The "transit method" means doing very careful precise measurements as the planet passes in front of its star.
It's too far away for us to see it directly, but when it "transits" the star, the brightness of the star decreases by a tiny tiny tiny bit, which we can measure.
If we can measure that dip with good enough precision, it tells us how much of the star's photosphere was blocked from our view when the planet temporarily got in the way. From that, we can estimate the planet's size.
please help i will vote brainliest!
Answer:
C
Explanation:
The process by which wind removes surface materials is called
Answer:
The process by which wind removes surface materials is called deflation.
Answer:
Moving water that flows over the land is called runoff. An area of wave-washed sediment along a coast is called a beach. Deflation is the process by which wind removes surface materials.
Explanation:
hope this helps. if it did, please mark brainliest :)
The charge on the square plates of a parallel-plate capacitor is Q. The potential across the plates is maintained with constant voltage by a battery as they are pulled apart to twice their original separation, which is small compared to the dimensions of the plates. The amount of charge on the plates is now equal to
A)4Q
B)2Q
C)Q
D)Q/2
E)Q/4
Answer:
D) Q/2
Explanation:
The amount of charge on a capacitor is given by:
Q = CV
where
C is the capacitance
V is the voltage
The capacitance of a parallel-plate capacitor is given by
[tex]C=\epsilon_0 \frac{A}{d}[/tex]
where
[tex]\epsilon_0[/tex] is the vacuum permittivity
A is the area of the plates
d is the separation between the plates
Substituting the last formula into the first one, we can write
[tex]Q=\epsilon_0 \frac{AV}{d}[/tex]
In this problem, the two plates are pulled apart to twice their original separation, so
d' = 2d
While the voltage V is kept constant. Therefore, the new charge stored in the capacitor will be
[tex]Q'=\epsilon_0 \frac{AV}{2d}=\frac{1}{2} \epsilon_0 \frac{AV}{d}=\frac{Q}{2}[/tex]
Option D is right.The amount of charge on the plates is now equal to Q/2.Charges are stores in the plate placed parallel referred as the parallel plate capacitor.
What is parallel plate capacitor ?
It is an type capacitor is an in which two metal plates arranged in such away so that they are connected in parallel and having some distance between them.
A dielectric medium is must in between these plates help to stop the flow of electric current through it due to its non-conductive nature .
The value of charge force the capacitor is given as:
Q = CV
[tex]\epsilon_0[/tex] is the vacuum permittivity
A is the area of the plates
d is the separation between the plates
The value of capacitance of a parallel-plate capacitor is given by the formula;
[tex]\rm C= \epsilon_0\frac{AV}{d}[/tex]
If all the values are constant then the charge is inversely proportional the distance between the charge.
Hence if the distance is doubled in that condition the value of charge will also half.
d' = 2d
While the voltage V is kept constant. Therefore, the new charge stored in the capacitor will be
[tex]\rm Q'= \frac{Q}{2}[/tex]
Hence option D is right.The amount of charge on the plates is now equal to Q/2.
To learn more about the parallel plate capacitor refer to the link;
https://brainly.com/question/12883102
In the laboratory, you have arranged to have a magnetic field that points north with a strength of 0.1 T and an electric field that points downward with a strength 1.2 × 107 N/C. An electric charge with a magnitude 7×10−9 C passes through the laboratory. The force on the charge due to the electric field is given by F = q E. The force on the charge due to the magnetic field is given by F = q v B, where v is the speed of the particle. The direction of the magnetic force is given by the right-hand rule. Neglect the gravitational force. What direction would the charge have to travel in order for it to pass through the room undeflected? 1. east 2. west 3. south 4. north 5. upward 6. downward
Answer:
Choice 1: The particle shall move eastward as it travels through the room.
The electrical and magnetic force on the particle shall balance no matter whether the charge on the particle is positive or negative.
Explanation:
The question gives the magnitude of the charge on the particle but doesn't say anything about the sign of the charge on the particle. However, it turns out that whether this sign is positive or negative make no difference.
Start by considering the case that the charge on the particle is positive. What will be the direction of the electrical force on the particle?
The direction of an electrical field is same as the direction of electrical force on a particle with a positive charge. The electrical field in this room points downwards, which means that the direction of the electrical force on a positive charge will also point downward.
