Answer:
D. The mass number
Explanation:
Isotopes are defined for same atoms
If an atom has same number of protons and same number of electrons but different number of neutrons in it then such pair of atoms is known as isotopes
so we have
same atomic number in all isotopes
since atomic number is same so we can say that total charge of the two atoms must be same
So we will say that since number of neutrons is different in isotopes to sum of neutrons and protons which is known as mass number is different in such pair of atoms
So correct answer is
D. The mass number
The property of the isotopes must be different in "The mass number." The correct answer is D.
Isotopes are atoms of the same element that have the same atomic number (A) and number of protons in their nucleus, but they have different mass numbers (Z). The mass number represents the total number of protons and neutrons in an atom's nucleus. Isotopes of an element have the same number of protons but different numbers of neutrons, which results in different mass numbers.
Let's examine why the other options are not true:
A. The atomic number: The atomic number represents the number of protons in an atom's nucleus. Isotopes of the same element have the same atomic number because they have the same number of protons. So, the atomic number remains constant for isotopes.
B. The electric charge: Electric charge refers to the imbalance of electrons and protons in an atom, which determines its overall charge. Isotopes of the same element have the same number of protons and electrons, thus maintaining the same electric charge.
C. The element name: The element name represents a specific type of atom characterized by a unique number of protons in its nucleus. Isotopes of the same element have the same number of protons, so they share the same element name. The element name does not change for isotopes.
Therefore, the property that must be different for isotopes is the mass number (D).
To learn more about isotopes click:
https://brainly.com/question/20596678
#SPJ6
Based on the graph, how would you describe the motion of the object?
Answer: positive velocity, zero acceleration
Explanation: took that on the test
A 1 kg brick is dropped from a height of 10 m. Calculate the work that has been done on the brick between the moment it is released and the moment when it hits the ground. Neglect air resistance.
The work done on the brick during its fall is exactly the work that was done on it to lift it up to the height of 10m in the first place, AND it's the gravitational potential energy it has while it's up there.
Gravitational Potential Energy = (mass) x (gravity) x (height)
GPE of the brick = (1 kg) x (9.8 m/s²) x (10 m)
GPE = (1 x 9.8 x 10) (kg-m² /s²)
GPE = 98 Joules
From the time it drops off the 10m shelf until it hits the ground, 98 Joules of work is done on it.
What does the work ? Where does that energy come from ?
GRAVITY does the work on the brick !
Work can be defined as the transformation of energy released during the movement of an object when an external force is applied to the object.
The work done by the brick is 98 Joules.
How do you calculate the work done by the brick?Given that the mass m of the brick is 1 kg and it dropped from a height h of 10 m. In this case, gravitational acceleration will be 9.8 m/s. Now to calculate the work done by the brick, we apply the work-energy theorem.
The work-energy theorem states that the work done by all the forces on the object is equivalent to the total change in the kinetic energy during the movement.
Work done by the brick = Work done by gravity + Work done by air resistance
Apply that the air resistance is negligible then,
Work done by the brick = Work done by the gravity
Work Done = [tex]mgh[/tex]
Work = [tex]1\times 9.8\times 10[/tex]
Work = [tex]98 \;\rm J[/tex].
Hence we can conclude that the work done by the brick during the movement is 98 Joules.
To know more about the work, follow the link given below.
https://brainly.com/question/4095205.
How do you know that potassium an alkali metal is highly reactive
Potassium is in the most reactive group of elements, the alkali metals, but it's not the most reactive metal within the group. The alkali metals, Group 1A, are the most reactive metals because they have one valence or outer electron. They lose this electron very easily, forming ions with a charge of +1.
Potassium is known as a highly reactive alkali metal due to its small ionization energy that facilitates the loss of its valence electron to form K+ ions. Its extreme reactivity is also demonstrated when it reacts with oxygen, water, and halogens, often requiring it to be stored under oil to prevent accidental reactions with air or moisture.
