurately applied to predict the spectrum of Be3+ and H atom.

b) The energy of an atom in  Bohr model is given by

[tex]E= \frac{-13.6z^2}{n^2}[/tex]

the values of z for H atom and Be3+ ion are 1 and 4 respectively. Hence, energy of atoms would be different for both atoms. Hence, line spectra to be identical is not possible.

The temperature of a 10.0 L sample of nitrogen in a sealed container is increased from 22°C to 202°C, while its pressure is increased from 1.00 atm to 3.00 atm. What is the new volume (in liters) of the nitrogen sample?

Answers

Answer:

The new volume is 5.37 L

Explanation:

Step 1: Data given

Initial volume = 10.0 L

Initial temperature = 22.0 °C

Initial pressure = 1.00 atm

Final temperature = 202 °C

Final pressure = 3.00 atm

Step 2: Calculate final volume

(P1*V1)/T1  = (P2*V2)/T2

⇒ with P1 = The initial pressure = 1.00 atm

⇒ with V1 = The initial volume = 10.0 L

⇒ with T1 = The initial temperature = 22 °C = 295 Kelvin

⇒ with  P2 = The final pressure = 3.00 atm

⇒ with V2 = The final volume = TO BE DETERMINED

⇒ with T2 = The final temperature = 202 °C = 475 Kelvin

(1.00 * 10.0) / 295 = (3.00 * V2) / 475

10 / 295 = 3V2/ 475

3V2 = 4750/295

V2 = 5.37 L

The new volume is 5.37 L

Calculate the concentration of H3O+ of a solution if the concentration of OH- at 25°C is 3.8 × 10-5 M and determine if the solution is acidic or basic.

Answers

Answer:

[H₃O⁺] = 2.63×10⁻¹⁰ M

As pH = 9.57, the solution is basic

Explanation:

We must know this knowledge:

[OH⁻] . [H₃O⁺] = 1×10⁻¹⁴

3.8×10⁻⁵ . [H₃O⁺] = 1×10⁻¹⁴

[H₃O⁺] = 1×10⁻¹⁴ / 3.8×10⁻⁵ → 2.63×10⁻¹⁰ M

Let's determine the pH to state if the solution is acidic or basic

pH < 7 → acidic ; pH > 7 → basi

pH = - log [H₃O⁺]

pH = - log 2.63×10⁻¹⁰ → 9.57

Identify each element below, and give the symbols of the other elements in its group:
(a) [He] 2s²2p¹
(b) [Ne] 3s²3p⁴
(c) [Xe] 6s²5d¹

Answers

Answer:

Answer in explanation

Explanation:

a. Boron , element 5

Helium has 2 electrons, add to the other 3 to give 5.

Other group members are : Aluminum Al, Gallium Ga, Indium In , Thallium Tl and Nihonium Nh

b. Sulphur, element 16

Neon is 10 , add other 6 electrons to make 16

Other group members are: Oxygen O, selenium Se , Tellurium Te and Polonium Po

c. Lanthanum, element 57

Xenon is 54, add the other 3 electrons to give 57.

Other elements in group : Scandium Sc , Yttrium Y , Actinium Ac, Lutetium Lu and/or Lawrencium Lr

What is the percent yield of a reaction in which 51.5 g of tungsten(VI) oxide (WO3) reacts with excess hydrogen gas to produce metallic tungsten and 5.76 mL of water (d = 1.00 g/mL)?

Answers

Answer:

The percent yield of a reaction is 48.05%.

Explanation:

[tex]WO_3+3H_2\rightarrow W+3H_2O[/tex]

Volume of water obtained from the reaction , V= 5.76 mL

Mass of water = m = Experimental yield of water

Density of water = d = 1.00 g/mL

[tex]M=d\times V = 1.00 g/mL\times 5.76 mL=5.76 g[/tex]

Theoretical yield of water : T

Moles of tungsten(VI) oxide = [tex]\frac{51.5 g}{232 g/mol}=0.2220 mol[/tex]

According to recation 1 mole of tungsten(VI) oxide gives 3 moles of water, then 0.2220 moles of tungsten(VI) oxide will give:

[tex]\frac{3}{1}\times 0.2220 mol=0.6660 mol[/tex]

Mass of 0.6660 moles of water:

0.666 mol × 18 g/mol = 11.988 g

Theoretical yield of water : T = 11.988 g

To calculate the percentage yield of reaction , we use the equation:

[tex]\%\text{ yield}=\frac{\text{Experimental yield}}{\text{Theoretical yield}}\times 100[/tex]

[tex]=\frac{m}{T}\times 100=\frac{5.76 g}{11.988 g}\times 100=48.05\%[/tex]

The percent yield of a reaction is 48.05%.

Answer:The percent yield of a reaction is 48.05%.

Explanation:

2. Assume that a sample of 10.00 g of a solid unknown is dissolved in 25.0 g of water. Assuming that pure water freezes at 0.0 oC and the solution freezes at -5.58 oC, what is the molal concentration of the solution

Answers

Answer:

m = 3 moles/kg

Explanation:

This is a problem of freezing point depression, and the formula or expression to use is the following:

ΔT = i*Kf¨*m (1)

Where:

ΔT: Change of temperature of the solution

i: Van't Hoff factor

m: molality of solution

Kf: molal freezing point depression of water (Kf = 1.86 °C kg/mol)

Now, the value of i is the number of moles of particles obtained when 1 mol of a solute dissolves. In this case, we do not know what kind of solution is, so, we can assume this is a non electrolyte solute, and the value of i = 1.