The particle will deflect downwards if the electrical force is the only force that acts on it. For the particle to go through the room undeflected, the net force on the particle shall be zero. The magnetic force shall balance the downward electrical force. In other words, the magnetic force on the positive particle shall point upwards.
The right-hand grip rule relates the following:
The direction of the nominal current due to a moving charge (in the same direction of the velocity of a positive charge and opposite of that of a negative charge,) The direction of the magnetic field, andThe direction of the magnetic force on the moving charge.Here's how the rule work:
Open the right hand such that all five fingers are in the plane of the palm. Start by pointing all four fingers of the right hand, excepting the thumb, in the direction of the nominal current (again, that's the same as the direction of the velocity of a positive charge and opposite of that of a negative charge.)Rotate the right forearm, such that when the four finger are bent inward 90° out of the palm, they point in the direction of the magnetic field The thumb will now point in the direction of the magnetic force on the moving charge.In this case, the magnetic field points toward the north (to the front). Therefore, when the four fingers are turned by 90° out of the palm, they shall point to the north. The magnetic force points upwards, such that the thumb shall point upward. Now, open the right hand such that the four fingers are in the plane of the palm. The four fingers now point toward the right, which is the same as east. In other words, by the right-hand rule, the conventional current shall point to the east of the room. The particle is assumed to be positive. To generate that eastbound current, the particle shall also move eastwards.
Now, what if the charge on the particle is negative?
The direction of the electrical force on the negative charge will be the opposite as the direction of the electrical field. That is: the electrical force on the particle points upwards.The magnetic force on the particle shall point downwards to balance the electrical force.Apply the right-hand grip rule. Again, the four finger will point towards north (to the front) in the direction of the magnetic field when turned 90° out of the palm. However, the thumb shall point downwards in the direction of the magnetic force. Now, open the palm and the four fingers will point to the left (to the west.) That's the direction of the conventional current. However, the particle is now assumed to be negative. To generate a westbound conventional current, the negative charge needs to move in the opposite direction to the east.In other words, the charged particle shall move towards east no matter whether the charge on the particle is positive or negative.
The jovian moon with the most geologically active surface is
Io is the moon closest to Jupiter and is considered the most geologically active object in the solar system.
This is because very extensive plains rich in sulfur and sulfur dioxide, mountain ranges (mountains with an average height of about 6 km), and many volcanic formations on its surface have been observed.
As for the volcanoes, Io at least has many eruptions more or less continuous, which has very important effects on its topography, since the crust is in a process of constant renewal. This explains why no impact craters have been observed on its surface, as the continuous eruptions and lava flows cover them shortly after they occur.
Io is the jovian moon with the most geologically active surface.
Explanation:The jovian moon with the most geologically active surface is Io. Io is one of Jupiter's moons and is known for its high level of volcanism, exceeding that of Earth. It has a surface scarred by volcanic activity, making it the most volcanically active body in our solar system.
Learn more about Io here:https://brainly.com/question/31930499
#SPJ6
A person travels by car from one city to another with different constant speeds between pairs of cities. She drives for 25.0 min at 95.0 km/h, 16.0 min at 100.0 km/h, and 50.0 min at 40.0 km/h and spends 30.0 min eating lunch and buying gas. Determine the average speed for the trip.
Answer:
49.8 km/h
Explanation:
We can determine the average speed by calculating the total distance covered and the time taken,
- First part of the trip:
v1 = 95.0 km/h = 26.4 m/s
t1 = 25.0 min = 1500 s
Distance covered:
[tex]d_1 = v_1 t_1 = (26.4 m/s)(1500 s)= 39600 m = 39.6 km[/tex]
- Second part of the trip:
v2 = 100.0 km/h = 27.8 m/s
t2 = 16.0 min = 960 s
Distance covered:
[tex]d_2 = v_2 t_2 = (27.8 m/s)(960 s)=26688 m= 26.7 km [/tex]
- Third part of the trip:
v3 = 40.0 km/h = 11.1 m/s
t3 = 50.0 min = 3000 s
Distance covered:
[tex]d_3 = v_3 t_3 = (11.1 m/s)(3000 s)=33300 m = 33.3 km [/tex]
The person also spend 30.0 min without moving:
t4 = 30.0 min = 1800 s
Total distance covered:
[tex]d=d_1 +d_2 +d_3 = 39.6 km +26.7 km + 33.3 km =99.6 km[/tex]
Total time taken:
[tex]t=t_1 +t_2 +t_3+t_4 = 1500 s+ 960 s+ 3000 s+1800 s=7260 s = 2.0 h[/tex]
So, the average speed is
[tex]v=\frac{d}{t}=\frac{99.6 km}{2.0 h}=49.8 km/h[/tex]
How does the image distance (di) of a convex lens compare with the image distance of a concave lens?