We know that potassium is a highly reactive alkali metal due to several characteristics. One of the key reasons for its reactivity is its small ionization energy, which makes it easier for potassium to lose its single outer-shell electron and form [tex]K^+[/tex] ions. This low ionization energy is common among alkali metals, and it allows them to form monocations easily.
Potassium's reactivity is also evident as it must be stored under oil to prevent it from reacting with air. When potassium does react with air, especially oxygen, it can cause a combination reaction that is highly exothermic. A balanced chemical equation representing this reaction with oxygen is [tex]4K + O_2 \rightarrow 2K_2O[/tex].
Furthermore, the reactivity of potassium can be seen when it is placed in water. The reaction is intense enough to produce hydrogen gas and heat, with heavier alkali metals reacting even more violently. The typical reaction with water is shown by the equation [tex]2K + 2H_2O \rightarrow 2KOH + H_2[/tex]. Finally, potassium's reactivity is demonstrated in its reactions with halogens, which are typically very exothermic and even violent.
In a cricket match, the 0.16kg ball is bowled with a straight arm. During one particular delivery, the ball leaves the bowler's hand horizontally, with a speed relative to the ground of 80.8 mph. The bowler's arm is 0.64 m long and the bowler is running at 10.0 mph when the ball is released.
Calculate the centripetal force exerted on the ball in the bowler's hand, in N.
Note: 1 mph = 0.447 ms^-1.
Answer:
412.1 N
Explanation:
First of all let's calculate the total speed of the ball as it is released, which is equal to the speed of the ball + the speed of the bowler:
[tex]v=80.8 mph +10.0 mph=90.8 mph[/tex]
Now let's convert it into m/s. We know that
[tex]1 mph = 0.447 m/s[/tex]
So
[tex]1 mph:0.447 m/s = 90.8 mph:v\\v=\frac{(0.447 m/s)(90.8 mph)}{1 mph}=40.6 m/s[/tex]
And now we can calculate the centripetal force, which is given by:
[tex]F=m\frac{v^2}{r}[/tex]
where
m = 0.16 kg is the mass of the ball
v = 40.6 m/s is the speed of the ball
r = 0.64 m is the radius of the circular path (equal to the length of the bowler's arm)
Substituting:
[tex]F=(0.16 kg)\frac{(40.6 m/s)^2}{0.64 m}=412.1 N[/tex]
A scientist wants to publish a report on a general feeding habits of a moose in Canada. He should
A scientist wants to publish a report on a general feeding habits of a moose in Canada. He should observe as many moose as he can in as many locations as possible.
What is scientific observation?In science, observation is vital. Scientists gather and record data through observation, which allows them to create and subsequently test ideas and hypotheses. Scientists can observe in many different ways, including using their own senses or instruments like telescopes, thermometers, satellites, or stethoscopes.
These instruments enable more accurate and precise observations. Tools can also be used to collect data about subjects we can't directly experience, like deep space.
To publish a report on a general feeding habits of a moose in Canada, the scientist should observe as many moose as he can in as many locations as possible.
Learn more about observation here:
https://brainly.com/question/28041973
#SPJ6
Which of the following is a meander that has been cut off from a river?
A)Coastline
B)Gully
C)Oxbow lake
D)Stream
Answer:
oxbow lake
Mark as brainliest, please!?
Explanation:
If an object doubles in mass, what happens to its momentum? Explain why.
how much work is done if an object moves 4.5 m in has 12 Newtons of force acting on it
Given Data:
Displacement of objects (s) = 4.5m,
Force applied (F) = 12 N,
Work done (W)=?
Work is defined as an effort done in order to achieve the result. In this case an effort done to move the object to certain distance.
Mathematically, From Joules law, W = Force × displacement
W = 12×4.5
= 54 J
If an object weighs 300 N on earth, what is it’s mass on the moon?