Let's calculate the value m, which is the molality solving for (1):

m =  ΔT/Kf (2)

Finally, let's calculate ΔT:

ΔT = T2 - T1

ΔT = 0 - (-5.58)

ΔT = 5.58 °C

Now, let's replace in (2):

m = 5.58/1.86

m = 3 moles/kg

This is the molality of solution.

The other data of mass, can be used to calculate the molecular mass of this unknown solid, but it's not asked in the question.

Why does the malachite green dye elute first? What physical properties does it have that affect it’s interaction with alumina and how are those different from crystal violet?

Answers

Answer:

MG is less polar  

Explanation:

The structures of crystal violet (CV) and malachite green (MG) are shown in Figures 1 and 2, respectively.  

The obvious difference is that CV has an extra dimethylamino group (polar).

Alumina is a polar adsorbent, so it retains the more polar substances more strongly and they are eluted last.

MG is less polar than CV, so it is retained less strongly and is eluted first.

If you are using 3.00% (mass/mass) hydrogen peroxide solution and you determine that the mass of solution required to reach the equivalence point is 5.125 g, how many moles of hydrogen peroxide molecules are present?

Answers

Answer:

0.004522 moles of hydrogen peroxide molecules are present.

Explanation:

Mass by mass percentage of hydrogen peroxide solution = w/w% = 3%

Mass of the solution , m= 5.125 g

Mass of the hydrogen peroxide = x

[tex]w/w\% = \frac{x}{m}\times 100[/tex]

[tex]3\%=\frac{x}{5.125 g}\times 100[/tex]

[tex]x=\frac{3\times 5.125 g}{100}=0.15375 g[/tex]

Mass of hydregn pervade in the solution = 0.15375 g

Moles of hydregn pervade in the solution :

[tex]=\fraC{ 0.15375 g}{34 g/mol}=0.004522 mol[/tex]

0.004522 moles of hydrogen peroxide molecules are present.

Final answer:

To determine the number of moles of hydrogen peroxide molecules present in the solution, multiply the mass of the solution by the mass percent of hydrogen peroxide. Then, convert the mass of hydrogen peroxide to moles using its molar mass. The number of moles of hydrogen peroxide molecules is approximately 0.00452.

Explanation:

To determine the number of moles of hydrogen peroxide molecules present, we first need to calculate the mass of hydrogen peroxide in the solution. We can do this by multiplying the mass of the solution (5.125 g) by the mass percent of hydrogen peroxide (3.00% or 0.03).

Mass of hydrogen peroxide = 5.125 g × 0.03 = 0.15375 g

Next, we need to convert the mass of hydrogen peroxide to moles using its molar mass. The molar mass of hydrogen peroxide (H2O2) is 34.0146 g/mol.

Moles of hydrogen peroxide = 0.15375 g ÷ 34.0146 g/mol ≈ 0.00452 mol

Therefore, there are approximately 0.00452 moles of hydrogen peroxide molecules present.

Learn more about Hydrogen peroxide molecules here:

https://brainly.com/question/34266332

#SPJ11

Data has been collected to show that at a given wavelength in a 1 cm pathlength cell, Beer's Law for the absorbance of Co2 is linear. If a 0.135 M solution of Co2 has an absorbance of 0.350, what is the concentration of a solution with an absorbance of 0.420?

Answers

Answer : The concentration of a solution with an absorbance of 0.420 is, 0.162 M

Explanation :

Using Beer-Lambert's law :

[tex]A=\epsilon \times C\times l[/tex]

As per question, at constant path-length there is a direct relation between absorbance and concentration.

[tex]\frac{A_1}{A_2}=\frac{C_1}{C_2}[/tex]

where,

A = absorbance of solution

C = concentration of solution

l = path length

[tex]A_1[/tex] = initial absorbance = 0.350

[tex]A_2[/tex] = final absorbance = 0.420

[tex]C_1[/tex] = initial concentration = 0.135 M

[tex]C_2[/tex] = final concentration = ?

Now put all the given value in the above relation, we get:

[tex]\frac{0.350}{0.420}=\frac{0.135}{C_2}[/tex]

[tex]C_2=0.162M[/tex]

Thus, the concentration of a solution with an absorbance of 0.420 is, 0.162 M

Arrange the following H atom electron transitions in order of increasing frequency of the photon absorbed or emitted:
(a) n = 2 to n = 4
(b) n = 2 to n = 1
(c) n = 2 to n = 5
(d) n = 2 to n = 1

Answers

The question is incomplete , complete question is:

Arrange the following H atom electron transitions in order of increasing frequency of the photon absorbed or emitted:

(a) n = 2 to n = 4

(b) n = 2 to n = 1

(c) n = 2 to n = 5

(d) n = 4 to n = 3

Answer:

Hence the order of the transition will be : d < a < c < b

Explanation:

[tex]E_n=-13.6\times \frac{Z^2}{n^2}ev[/tex]

where,

[tex]E_n[/tex] = energy of [tex]n^{th}[/tex] orbit

n = number of orbit

Z = atomic number

Energy of n = 1 in an hydrogen atom:

[tex]E_1=-13.6\times \frac{1^2}{1^2}eV=-13.6 eV[/tex]

Energy of n = 2 in an hydrogen atom:

[tex]E_2=-13.6\times \frac{1^2}{2^2}eV=-3.40eV[/tex]

Energy of n = 3 in an hydrogen atom:

[tex]E_3=-13.6\times \frac{1^2}{3^2}eV=-1.51eV[/tex]

Energy of n = 4 in an hydrogen atom:

[tex]E_4=-13.6\times \frac{1^2}{4^2}eV=-0.85 eV[/tex]

Energy of n = 5 in an hydrogen atom:

[tex]E_5=-13.6\times \frac{1^2}{5^2}eV=-0.544 eV[/tex]

a) n = 2 to n = 4 (absorption)

[tex]\Delta E_1= E_4-E_2=-0.85eV-(-3.40eV)=2.55 eV[/tex]

b) n = 2 to n = 1 (emission)

[tex]\Delta E_2= E_1-E_2=-13.6 eV-(-3.40eV)=-10.2 eV[/tex]

Negative sign indicates that emission will take place.

c) n = 2 to n = 5 (absorption)

[tex]\Delta E_3= E_5-E_2=-0.544 eV-(-3.40eV)=2.856 eV[/tex]

d) n = 4 to n = 3 (emission)

[tex]\Delta E_4= E_3-E_4=-1.51 eV-(-0.85 eV)=-0.66 eV[/tex]

Negative sign indicates that emission will take place.

According to Planck's equation, higher the frequency of the wave higher will be the energy:

[tex]E=h\nu [/tex]

h = Planck's constant

[tex]\nu [/tex] frequency of the wave

So, the increasing order of magnitude of the energy difference :

[tex]E_4<E_1<E_3<E_2[/tex]

And so will be the increasing order of the frequency of the of the photon absorbed or emitted. Hence the order of the transition will be :

: d < a < c < b

Final answer:

The order of increasing frequency of photon absorbed or emitted for the H atom electron transitions is (a) n = 2 to n = 4, (c) n = 2 to n = 5, (b) n = 2 to n = 1, and (d) n = 2 to n = 1.

Explanation:

The frequency of a photon absorbed or emitted by a hydrogen atom is related to the energy difference between the initial and final energy levels. The energy difference decreases as the value of n increases, so (a) n = 2 to n = 4 has the lowest frequency, followed by (c) n = 2 to n = 5, (b) n = 2 to n = 1, and finally, (d) n = 2 to n = 1 has the highest frequency.

Determine the equilibrium pH and speciation (concentration of each species) of the following two solutions. Neglect activity corrections. Species added Total concentration (solution a) HCl 10-3 M (solution b) NaCl 10-3 g.

Answers

Answer:

HCl solution - H30+ and Cl ions. pH 3

NaCl - Na+ and Cl-. pH 7

Explanation:

a) HCl solution - the hydrogen ion combines with water molecule to form the hydronium molecule which is responsible for acidity. The chloride ion is also found in solution.

pH = -log [H+] = -log(10^-3) = 3

b) NaCl 10-3 g. The solid dissocates in water forming the Na+ and Cl- ions. None of these ions affect pH

According to the Bohr model of the atom, when an electron goes from a higher-energy orbit to a lower-energy orbit, it ________ electromagnetic energy with an energy that is equal to the ________ between the two orbits.

Answers

Answer:

emits (radiates) , energy difference

Explanation:

According to the Bohr theory, when an electron jumps from higher orbital to the lower orbital, it radiates energy which is equal to the energy difference between the orbitals.

Mathematically, it can be shown as:-

The expression for Bohr energy is shown below as:-

[tex]E_n=-2.179\times 10^{-18}\times \frac{1}{n^2}\ Joules[/tex]

For transitions:

[tex]Energy\ Difference,\ \Delta E= E_f-E_i =-2.179\times 10^{-18}(\frac{1}{n_f^2}-\frac{1}{n_i^2})\ J=2.179\times 10^{-18}(\frac{1}{n_i^2} - \dfrac{1}{n_f^2})\ J[/tex]

[tex]\Delta E=2.179\times 10^{-18}(\frac{1}{n_i^2} - \dfrac{1}{n_f^2})\ J[/tex]

Also, [tex]\Delta E=\frac {h\times c}{\lambda}[/tex]

Where,  

h is Plank's constant having value [tex]6.626\times 10^{-34}\ Js[/tex]

c is the speed of light having value [tex]3\times 10^8\ m/s[/tex]

Final answer:

According to the Bohr model of the atom, when an electron transitions from a higher-energy orbit to a lower-energy orbit, it emits electromagnetic energy equal to the energy difference between the two orbits.

Explanation:

The Bohr model of the atom states that when an electron transitions from a higher-energy orbit to a lower-energy orbit, it emits electromagnetic energy with an energy equal to the difference between the two orbits. This energy is released in the form of a photon.

Learn more about Bohr model of the atom here:

https://brainly.com/question/34850586

#SPJ3

What determines the types of chemical reactions that an atom participates in? A. the number of electrons in the outermost electron shell B. the number of electrons in the innermost electron shell C. its atomic mass the number of protons D. it contains its atomic number

Answers

Answer:

The answer would be A. the number of electrons in the outermost electron shell.

Explanation:

These are called valence electrons which are transferred, shared, and rearranged by creating covalent bonds producing new substances.

Hope this helped! :)

The type of chemical reaction an atom chooses is determined by the number of the outermost electrons in the outermost shell of an atom.

The reactivity of an atom is determined by the number of electrons in the outermost shell of the particular atom.The number of electrons is used to determine the type of bond formed by that atom in a chemical reaction.The outermost shell of the atom is called the valence shell and the number of outermost electrons is thus called the valence electrons.

About the importance of electrons the below points should be noted;

The electron is the major constituent of an atom which determines the reactivity of an atom.The outermost electron is more used for any reaction to occur than the innermost electrons

Therefore the answer is the number of electrons in the outermost electron shell.