A. The image distance of the convex lens is positive, and that of the concave lens is negative.
B. Both are negative for a virtual image.
C. Both are positive for a virtual image
D. The image distance of the convex lens is negative, and that of the concave lens is positive.
Explanation:
Image distance of a mirror is defined as the distance between the optical center and the formed image.
The image formed by a concave lens is virtual always. We can say that the image distance for a concave lens is negative. The convex lens or the converging lens can form both real and virtual images. So, the image distance for a convex lens can be either positive or negative. Generally, the image distance for convex lens is positive.
So, the correct option is (a) " The image distance of the convex lens is positive, and that of the concave lens is negative ".
Answer:
both are negative for a virtual image
Explanation:
How do mechanical and chemical digestion work together to break down food
Answer:
Explanation:
Digestion is the breaking down of food in order to release energy for the body. The body obtains its required nutrients through the process of digestion. In digestion, food is broken down and energy is released.
Mechanical digestion involves the breakage of food into tiny bits. Chemical digestion uses chemicals secreted in the body to completely and finally breakdown food.
Mechanical digestion helps the course of chemical digestion. In mechanical digestion, food is broken down by chewing, cudding, churning e.t.c. Here large chunks of food are broken down into tiny bits. The tiny fragments of food has more surface area than the bulk mass. Increase in surface area makes chemical reactions on food very fast. As the food is being subjected to mechanical breakage, chemical action takes place simultaneously.
The food being broken would then be mixed with chemical substances in the body for proper breakage. Chemical digestion completes the digestive process. Chemically digested food can easily be taken into the blood stream where they are transported to different sites within the body.
Mechanical and chemical digestion work in tandem to break down food into nutrients that our bodies can utilize. Mechanical digestion physically breaks down the food, while chemical digestion uses enzymes to break down the compounds in food. Both processes start in the mouth and continue on through the digestive system.
Explanation:Mechanical and chemical digestion work together to break down food that we consume. Mechanical digestion starts in the mouth where food is physically broken down into smaller pieces through the process of chewing, making the food easier to swallow and increasing the surface area. The stomach further continues this process with its muscular contractions.
Meanwhile, chemical digestion involves the use of various enzymes throughout the digestive system, including in the mouth, stomach, and small intestine, to break down the food's compounds into nutrients that the body can use.
The process starts in the mouth where saliva breaks down carbohydrates, then continues in the stomach where gastric acid breaks down proteins, and finally in the small intestine where enzymes work on fats and remaining carbohydrates and proteins. Together, these two forms of digestion ensure that our bodies can absorb and use the nutrients we eat.
Learn more about Digestion#SPJ6
What accounts for an increase in the temperature of a gas that is kept at constant volume?
A. Energy has been removed as heat from the gas.
B. Energy has been added as heat to the gas.
C. Energy has been removed as work done by the gas.
D. Energy has been added as work done by the gas.
Answer:
B) Energy has been added as heat to the gas
Explanation:
I'm pretty much sure that this is the answer, it's been awhile since I've done thermodynamics but it should be alright.
An increase in the temperature of a gas that is kept at constant volume is because: B. Energy has been added as heat to the gas.
What is heat?Heat is also referred to as thermal energy and it can be defined as a form of energy that is transferred from one physical object to another, especially due to a difference in temperature.
Generally, heat is typically transferred between objects with different degrees of temperature and materials that are directly in contact with each other during the process of heat conduction.
For an ideal gas that is kept at constant volume, there is a change in its temperature because energy has been added as heat.
Read more on heat here: brainly.com/question/12072129
A"car"initially"at"rest"experiences"a" constant"acceleration"along"a"horizontal" road."the"position"of"the"car"at"several" successive"equal"time"intervals"is" illustrated"here. between"which"adjacent"positions"is"the" change"in"kinetic"energy"of"the"car"the" greatest
In the process of peppering the question with those forty (40 !) un-necessary quotation marks, you neglected to actually show us the illustration. So we have no information to describe the adjacent positions, and we're not able to come up with any answer to the question.