Answer:
The mass of the object on the Moon (and anywhere else) is about 30.61kg. Please see more detail below.
Explanation:
Weight is the gravitational force exerted on the object and is a function of mass and gravitational acceleration:
(weight) = (mass) x (gravitational acceleration)
We are to find the mass, knowing the weight on Earth to be 300N:
(mass) = (weight on Earth) / (gravitational acceleration on Earth) = 300N / 9.8 m/s^2 = 30.61 kg
The mass of the object is 30.61kg.
The mass of the object is independent of gravity. Therefore the answer to the question "What is its mass on the Moon" is 30.61kg.
If the question were what is its weight on the Moon, the answer would be
(weight on Moon) = (mass) x (grav.accel. on Moon) = 30.61kg x 1.62 m/s^2 = 49.59N
which is about 1/6 of the object's weight on the Earth.
What standard of measurement do most countries use and discuss why such a standard is beneficial
I mean i guess its the metric system?
The metric system (International System of Units, SI) is the standard of measurement used by most countries and the scientific community because it simplifies calculations, ensures accurate data comparison, and supports global collaboration in science.
Explanation:The standard of measurement most countries and the scientific community use is the metric system, also known as the International System of Units (SI system). Unlike the United States, which uses the Imperial system, the metric system is universally accepted in scientific reports and research due to its simplicity and global standardization. This system is especially crucial in sciences, as it provides a 'standard language of measurement' that ensures scientists worldwide are on the same page when it comes to analyzing data and conducting experiments.
The metric system's base-ten structure simplifies calculations and conversions, making it more efficient and easier to understand than the Imperial system.Standardized measurements allow for accurate comparison of experimental data across different laboratories globally.Adapting a universal standard like the SI system supports the exchange of scientific information and collaboration among researchers from various countries.In contexts ranging from gas pumps to scientific labs, standardized measurement ensures consistency, reliability, and global understanding. Changes in the definitions of standard units of measurement reflect the dynamic nature of science and the evolving technological landscape, necessitating periodic updates to maintain accuracy and relevance in scientific discoveries.
The widespread adoption of the metric system enhances global communication in science, thus accelerating technological advancements and scientific progress. This unified approach to measurement not only facilitates international trade and commerce but also supports educational and research endeavors by providing a consistent framework for learning and discovery.
Imagine a car traveling in a straight line with the cruise control engaged. This means that the vehicle is moving with a constant speed, more specifically, constant velocity (speed and direction). This situation can be equated to a falling object at terminal velocity, where the falling speed reaches its maximum point, CANNOT increase.
Considering the car traveling at cruise control described above, the forces are balanced and therefore the net force is zero.
After reading through all of the above, I don't find a question that needs to be answered.
But I just want to say:
Yep. Uh huh. Fer sher. You are true. Words of higher veracity are unlikely to be found. Every word of that scenario and its description is accurate, and cannot be debated or disputed in any wise.
What's more, I agree, and I thank you for the points.
Dan bikes 10 km west and then bikes another 5 km west. What is dans velocity if it takes 45 minutes
Dan's velocity is calculated by dividing his total displacement of 15 km west by the total time of 45 minutes, which is equivalent to 0.75 hours, hence his velocity is 20 km/h west.
Explanation:The student asks about Dan's velocity after biking 10 km west and then another 5 km west in a total time of 45 minutes. To find the average velocity, we need to calculate the total displacement over the total time. Since Dan's travel direction is consistent (west), the total displacement is simply the sum of the two distances. So, his displacement is 10 km + 5 km = 15 km west. To get the velocity, we divide the displacement by the time in hours. First, we convert 45 minutes into hours by dividing by 60, which gives us 0.75 hours. Hence, Dan's velocity is 15 km / 0.75 h = 20 km/h west.
Very light items remain on the surface of water because of surface currents.
True or false
False.