Learn more about an electron:

https://brainly.com/question/20669478

How many electrons in an atom can have each of the following quantum number or sublevel designations?
(a) 2s
(b) n = 3, l = 2
(c) 6d

Answers

Answer :

(a) Number of electrons in an atoms is, 2

(b) Number of electrons in an atoms is, 10

(c) Number of electrons in an atoms is, 10

Explanation :

There are 4 quantum numbers :

Principle Quantum Numbers : It describes the size of the orbital. It is represented by n. n = 1,2,3,4....

Azimuthal Quantum Number : It describes the shape of the orbital. It is represented as 'l'. The value of l ranges from 0 to (n-1). For l = 0,1,2,3... the orbitals are s, p, d, f...

Magnetic Quantum Number : It describes the orientation of the orbitals. It is represented as . The value of this quantum number ranges from . When l = 2, the value of

Spin Quantum number : It describes the direction of electron spin. This is represented as . The value of this is  for upward spin and  for downward spin.

Number of electrons in a sublevel = 2(2l+1)

(a) 2s

n = 2

Value of 'l' for 's' orbital : l = 0

Number of electrons in an atoms = 2(2l+1) = 2(2×0+1) = 2

(b) n = 3, l = 2

Number of electrons in an atoms = 2(2l+1) = 2(2×2+1) = 10

(c) 6d

n = 2

Value of 'l' for 'd' orbital : l = 2

Number of electrons in an atoms = 2(2l+1) = 2(2×2+1) = 10

Final answer:

In quantum chemistry, the 2s sublevel can hold 2 electrons, the n = 3, l = 2 sublevel (3d) can hold 10 electrons, and the 6d sublevel can also hold 10 electrons.

Explanation:

In quantum chemistry, specific sublevels or orbitals within an atom can hold certain numbers of electrons.

(a) The 2s sublevel can hold a maximum of 2 electrons. This is because 's' orbitals can contain up to 2 electrons.

(b) For n = 3, l = 2, this refers to the 3d orbital. 'd' orbitals can hold a maximum of 10 electrons, so 10 electrons can exist in this energy level.

(c) For the 6d orbital, it can also hold up to 10 electrons, as it is also a 'd' orbital.

Learn more about Electrons in Quantum Orbitals here:

https://brainly.com/question/30784589

#SPJ11

Draw the structure of ozone according to VSEPR theory. What would be its associated molecular geometry?

Answers

Final answer:

Ozone, according to the VSEPR theory, has a bent or 'V' shaped geometry due to the repulsion of electron pairs. This is because it has one lone pair and two bonding domains.

      O

    /    \

   O    O

Explanation:

The structure of ozone, or O₃, can be drawn according to the VSEPR theory. The central atom is one oxygen atom while the other two oxygen atoms are attached to the central one. Then, there is one lone pair on the central atom, creating a 'bent' or 'V' shape in its geometry.

The VSEPR (Valence Shell Electron Pair Repulsion) theory suggests that electron pairs will repel each other as much as possible, resulting in specific molecular geometries. Ozone is a molecular geometry example of a molecule with 3 total sites of electrons, 2 bonding domains, and one non-bonding domain. This leads to a 'bent' or 'V' shape because the non-bonding pair pushes the two bonding domains closer together.

Learn more about Ozone Molecular Structure here:

https://brainly.com/question/32264170

#SPJ11

The vapor pressure of cobalt is 400 mm Hg at 3.03x10^3 K.

Assuming that its molar heat of vaporization is constant at 450 kJ/mol, the vapor pressure of liquid Co is _____ mm Hg at a temperature of 3.07x10^3 K.

Answers

We can calculate the vapor pressure of liquid cobalt at a given temperature by using the Clausius-Clapeyron equation and the given vapor pressure at another temperature. This involves substituting known values into the equation and solving for the desired vapor pressure.

The question is asking for the calculated vapor pressure of liquid cobalt at a certain temperature based on its known vapor pressure at another temperature. This involves using the Clausius-Clapeyron equation, which describes the relationship between the vapor pressure of a substance and its temperature. Let's denote the initial conditions (i.e., 400 mm Hg at 3.03x10^3 K) as P1 and T1, and the conditions we want to find (i.e., vapor pressure at 3.07x10^3K) as P2 and T2.

First, convert the molar heat of vaporization from kJ/mol to J/mol by multiplying by 1000, which gives 450000 J/mol. Next, the Clausius-Clapeyron equation can be rearranged to solve for P2:

P2 = P1 * exp [ -ΔHvap (1/T2 - 1/T1) / R ]

where ΔHvap is the molar heat of vaporization, R is the ideal gas constant (8.314 J/mol·K). Substituting all known values into this equation will give the vapor pressure of liquid Co at the desired temperature.

Learn more about Clausius-Clapeyron Equation here:

https://brainly.com/question/33369944

#SPJ3

The vapor pressure of liquid cobalt at 3.07x10^3 K is approximately 3748.64 mm Hg.