Consider the acceleration of an object that is undergoing simple harmonic motion. Is this acceleration zero or nonzero?
Answer:
Non-zero
Explanation:
For a simple harmonic motion, the restoring force is given by
F = -kx (1)
where
k is the spring constant
x is the displacement of the system with respect to the equilibrium position
According to Newton's second law, the acceleration of the system is given by
a = F/m (2)
where
m is the mass of the system
So if we substitute (1) into (2) we find
a = -kx/m
so the acceleration is directly proportional to the displacement. Since the value of the displacement in a simple harmonic motion constantly changes, the acceleration changes as well, so it is non-zero (apart from the instant where the displacement is zero, x = 0, when the acceleration is also zero)
The topics covered by the study of thermodynamics include
a. energy changes during heating.
b. energy changes during chemical reactions.
c. color changes during chemical reactions.
d. Both (a) and (b)
The topics covered by the study of thermodynamics includes energy changes during heating. The correct option is a.
What is thermodynamics?Thermodynamics is the study of science in which heat energy is studied.
Thermodynamics include the laws of thermodynamics, internal energy, heat, work, PV diagrams, enthalpy, Hess's law, entropy, and Gibbs free energy.
Thus, the correct option is a.
Learn more about thermodynamics
https://brainly.com/question/1368306
#SPJ2
During a trial run, race car A starts from rest and accelerates uniformly along a straight level track for a particular interval of time. Race car B also starts from rest and accelerates at the same rate, but for twice the time. At the end of their respective acceleration periods, which of the following statements is true? Car A has traveled a greater distance. Car B has traveled twice as far as A. Car B has traveled four times as far as car A. Both cars have traveled the same distance
Final answer:
Explanation of the distances covered by two cars during acceleration and the comparison of their travel distances at t = 2T.
Explanation:
At the instant t = 2T, the distance between the two cars can be determined by calculating the distances each car covers during the acceleration phase.
Car A: dA = 0.5*A*T2
Car B: dB = 0.5*(A/2)*(2T)2 = 0.5*A*T2
Therefore, at t = 2T, both cars have traveled the same distance, so the statement Both cars have traveled the same distance is true.
What percentage of a lower trophic level's energy flows to the next higher trophic level? A. 1% b. 10% c. 50% d. 100% Please select the best answer from the choices provided A B C D
Answer:
The answer is B; 10%
10 percentage of a lower trophic level's energy flows to the next higher trophic level.
What is meant by trophic level ?The trophic level is defined as the different levels in a food chain or the ecosystem, that consists of the organisms that are having the same functions in the food chain.
Here,
In each trophic levels, the organisms will be having the same nutritional relationship with their primary source of energy in the food chain.
There is a law regarding the energy transfer between the various trophic levels. It is known as the 10% law.
According to the 10% law, a 10 percentage of the energy from each of the lower trophic level is transferred to their higher levels in a food chain.
Even though some amount of energy is lost in the form of heat in the food chain.
Hence,
10 percentage of a lower trophic level's energy flows to the next higher trophic level.
To learn more about trophic level, click:
https://brainly.com/question/13267084
#SPJ5
Which of the following is not a physical property of matter: 1) melting point 2) heat of combustion 3) viscosity 4) boiling point
Answer:
The answer is 2) heat of combustion
Explanation:
An artesian system is present when groundwater __________.
Explanation:
An artesian system is one that connects with an accumulation of water (aquifer) whose surface or level is above the surface of the system or well.
In other words, the upper limit of the aquifer is higher than the opening through which the liquid flows in the artesian well. This has the advantage that the water spreads without needing to be pumped.
It should be noted that its name comes from the region of Artois, France, where in 1126 the oldest well in Europe was drilled with these characteristics.
Therefore:
An artesian system is present when groundwater under pressure rises above the aquifer level.Neither the surface nor the interior of the spherical conductor (map ii) and the neutral conductor (map iii) should be probed
a. True
b. False
It is true that neither the surface nor the interior of a spherical or neutral conductor should be probed. Probing would disrupt the conductor's charge distribution and could alter its electrical properties significantly.
Explanation:The statement is True. Both the spherical conductor and the neutral conductor are safe from being probed. This is because a conductor, whether spherical or neutral, distributes charges over its surface and generates electric fields that extend outward from that surface.