This is the principle of Archimedes: A body introduced into a liquid is pushed from the bottom up with a force equal to the weight of the liquid displaced by the body.
the correct answer is false
What is the most important safety rule to remember during lab activities? Wear gloves, goggles, and protective clothing. Follow your teacher's instructions and the textbook directions exactly. Read the entire procedure before beginning your experiment. Thoroughly wash your hands after every scientific activity.
Answer: Option (a) is the correct answer.
Explanation:
When we perform in a laboratory then it is necessary to follow the instructions of the teacher and safety measures thoroughly so that any accident will not lead to any type of serious injury.
But if sometimes the teacher in not around you while performing the experiment then the basic safety measure to be followed is to wear gloves, goggles, and protective clothing.
Therefore, we can conclude that the most important safety rule to remember during lab activities is wear gloves, goggles, and protective clothing.
A baseball with a mass of 0.15 kilograms collides with a bat at a speed of 40 meters/second. The duration of the collision is 8.0 × 10-3 seconds. The ball moves off with a speed of 50 meters/second in the opposite direction. What is the value of the force?
Answer: 1687.5 N
Explanation:
From the second law of motion given by Newton, Force is the rate change of momentum.
[tex]F = \frac{dp}{dt}=\frac {m dv}{dt} = \frac{m (v_f-v_i)}{dt}[/tex]
Mass of the baseball, m = 0.15 kg
Initial velocity, [tex]v_i=-40 m/s[/tex] (negative because direction of initial velocity is opposite to the final velocity)
Final velocity, [tex]v_f=50 m/s[/tex]
The duration of collision, [tex]dt= 8.0 \times 10^{-3} s[/tex]
Force, [tex] F = \frac{0.15 kg (50-(-40) m/s)}{8.0 \times 10^{-3} s}=1687.5 N[/tex]
Hence, the value of force is 1687.5 N.
Answer:
Not sure but dont choose C .
1.3×10^3 Newtons
Explanation:
I cant find the answer anywhere but its not C so at least that gets rid of one of the options <3 (its probably not A either bc i feel like thats the closest to the other guys answer and it was rated poorly but choose at ur own risk)
A car has a mass of 2,000kg and is traveling at 28 meters per second what is the car's kinetic energy
The K.E. of car will be "784000 J".
Given values are:
Mass,
2000 kgVelocity,
v = 28 m/s→ The Kinetic energy will be:
= [tex]\frac{1}{2} mv^2[/tex]
By putting the values, we get
= [tex]\frac{1}{2}\times 2000\times (28)^2[/tex]
= [tex]\frac{1}{2}\times 2000\times 784[/tex]
= [tex]2000\times 392[/tex]
= [tex]784000 \ J[/tex]
Thus the above answer is correct.
Learn more:
https://brainly.com/question/2526808
The car's kinetic energy is calculated using the formula KE = (1/2)mv², yielding a result of 784,000 joules (J), with a mass of 2,000 kg and velocity of 28 m/s.
Explanation:To calculate the kinetic energy of a car, we can use the formula for kinetic energy (KE), which is KE = (1/2)mv², where m is mass and v is velocity. In this case, the mass (m) is 2,000 kg and the velocity (v) is 28 meters per second.
Now, let's plug in the values:
KE = (1/2) × 2000 kg × (28 m/s)²
KE = (1/2) × 2000 kg × 784 m²/s²
KE = 1000 kg × 784 m²/s²
KE = 784,000 kg·m²/s² = 784,000 J
Therefore, the car's kinetic energy is 784,000 joules (J).
Learn more about Kinetic Energy here:https://brainly.com/question/32833131
#SPJ3
WILL NAME BRAINLIEST !!
A crane has a large brick attached to its hook. Two forces are acting on the brick, as shown below.
Which of the following statements is true?
A.
The forces acting on the brick are balanced.
B.
An unbalanced force is acting on the brick.
C.
The brick is at rest.
D.