The vapor pressure of liquid cobalt at a temperature of 3.07x10^3 K can be determined using the Clausius-Clapeyron equation, which relates the vapor pressure of a substance to its temperature. The equation is given by:

[tex]\[ \ln\left(\frac{P_2}{P_1}\right) = -\frac{\Delta H_{\text{vap}}}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right) \][/tex]

First, we need to convert [tex]\( \Delta H_{\text{vap}} \)[/tex] from kJ/mol to J/mol to match the units of [tex]\( R \)[/tex]:

[tex]\[ \Delta H_{\text{vap}} = 450 \text{ kJ/mol} \times 1000 \text{ J/kJ} = 450,000 \text{ J/mol} \][/tex]

Now we can plug the values into the Clausius-Clapeyron equation:

[tex]\[ \ln\left(\frac{P_2}{400 \text{ mm Hg}}\right) = -\frac{450,000 \text{ J/mol}}{8.314 \text{ J/(mol·K)}}\left(\frac{1}{3.07x10^3 \text{ K}} - \frac{1}{3.03x10^3 \text{ K}}\right) \][/tex]

Solving for [tex]\( P_2 \):[/tex]

[tex]\[ \ln\left(\frac{P_2}{400}\right) = -\frac{450,000}{8.314}\left(\frac{1}{3.07x10^3} - \frac{1}{3.03x10^3}\right) \] \[ \ln\left(\frac{P_2}{400}\right) = -\frac{450,000}{8.314}\left(\frac{3.03x10^3 - 3.07x10^3}{(3.07x10^3)(3.03x10^3)}\right) \] \[ \ln\left(\frac{P_2}{400}\right) = -\frac{450,000}{8.314}\left(\frac{-40}{3.07x10^3x3.03x10^3}\right) \] \[ \ln\left(\frac{P_2}{400}\right) = -\frac{450,000}{8.314}\left(\frac{-40}{9.3051x10^6}\right) \][/tex]

[tex]\[ P_2 \approx 3748.64 \text{ mm Hg} \][/tex]

Therefore, the vapor pressure of liquid cobalt at 3.07x10^3 K is approximately 3748.64 mm Hg.

Suppose that a certain drug company manufactured a compound that had nearly the same structure as a substrate for a certain enzyme but that could not be acted upon chemically by the enzyme. What type of interaction would the compound have with the enzyme

Answers

Answer: Reversible competitive inhibition

Explanation:

In the case of reversible competitive inhibition, an inhibitor molecule competes with the substrate for binding to the active site of the enzyme. The inhibitor blocks the active site of the enzyme. Thus the enzyme substrate complex do not form. The structure of the inhibitor is similar to the substrate thus also have the binding affinity with the enzyme. The process is reversible because the inhibitor will leave the enzyme it exerts no permanent effect on the enzyme.

The given situation is the example of reversible competitive inhibition as substrate remain unchanged and the enzyme was not able to act on the substrate chemically may be due to inhibition of the function of the enzyme.

A buffer solution is made by mixing a weak acid with its conjugate base. If the ratio of conjugate base to acid is 4, and the pH of the buffer is 7.2, what is the pKa of the weak acid? Round the answer to one decimal place.

Answers

Answer:

6.6 is the [tex]pK_a[/tex] of the weak acid.

Explanation:

To calculate the pH of acidic buffer, we use the equation given by Henderson Hasselbalch:

[tex]pH=pK_a+\log(\frac{[salt]}{[acid]})[/tex]

We are given:

[tex]pK_a[/tex] = negative logarithm of acid dissociation constant =?

The ratio of conjugate base to acid is = [tex]\frac{[salt]}{acid}=4[/tex]

pH = 7.2

Putting values in above equation, we get:

[tex]7.2=pK_a+\log(4)[/tex]

[tex]pK_a=7.2-\log(4)=6.598\approx 6.6[/tex]

6.6 is the [tex]pK_a[/tex] of the weak acid.

he decomposition of acetaldehyde, CH3CHO, was determined to be a second order reaction with a rate constant of 0.0771 M-1 s-1. If the initial concentration of acetaldehyde is 0.358 M , what will the concentration be after selected reaction times

Answers

Answer:

The concentration is [-1 + sqrt(1+0.11t)]/0.1542 M

Explanation:

Let the concentration of CH3CHO after selected reaction times be y

Rate = Ky^2 = change in concentration of CH3CHO/time

K = 0.0771 M^-1 s^-1

Change in concentration of CH3CHO = 0.358 - y

0.0771y^2 = 0.358-y/t

0.0771ty^2 = 0.358 - y

0.0771ty^2 + y - 0.358 = 0

The value of y must be positive and is obtained in terms of t using the quadratic formula

y = [-1 + sqrt(1^2 -4(0.0771t)(-0.358)]/2(0.0771) = [-1 + sqrt(1+0.11t)]/0.1542 M

Final answer:

The question involves calculating the instantaneous rate of a second order decomposition reaction of acetaldehyde using the given rate constant and concentration values.

Explanation:

The question deals with a second order reaction describing the decomposition of acetaldehyde (CH3CHO) into methane (CH4) and carbon monoxide (CO). A second order reaction rate is dependent on the square of the concentration of one reactant or the product of two reactants concentrations. The rate constant provided (0.0771 M-1 s-1 or 4.71 × 10-8 L mol-1 s-1) is used alongside the concentration of acetaldehyde to determine the instantaneous rate of reaction or, in some scenarios, to deduce the remaining concentration of acetaldehyde at a given time.

Let the concentration of CH3CHO after selected reaction times be y

Rate = Ky^2 = change in concentration of CH3CHO/time

K = 0.0771 M^-1 s^-1

Change in concentration of CH3CHO = 0.358 - y

0.0771y^2 = 0.358-y/t

0.0771ty^2 = 0.358 - y

0.0771ty^2 + y - 0.358 = 0

The value of y must be positive and is obtained in terms of t using the quadratic formula

y = [-1 + sqrt(1^2 -4(0.0771t)(-0.358)]/2(0.0771) = [-1 + sqrt(1+0.11t)]/0.1542 M

If a buffer solution is 0.250 M 0.250 M in a weak base ( K b = 8.0 × 10 − 5 ) Kb=8.0×10−5) and 0.540 M 0.540 M in its conjugate acid, what is the pH ?