Therefore, introducing a probe to either the surface or the interior would disrupt this charge distribution and alter the properties of the conductor. The surface-charge density could change, leading to a subsequent alteration in the electric field surrounding the conductor. This action could potentially damage the conductor and distort any data being collected. Thus, neither the surface nor the interior of the conductors should ideally be probed.
Learn more about Probing Conductors here:https://brainly.com/question/33178158
#SPJ2
An atom that has gained or lost electrons is called an _
An atom that has gained or lost electrons is called an ion .
Answer:
ion
Explanation:
if a atom gains or loses electrons it is an ion cation are gained electrons and anion are lossed electrons
According to classical physics what should happen as a filament in a light bulb gets hotter?
Answer:
it should give off light of increasing energy from red to violet and than into ultra violate
Explanation:
A filament in a light bulb gets hotter as B.it should give off light of increasing energy from red to violet and than into ultra violate.
Why does the filament get hot?
A typical light bulb contains a thin wire (usual tungsten) called a filament, which has a high electrical resistance. This filament becomes very hot when an electric current flows through it. Due to the high temperature, the filament shines brightly.
Incandescent lamps are common incandescent lamps. It contains a thin coil of wire called a filament. When an electric current flows, it gets hot and emits light. The resistance of the lamp increases as the temperature of the filament rises.
Filament temperatures are very high, usually above 2,000 ºC or 3,600 ºF. For a "standard" 60, 75, or 100-watt bulb, the filament temperature is about 2,550 ºC or about 4,600 ºF. At such high temperatures, the heat radiation from the filament contains a significant amount of visible light.
Learn more about filament here: https://brainly.com/question/1874336
#SPJ2
When the temperature of an ideal gas is increased, what happens to its pressure?
Explanation:
The expression for an Ideal Gas is:
[tex]P.V=n.R.T[/tex]
Where:
[tex]P[/tex] is the pressure of the gas
[tex]n[/tex] the number of moles of gas
[tex]R[/tex] is the gas constant
[tex]T[/tex] is the absolute temperature of the gas
As we can see, there is a direct proportional relation between the temperature and the pressure, which means that if the temperature increases the pressure of the gas increases as well.
What is the ultimate source of energy for most ecosystems
Answer:
The sun
Explanation:
The sun is the only star in our solar system. It provides the ultimate source of energy for all parts of an ecosystem.
Light energy from the sun is used to drive photosynthetic processes. This process in turn provides food for all organism.
The energy of the sun is produced from the fusion of hydrogen nuclides at great temperatures within the sun. The fusion process releases the energy which every part of the solar system needs.
An electrically isolated object is electrically neutral. What is the charge on the object if you remove three electrons?
Answer:
[tex]+4.8\cdot 10^{-19}C[/tex]
Explanation:
The initial charge of the object is zero, since the object is neutral:
Q = 0
When we remove three electrons, we remove a charge of:
[tex]q' = 3 \cdot q_e[/tex]
where
[tex]q_e = 1.6\cdot 10^{-19}C[/tex] is the charge of one electron. Substituting,
[tex]q'=3 \cdot 1.6\cdot 10^{-19}C=-4.8\cdot 10^{-19} C[/tex]
So, the final charge on the initially neutral object will be
[tex]q=Q-q' = 0 - (-4.8\cdot 10^{-19} C)=+4.8\cdot 10^{-19}C[/tex]
which of the following represents a virtual image?
Answer:
A
Explanation:
A virtual image is on the same side as the object, which by convention is drawn on the left side. So -di would represent a virtual image.
A virtual image is formed when light rays from an object appear to diverge behind a lens or mirror, and this image cannot be projected onto a screen. It exists on the same side of the lens or mirror as the object, and it is visible only through the optical device creating it.
Explanation:A virtual image is an image formation where the light rays from an object appear to diverge behind a lens or mirror, but do not physically come together at a point. Due to this, a virtual image is located on the same side of the lens or mirror as the object itself and cannot be projected onto a screen. It's called "virtual" because the light rays seem to emanate from a point behind the mirror or lens, but they don't actually meet there.
For example, when you look in a flat mirror and see your reflection, you're observing a virtual image. Unlike real images, which can be displayed on a screen, virtual images are only visible when looking into the optical device that's creating them.