A net force of 5 newtons is pulling the brick upward.
the answer is a unbalanced force is acting on the brick
Answer:
B). An unbalanced force is acting on the brick.
Explanation:
Here as we can see the given figure there are two forces acting on the block
1. [tex]F_1 = 7,205 N[/tex] Upwards
2. [tex]F_2 = 7,210 N[/tex] Downwards
so here as we can see that force downwards is more in magnitude while upward force is less.
So here since downward force is more so the box will accelerate downwards and net force is given as
[tex]F_{net} = F_2 - F_1[/tex]
[tex]F_{net} = 7210 - 7205 = 5 N[/tex]
so here net force on this box is 5 N downwards and since there is unbalanced force on the box so box can not remains at rest.
Is it possible for the gravitational force between two 50-kg objects to be less than the gravitational force between a 50 kg object and a 5 kg object? Explain.
The gravitational force between two objects depends on both their masses and the distance between them. It is possible for the gravitational force between two like masses to be less than that between unequal masses if the like masses are farther apart.
The question asks whether it's possible for the gravitational force between two 50-kg objects to be less than the gravitational force between a 50 kg object and a 5 kg object. The answer to this depends on the distance between the objects, because the gravitational force is directly proportional to the mass of the objects and inversely proportional to the square of the distance between them, according to Newton's Law of Universal Gravitation. So, if the distance between the two 50-kg objects is significantly larger than between the 50 kg and 5 kg objects, then the gravitational force between the 50-kg pair could indeed be less.
Newton's law of Universal Gravitation equation is:
F = G * (m1 * m2) / r²
Where F is the force of gravity, G is the gravitational constant, m1 and m2 are the masses of the two objects, and r is the distance between the centers of the two masses.
Therefore, if the two 50-kg objects are far apart, the r value in the equation will be large, reducing the value of F, the gravitational force. Meanwhile, if the 50 kg and 5 kg objects are very close, the r value will be smaller, and the force F could be larger despite the smaller mass of one of the objects.
The pot shown in the picture is made of two different metals. Why is the handle made of a different metal than the rest of the pot? A) The handle needed to be made out of a material that would not melt. B) The metal that the pot is made out of is too weak to make the handle. C) It would have been too expensive to make the handle out of the same metal. D) The metal in the handle can absorb more energy without changing temperature as easily as the metal in the pot.
Generally the metal of container is made up of such material that it will absorb heat and distribute it on the surface so that the temperature can rise and it will help to cook the food
But the handle of the container is used to hold it and we need not its temperature to be vary high so the handle must be made up of different material which will not absorb too much heat and its temperature will not rise to high value so that we can hold it easily
so here most appropriate option is given as
D) The metal in the handle can absorb more energy without changing temperature as easily as the metal in the pot.
Answer:
D) The metal in the handle can absorb more energy without changing temperature as easily as the metal in the pot.
how is high temperature achieved by concave mirror?
A concave mirror is used in the design of solar furnaces because they converge the parallel sunrays at a point. This helps to increase the temperature of the furnace.
Answer:
Because "a concave mirror converge the parallel sun rays at a point, so high temperature is achieved"
Example:
It is used in the design of solar furnaces, because they converge the parallel sun rays at a point. This helps to increase the temperature of the furnace.
a young man exerted a force of 900 newtons for 10 seconds to push his car that had ran out of gas. however he could not get the car to move. how much work did he do?
A-9000 joules
B-9000 watts
C-90 joules
D-90 watts
E-no work was done
Work done is defined as product of force and displacement of point of application of force.
So here we will have
[tex]W = F.d[/tex]
now since here after applying the force the car is not displaced from its position
So here we have
d = 0
so work done is given as
[tex]W = 900 \times 0 = 0[/tex]
so there is no work done in this case
When light passes straight through an object it is called
I believe the answer is transmission
When light passes straight through an object, it's called transmission. This occurs within the field of geometric optics, where light paths are modeled as straight lines or rays. These rays can change direction, or refract, when they interact with different materials.