Answers

Answer:

9.57

Explanation:

Given that:

[tex]pK_{b}=-\log\ K_{b}=-\log(8.0\times 10^{-5})=4.1[/tex]

Considering the Henderson- Hasselbalch equation for the calculation of the pOH of the basic buffer solution as:

[tex]pOH=pK_b+log\frac{[conjugate\ acid]}{[base]}[/tex]

So,  

[tex]pOH=4.1+\log\frac{0.540}{0.250}=4.43[/tex]

pH + pOH = 14  

So, pH = 14 - 4.43 = 9.57

The d-metals can be mixed together to form a wide range of alloys because:
1. the range of d metal radii is not very great.
2. the d-electrons interact strongly with each other.
3. the d-metals have low melting points.
4. the d-metals have a wide range of metal radii.
5. the nucleus is well shielded by the d electrons.

Answers

Answer:

the range of d metal radii is not very great.

Explanation:

The difference in metallic radii are not great hence the metallic ions are almost similar in size across the series. As a result of this, they can easily take up positions in the lattice of other transition metals leading to the formation of transition metal alloys. This explains the wide range of transition metal alloys used for various purposes in industry.

A solution contains 0.25 M Ni(NO3)2 and 0.25 M Cu(NO3)2. Can the metal ions be separated by slowly adding Na2CO3? Assume that for successful separation 99% of the metal ion must be precipitated before the other metal ion begins to precipitate, and assume no volume change on addition of Na2CO3.

Answers

Explanation:

Ksp of NiCO3 = 1.4 x 10^-7

Ksp of CuCO3 = 2.5 x 10^-10

Ionic equations:

NiCO3 --> Ni2+ + CO3^2-

CuCO3 --> Cu2+ + CO3^2-

[Cu2+][CO3^2-]/[Ni2+][CO3^2-]

= (2.5* 10^-10)/(1.4* 10^-7)

= 0.00179.

[Cu2+]/[Ni2+]

= 0.00179

= 0.00179*[Ni2+]

If all of Cu2+ is precipitated before Na2CO3 is added.

= 0.00179 * (0.25)

The amount of Cu2+ not precipitated = 0.000448 M

The percent of Cu2+ precipitated before the NiCO3 precipitates = concentration of Cu2+ unprecipitated/initial concentration of Cu2+ * 100

= 0.000448/0.25 * 100

= 0.18%

Therefore, percentage precipitated = 100 - 0.18

= 99.8%

The two metal ions can be separated by slowly adding Na2CO3. Thus that is the unpptd Cu2+.

Final answer:

The metal ions can be separated by slowly adding Na2CO3 based on the relative solubilities of their carbonates. Nickel carbonate (NiCO3) is less soluble than copper carbonate (CuCO3), allowing the selective precipitation of nickel ions before copper ions.

Explanation:

To determine if the metal ions can be separated by slowly adding Na2CO3, we need to consider the solubility of the metal carbonates. Nickel carbonate (NiCO3) and copper carbonate (CuCO3) both have low solubilities, but it is crucial to examine their relative solubilities. If one carbonate is significantly less soluble than the other, it can be selectively precipitated first.

In this case, NiCO3 is less soluble than CuCO3. Therefore, by slowly adding Na2CO3 to the solution, we can precipitate the majority of the Ni2+ ions as NiCO3 before CuCO3 begins to precipitate. This satisfies the condition that 99% of the metal ion must be precipitated before the other metal ion begins to precipitate.

Therefore, it is possible to separate the nickel and copper ions in the solution by slowly adding Na2CO3.

Learn more about Separation of Metal Ions here:

https://brainly.com/question/4582896

#SPJ11

Summarize the trend in metallic character as a function of position in the periodic table. Is it the same as the trend in atomic size? Ionization energy?

Answers

Answer:

The trend in metallic character as a function of position in the periodic table is that the metallic character increases as you go down a group. Since the ionization energy decreases going down a group (or increases going up a group), the increased ability for metals lower in a group to lose electrons makes them more reactive.

This is not the same for the atomic size, as you go down a column of the periodic table, the atomic radii increase. This is because the valence electron shell is getting a larger and there is a larger principal quantum number, so the valence shell lies physically farther away from the nucleus.

Similarly, it is also different for the ionization energy trend, as you go down the periodic table, it becomes easier to remove an electron from an atom (i.e., IE decreases) because the valence electron is farther away from the nucleus.

Final answer:

The metallic character in the periodic table decreases across a period and increases down a group. It trends similarly to atomic size but oppositely to ionization energy.

Explanation:

Metallic character: The metallic trend follows the trend of the atomic radius. It increases within a group of the periodic table from the top to the bottom and decreases within a period from left to right. Metallic character relates to the ease of losing an electron in a chemical reaction and is opposite to the trend of ionization energy.

Atomic size shows a trend that parallels the metallic character. Atomic size increases down a group because of the increase in electron shells, which makes the valence electrons less tightly held. Conversely, atomic size decreases from left to right within a period due to an increasing effective nuclear charge, which draws electrons closer to the nucleus, reducing the size of the atom.

In summary, the metallic character and atomic size increase from right to left in a period and from top to bottom in a group, while ionization energy generally shows the opposite trend. Hence, the trend in metallic character is similar to the trend in atomic size but opposite to the trend in ionization energy.

name each ionic compound. In each of these compounds, the metal forms only one type of ion. a)CeCl b)SrBr2 c) K2O d)LiF

Answers

Explanation:

A. CeCl

Cerium chloride.