Additionally, distorted perceptions such as magnification or reduction can occur with virtual images, although these characteristics do not define a virtual image on their own. A camera can capture a virtual image by focusing the light from the image, much like it would focus light from a real object or scene in front of the lens.
Which of the following quantities have the dimensions of a speed?
(1)at (2)at^2 (3) (2ax)^(1/2) (4)((2x)/a)^(1/2)
Dimension of speed =
Other dimension =
Answer:
(1) and (3)
Explanation:
Speed has dimensions of:
m/s (meters per second)
While:
a (acceleration) has dimensions of [tex]m/s^2[/tex]
t (time) has dimensions of [tex]s[/tex]
Let's analyze each option:
(1)at
[tex](m/s^2) \cdot (s) = m/s[/tex] --> this has dimensions of speed
(2)at^2
[tex](m/s^2) \cdot (s)^2 = m[/tex] --> this has dimensions of distance
(3) (2ax)^(1/2)
[tex]\sqrt{(m/s^2)\cdot (m)}=m/s[/tex] --> this has dimensions of speed
(4) ((2x)/a)^(1/2)
[tex]\sqrt{\frac{m}{m/s^2}}=s[/tex] --> this has dimensions of time
So choices (1) and (3) are correct.
The quantities at and (2ax)^(1/2) have dimensions of speed because both, when calculated dimensionally, result in L/T or LT^-1, which is the dimensional representation of speed.
Explanation:The question is asking which of the given quantities have dimensions that could represent speed. The dimension of speed is given by L/T or LT-1, which means length divided by time. Speed itself is defined as the distance traveled over time, or ds/dt. Given that the dimensions provided for s (displacement) are [s] = L, and the dimensions of t (time) are [t] = T, any quantity that has dimensions of L multiplied or divided by T to the power of 1 is dimensionally equivalent to speed.
Using this information, we can analyze the given quantities:
at: Given [a] = LT-2 and [t] = T, at does have dimensions of L, but since [at] = LT-2T = LT-1, it represents speed.at2: Given [a] = LT-2 and [t2] = T2, at2 has dimensions L, but since [at2] = LT-2T2 = LT, it does not represent speed.(2ax)1/2: Given [a] = LT-2 and [x] = L, (2ax) has dimensions L2T-2, so [(2ax)1/2] = (L2T-2)1/2 = LT-1, which represents speed.((2x)/a)1/2: Given [x] = L and [a] = LT-2, (2x/a) has dimensions T2, so [((2x)/a)1/2] = (T2)1/2 = T, which does not represent speed.Therefore, the quantities that have dimensions of a speed are at and (2ax)1/2.
Difference between series and parallel circuits
In series circuits, components are connected in a single path, sharing the same current but dividing the total voltage. In parallel circuits, components are connected across common points, sharing the same voltage but dividing the current.
Series Circuits:
A series circuit consists of a single path for current to flow. This means that all components are connected one after another, like a chain.
In a series circuit, the current (I) is the same through all components because there is no alternative path for it to take. If you were to measure the current at any point in the circuit, you would get the same reading.
The total voltage (V) supplied by the source is divided among the components. The sum of the voltage across each component equals the total voltage supplied by the source. This can be expressed as:
[tex]V_{total[/tex] = V₁ + V₂ + V₃ +...
Parallel Circuits:
Parallel circuits have multiple paths for current to flow. Each component is connected across the same two points (called nodes), meaning that all components share the same voltage.
In a parallel circuit, the voltage (V) across each component is the same and equals the voltage of the source. Thus, each component can operate independently at the same voltage level. This can be expressed as:
V₁ = V₂ = V₃ = [tex]V_{total[/tex]
The total current supplied by the source is the sum of the currents flowing through each branch of the circuit. This can be expressed as:
[tex]I_{total[/tex] = I₁ + I₂ + I₃ +...
A car of mass 960.0 kg accelerates away from an intersection on a horizontal road. When the car speed is 51.1 km/hr (14.2 m/s), the net power which the engine supplies is 3700.0 W (in addition to the extra power required to make up for air resistance and friction). Calculate the acceleration of the car at that time.