Explanation:When light passes straight through an object, it is called transmission. This is a part of the field known as geometric optics, which describes the path of light using geometry and simple trigonometry. In this field, light is modelled as straight lines, also known as rays, which may change direction when they interact with objects or transition between different media, a phenomenon known as refraction.
The laws that govern these changes in direction are the law of reflection, where light bounces off an object, and the law of refraction, where light passes through an object.
Transmission, the process in which light travels without being absorbed or reflected, is fundamental in optics. You might visualize the path of light as observable in laser beams, which is especially clear in a straight, unobstructed path.
Learn more about Transmission of Light here:https://brainly.com/question/3080788
#SPJ3
A frame hanging on a wall is held by two cables. The tension in each cable is 30 N, and the cables make an angle of 45° with the horizontal, as shown in the picture. What is the weight of the frame?
A) 10.2 N
B) 21.2 N
C) 32.4 N
D) 42.4 N
Answer: This is wrong The correct answer is 42.4 N
Explanation: I took the USA TESTPREP
OPTION D. The weight of the frame is determined by the upward force the two cables exert to keep it in equilibrium. Each cable exerts a vertical force of 21.2 N, totaling to 42.4 N. Thereby, the weight of the frame is 42.4 N.
Explanation:This problem can be solved using the principle of forces in equilibrium. If the frame is at rest and not falling, the resultant force is zero, meaning the upward forces equal the downward forces. The tension force in the cable has components parallel and perpendicular to the direction of gravity. We only need to consider the vertical component as that is the direction of the weight of the frame.
The vertical component of the tension in one cable is given by Tsinθ = 30N * sin(45°) = 21.2 N. Since there are two cables, the total upward force is 2 * 21.2 N = 42.4 N. This equals the downward force, i.e. the weight of the frame, which is therefore 42.4 N. So, the correct answer is D).
Learn more about forces in equilibrium here:https://brainly.com/question/30916838
#SPJ3
A cart has a mass of 2.0 Kg and moves at a constant speed of 4.0 m/s. What is the kinetic energy?
Answer:
The kinetic energy is 16 Joules.
Explanation:
Use the formula for the kinetic energy:
[tex]E_k=\frac{1}{2}mv^2 = \frac{1}{2}2.0kg\cdot 4.0^2 \frac{m^2}{s^2}=16J[/tex]
Which of these is a risk associated with texting?
Can you provide the answers please :)
Why is Pluto eliminated from the solar system?
Answer:
Pluto was not considered a planet because of how small it was, therefore Pluto was removed from the solar system.
Imagine That the tank is filled with water. The height of the liquid Collin is 7 m and the area is 1.5 m² what’s the force of gravity acting on the column of water
== The volume of water in the tank is (1.5 m²) x (7 m) = 10.5 m³ .
== The density of water is 1000 kg / m³ .
== The mass of water in the tank is (10.5 m³) x (1000 kg/m³) = 10,500 kg.
== The force of gravity is (mass?) x (gravity)
force = (10,500 kg) x (9.8 m/s²)
force = 102,900 Newtons
Answer: 102,900 N
I remember this question from one of my, test. Really hope this helps..
an airplane travels at a speed of 90 m/s for 30 minutes. how far does it travel?
When your engine is running, the battery is
Answer:
When the engine is running, the alternator keeps the battery charged and electrical system going. If the electrical system performs erratically battery will discharge.
According to Newton’s second law of motion when an object is acted on by an unbalanced force how will that object respond
according to newton's second law , the net force on an object is the product of mass and the acceleration of the object. The formula is given as
[tex]F_{net}[/tex] = m a
where m = mass of the object and a = acceleration of the object.
when an unbalanced force acts on an object , there is a net force acting on the object and hence the object accelerate as a result.
hence the object accelerate in the direction of net force.