Metal: Ce+

B. SrBr2

Strontium chloride.

Metal: Sr2+

C. K2O

Potassium oxide.

Metal: K+

D. LiF

Lithuim fluoride.

Metal: Li+

Chlorine (Cl) creates an anion with a -1 charge, but the metal cerium (Ce) only forms one type of ion with a +3 charge. As a result, the substance is known as cerium(III) chloride.

a) CeCl: Cerium(III) chloride

Whereas bromine (Br) generates an anion with a -1 charge, the metal strontium (Sr) only forms one sort of ion with a +2 charge in this combination. As a result, the substance is known as strontium bromide.

b) SrBr2: Strontium bromide

In this molecule, oxygen (O) generates an anion with a -2 charge whereas the metal potassium (K) only produces one sort of ion with a +1 charge. The substance is referred to as potassium oxide as a result.

c) K2O: Potassium oxide

Lithium is the only element present in this combination (Li). As lithium only ever produces an ion with a positive charge, it is known simply as lithium.

d) Li: Lithium

To know more about Strontium bromide:

https://brainly.com/question/27791646

#SPJ6

The sulfur atom of sulfur dioxide is considered to be sp2-hybridized. The expected bond angle is 120°, but is actually slightly smaller (119°). Write down the correct statement that explains the smaller bond angle.

Answers

Answer: The bonds are intermediate between double and single bonds

Explanation:

A closer look at the diagram below shows that the bonds in sulphur IV oxide are intermediate between double and single bonds. Hence they do not have the exact bond angle of single bonds. This is why the bond angle is not exactly 120°. There are two resonance structures in the diagram that clearly show this point.

Given that a chlorine-oxygen bond in ClO2(g) has an enthalpy of 243 kJ/molkJ/mol , an oxygen-oxygen bond has an enthalpy of 498 kJ/molkJ/mol , and the standard enthalpy of formation of ClO2(g) is? ΔH∘f=102.5kJ/molΔHf∘=102.5kJ/mol , use Hess's law to calculate the value for the enthalpy of formation per mole of ClO(g).

Answers

The answer & explanation for this question is given in the attachment below.

What is the wavelength (in nm) of the least energetic spectral line in the infrared series of the H atom?

Answers

Answer:

The least energetic spectral line in the infrared series of the H atom is 656.1 nm

Explanation:

Photon wavelength is inversely proportional to energy. To obtain the least energetic spectral line of the hydrogen atom (H), we determine the longest wavelength possible.

[tex]\frac{1}{\lambda} = R_H[\frac{1}{n_f^2} -\frac{1}{n^2}][/tex]

Where;

nf = 2

n = 3

RH is Rydberg constant = 1.09737 × 10⁷m⁻¹

λ is the wavelength of the least energetic spectral line

Substituting the above values into the equation, we will have

[tex]\frac{1}{\lambda} = 1.09737 X 10^7[\frac{1}{2^2} -\frac{1}{3^2}][/tex]

[tex]\frac{1}{\lambda} = 1.09737 X 10^7[\frac{1}{4} -\frac{1}{9}][/tex]

[tex]\frac{1}{\lambda} = 1.09737 X 10^7[0.25 -0.1111][/tex]

[tex]\frac{1}{\lambda} = 1.09737 X 10^7[0.1389][/tex]

[tex]\frac{1}{\lambda} = 1524246.93[/tex]

[tex]\lambda} = \frac{1}{1524246.93}[/tex]

[tex]\lambda} = 6.561 X10^{-7} m[/tex]

λ = 656.1 X10⁻⁹ m

In (nm): λ = 656.1 nm

Therefore, the least energetic spectral line in the infrared series of the H atom is 656.1 nm

The wavelength of the least energetic spectral line in the infrared series of the hydrogen atom is approximately 18,400 nanometers (nm).

To find the wavelength of the least energetic spectral line in the infrared series of the hydrogen atom, we can use the Rydberg formula for the hydrogen atom:

1 / λ = R_H * (1/n₁² - 1/n₂²)

Where:

λ is the wavelength of the spectral line.

R_H is the Rydberg constant for hydrogen, approximately 1.097 x 10^7 m⁻¹.

n₁ is the principal quantum number of the initial energy level.

n₂ is the principal quantum number of the final energy level.

For the least energetic line in the infrared series, we need to consider the transition where the electron moves from a higher energy level (n₂) to a lower energy level (n₁). In this case, n₂ > n₁.

Since we are interested in the infrared series, we'll consider transitions ending in the n₁ = 3 energy level. We want the least energetic line, so we'll choose the smallest value for n₂.

Let's take n₂ = 4 and calculate:

1 / λ = 1.097 x 10^7 m⁻¹ * (1/3² - 1/4²)

1 / λ = 1.097 x 10^7 m⁻¹ * (1/9 - 1/16)

1 / λ = 1.097 x 10^7 m⁻¹ * (7/144)

Now, solve for λ:

λ = 144 / (1.097 x 10^7 m⁻¹ * 7)

λ ≈ 0.0184 meters or 18.4 millimeters

To express the wavelength in nanometers (nm), we can convert millimeters to nanometers:

λ ≈ 18.4 mm * 1,000,000 nm/mm = 18,400 nm

So, the wavelength of the least energetic spectral line in the infrared series of the hydrogen atom is approximately 18,400 nm.