Answer:
[tex]0.27 m/s^2[/tex]
Explanation:
The power supplied by the engine is given by
P = Fv
where
F is the force applied
v is the velocity of the car
Here we have
P = 3700 W
v = 14.2 m/s
So we can solve the equation to find the average force:
[tex]F=\frac{P}{v}=\frac{3700 W}{14.2 m/s}=260.6 N[/tex]
The net force applied on the car is also equal to
F = ma
where
m = 960.0 kg is the mass of the car
a is the acceleration
Re-arranging the equation, we find the acceleration:
[tex]a=\frac{F}{m}=\frac{260.6 N}{960.0 kg}=0.27 m/s^2[/tex]
based on the information in the graph why is energy released during the fission of a uranium (U) nucleus?
Answer:
D
Explanation:
Fission is the break of the nuclei of an unstable atom, releasing heat in the process. By the graph shown, U-238 has less average binding energy per nucleon comparing to U-235. Because it has less binding energy, it is more difficult for it to react (it has less energy to release), so it is more stable than U-235.
The product of its fission is the U-235, an isotope that has a small mass than the uranium. So the mass that is lost during fission is converted to the binding energy in the isotope, making it slightly higher (the difference of mass is only 3 amu).
it can take some of those large , industrial vehicles up to ____ feet to stop when traveling only 60 MPH, and therefore , you shoukd be mindful to not be jn the traffic right in front of them
A. 100 feet
B. 200 feet
C. 335 feet
D. 425 feet
Answer:
a 200 feet, and trains go a whole mile even after hitting the brakes
Explanation:
it can take some of those large , industrial vehicles up to 200 feet to stop when traveling only 60 MPH. The correct option is B.
What are industrial vehicles?The vehicles like trucks or loaders transport the raw material or ready machines to the destination. They need to maintain a speed to timely reach the required location.
When these vehicles apply brakes, they will go as far as up to 200feet till they finally stop.
Thus, the correct option is B.
Learn more about industrial vehicles.
https://brainly.com/question/27809646
#SPJ2
Which sentences describe point source pollution? In this type of pollution, the source of the pollution is single and easily identifiable. When runoff water from the melting of snow mixes with debris, it creates pollution. The runoff water, mixed with pollutants, reaches large areas with disastrous effects. Alternatively, when a wastewater treatment plant releases harmful chemicals into a stream, the chemicals pollute the stream water because they are not treated for safety.
Answer:
In this type of pollution, the source and of the pollution, the source of the is single and identifiable.
Explanation:
These sources are regulated by federal and state agencies and include conduit pipes, industrial discharge and sewerage treatment plants that release treated or untreated waste matter in to water bodies. They can therefore possibly be directly controlled by human decision.
Answer:
"In this type of pollution, the source of the pollution is single and easily identifiable." and "Alternatively, when a wastewater treatment plant releases harmful chemicals into a stream, the chemicals pollute the stream water because they are not treated for safety."
Explanation:
Just took the test for PLATO
What is the only possible value of ml for an electron in an s orbital?
Answer:
zeroExplanation:
[tex]m_l[/tex] is the magnetic quantum number.
The only possible value for the magnetic quantum number for an electron in an s orbital is 0.
The first three quantun numbers are:
n: principal quantum number. It may have positive integer values: 1, 2, 3, 4,5, 6, 7, ...[tex]l[/tex] : Azimuthal or angular momentum quantum number. It may have integer values from 0 to n - 1.This quantum number is related to the type (or shape) of the orbital:
For s orbitals [tex]l=0[/tex]
For p orbitals [tex]l=1[/tex]
For d orbitals [tex]l=2[/tex]
For f orbitals [tex]l=3[/tex]
In this case, it is an s orbital, so we have [tex]l=0[/tex].
[tex]m_l[/tex] , the third quantum number can have integer values [tex]{from-l}[/tex] to [tex]{+l}[/tex]Since, for the s orbitals [tex]l=0[/tex] , the only possible value for [tex]{m_l}[/tex] is zero.
The only possible value of the magnetic quantum number (ml) for an electron in an s orbital is 0. This is because s orbitals only have one orientation, therefore the ml value can't be anything other than 0.
Explanation:The magnetic quantum number (ml) for an electron in an s orbital is always 0. The magnetic quantum number is an integer that specifies the orientation of an orbital around the nucleus, and s orbitals only have one possible orientation. This is why the ml value for an s orbital will always be 0. It is not possible for it to have any other value. For example, p orbitals, which have three orientations, can have ml values of -1, 0, or 1.
Learn more about s Orbital here:https://brainly.com/question/13941201
#SPJ12