For more such information on: wavelength

https://brainly.com/question/10728818

#SPJ3

In the mid-17th century, Isaac Newton proposed that light existed as a stream of particles, and the wave-particle debate continued for over 250 years until Planck and Einstein presented their revolutionary ideas. Give two pieces of evidence for the wave model and two for the particle model.

Answers

Answer:

Light as a wave

1. Young's Double Slit Experiment

2. Davisson-Germer Experiment

Light as a particle

1. Einsteins Photoelectric Effect Phenomenon

2.  Diffraction Phenomenon of Particles

Evidence for light as a wave includes diffraction and interference patterns, while evidence for the particle model includes the photoelectric effect and emission spectra.

The mid-17th century debate on whether light is a wave or a particle extended well into the 20th century until revolutionary concepts by Planck and Einstein. There is evidence for both the wave model and the particle model of light. Two pieces of evidence for the wave nature of light are diffraction and interference patterns, as seen in Thomas Young's double-slit experiment.

Diffraction occurs when light encounters an obstacle, spreading out as a result, and interference patterns occur when waves overlap and combine in constructive or destructive ways. Conversely, evidence for the particle nature includes phenomena like the photoelectric effect, as explained by Einstein, where light knocks electrons from a material, and the behavior of emission spectra, where individual energy quanta or "photons" are emitted from atoms.

Silver Mining is opening a new mineral extraction facility in the local town and will employ several thousand people. They have decided to install scrubbers on the smokestacks of their facility in order to protect the environment, even though they are not required by the law to install them. This is an example of:Business ethical behaviorLegal Behavior

Answers

Answer:

Ethical Behavior

Explanation:

It's the ethical behavior how companies work or do business that have the positive impact on the community. They not only think about making money but also about the welfare of the society. They are concerned about the products they made and it's impact on the environment. Ethical behaviour is based on the human perception of right and wrong. That kind of behaviour whichis  not required by the law, but is done for the betterment of the society is ethical behaviour.

Final answer:

Silver Mining's voluntary decision to install environmentally friendly devices, despite no legal requirement, exemplifies business ethical behavior.

Explanation:

In this instance, Silver Mining's decision to install scrubbers on the smokestacks of their new facility, even though not legally required, is a clear example of business ethical behavior. This action demonstrates the company prioritizing environmental protection over potential costs. While the act also aligns with legal behavior, it is not driven by legal necessity. It's a voluntary measure taken for the greater good, thus making it an ethical business decision.

Learn more about business ethical behavior here:

https://brainly.com/question/36856764

#SPJ3

Other Questions
What is the slope Intercept form of 8x-2y=-72 If a nation has a balance of payments deficit and exchange rates are flexible, the price or value of that nation's currency in the foreign exchange markets will rise. true or false Problem 4 A meteoroid is first observed approaching the earth when it is 402,000 km from the center of the earth with a true anomaly of 150 deg. If the speed of the meteoroid at that time is 2.23 km/s, calculate: (a) the eccentricity of the trajectory, (b) the altitude at closest approach, (c) the speed at the closest approach, (d) the aiming radius and turn angle, and (e) the C3 of the meteoroid. Sketch the orbit. To qualify for a store discount, Clays soccer team must spend at least $560 for new jerseys What would be the frequency of an electromagnetic wave having a wavelength equal to Earths diameter (12,800 km)? In what part of the electromagnetic spectrum would such a wave lie? Corn rust is a pathogen caused by fungus that can attack corn plants and cause wide spread damage to this staple crop. Much of the midwest farmlands are used to grow corn. What method will best mitigate the impact of corn rust on this important crop?A)Corn should only be grown in rainy season so its not needed to integrate landB)Corn should be grown in cold season C) CloningD) Genetic variation so at least some plants would be resistent to corn rust Use angle relationships and the diagram at right to write and solve an equation for 4x-5 2x+9 A typical person has an average heart rate of 70.0 70.0 beats/min. Calculate the given questions. How many beats does she have in 6.0 6.0 years? How many beats in 6.00 6.00 years? And finally, how many beats in 6.000 6.000 years? Pay close attention to significant figures in this question. Which statement best describes the relationship between power andauthority?OA. Authority is a type of power used only in authoritarian states.OB. Authority gives a state the right to use its power.OC. Authority allows for the widespread distribution of power.OD. Authority describes the way governments can acquire power. Electric power is typically given in units of watts (1 W = 1 J/s). About 95% of the power output of an incandescent bulb is converted to heat and 5% to light. If 10% of that light shines on your chemistry text, how many photons per second shine on the book from a 75-W bulb? (Assume the photons have a wavelength of 550 nm.) what are nociceptors ? what is different about the 2 types of them ? (9-7i)(4i +15)Whats the answer The total resistance in this circuit isohms.The battery voltmeter should readvolts. What is the response variable in the study? Is the response variable qualitative or quantitative? What is the explanatory variable? What is the response variable in the study? Is the response variable qualitative or quantitative? What is the Europeans impression of the Aztecs and their capital and why? Of the cities shown, which one is the most visited? Which statement completes the diagram? A. The United States abandons its military alliance with Great Britain.B. The Nazi Germany continues its policy of aggressive expansionism.C. Italian troops launch surprise attacks against France and Great Britain.D. The Soviet Union invades Germany across its Eastern boarder. Suppose the current issue of The New York Times reports an outbreak of mad cow disease in Nebraska, as well as the discovery of a new breed of chicken that gains more weight than existing breeds that consume the same amount of food. How will these developments affect the equilibrium price and quantity of chickens sold in the United States? how did the factory system affect economic structures in 1750-1900 4/6 is less than or greater than 4/2 Steam Workshop Downloader