Which electron dot diagram shows the bonding between 2 chlorine atoms?
If an electron gains energy what may happen to it
When an electron gains energy, it can move to a higher energy level (excited state). The energy was provided by an external source like a photon. When the electron returns to its initial state (ground state), it releases this acquired energy, usually in the form of a photon.
Explanation:When an electron gains energy, it can move to an orbit with a higher energy level, a state referred to as an excited electronic state. This transition happens when an atom absorbs sufficient energy from an external source, such as a photon. According to the law of conservation of energy, the same amount of energy absorbed to excite the electron will be emitted when the electron returns to its initial state, usually in the form of a photon.
For instance, in Bohr's model of the atom, if the electron absorbs enough energy, it may move to an orbit farther from the nucleus, which requires additional energy. This energy can be obtained by absorbing electromagnetic radiation coming in contact with the atom.
When an electron transitions back to a less excited state or ground state, it emits energy in the form of electromagnetic radiation, like light or a photon, depending on the energy difference between the high and low energy state.
Learn more about Electron Energy Transition here:https://brainly.com/question/35278952
#SPJ12
When the salinity of a seawater sample changes, the ratio of the major salt ions does not change?
If a weak acid is 25% deprotonated at ph 4, what is the pka?if a weak acid is 25% deprotonated at ph 4, what is the pka?
Answer:
pKa = 4.5
Explanation:
The weak acid can be represented by the general formula, HA and the dissociation equilibrium given as:
[tex]HA \rightleftharpoons H^{+}+A^{-}[/tex]
where HA = protonated form
A- = deprotonated form
The Henderson-Hasselbalch equation relates the pH of a solution to the ratio of the concentrations of HA and A- as;
[tex]pH = pKa + log\frac{[A-]]}{[HA]]}-----(1)[/tex]
It is given that:
% deprotonated i.e. A- = 25%
Therefore, %protonated i.e. HA = 100 -25 = 75%
pH = 4
Based on equation (1)
[tex]4 = pKa + log\frac{[25]]}{[75]]} = pKa-0.477[/tex]
pKa = 4.477 i.e. around 4.5
The pKa of the weak acid is 5.07
Data;
pH = 4α = 25% = 0.25For Weak AcidsThe dissociation constant is given as
[tex]K_a = \frac{c\alpha ^2}{1-\alpha }\\[/tex]
The concentration of the acid can be calculated as
[tex]pH = -log [H^+]\\\\H^+ = 10^-^4\\H^+ = 1*10^-4M[/tex]
substitute the values into the equation above
[tex]Ka = \frac{1.0*10^-^4*0.25^2}{1-0.25}\\Ka = 8.33*10^-^6\\[/tex]
The pKa is calculated as
[tex]pKa = -logKa \\pKa = -log(8.33*10^-6)\\pKa = 5.07[/tex]
From the calculation above, the pKa of the weak acid is 5.07
Learn more on acid dissociation constant here;
https://brainly.com/question/10710178
A mixture of ethyl iodide (c2h5i, bp 72.3°c) and water boils at 63.7°c. what weight of ethyl iodide would be carried over by 1 g of steam during steam distillation?
You only need to know first is the vapor pressure of water at that boiling point which is ~ 179 mm hg.
So the (vapor pressure of C2H5I = 760 – 179)
And since you know the molecular weight of H2O which is equal to18 g/mol and the molecular weight of C2H5I = 156 g/mol.
Just apply the equation:
grams H2O M.W. H2O ×
P H2O
---------------------- =
-------------------------- = 28.13 grams C2H5I
grams C2H5I M.W. C2H5I
× P C2H5I
To determine the weight of ethyl iodide carried over by 1 g of steam during steam distillation, we need to calculate the mole fraction of ethyl iodide in the mixture and multiply it by the weight of the steam.
Explanation:The boiling point of a solution can be determined using Raoult's law, which states that the vapor pressure of a solvent above a solution is equal to the product of the mole fraction of the solvent and the vapor pressure of the pure solvent. In this case, we are looking for the weight of ethyl iodide carried over by 1 g of steam during steam distillation. Since the mixture of ethyl iodide and water boils at 63.7°C, we know that the vapor pressure of ethyl iodide at 63.7°C is equal to the vapor pressure of steam at that temperature.
To determine the weight of ethyl iodide carried over by 1 g of steam, we need to calculate the mole fraction of ethyl iodide in the mixture. We can use the equation:
mole fraction of ethyl iodide = weight of ethyl iodide / weight of ethyl iodide + weight of water
Once we have the mole fraction of ethyl iodide, we can multiply it by the total weight of the steam (1 g) to find the weight of ethyl iodide carried over.
How many moles of carbon monoxide are there in 36.55 g of carbon monoxide?
You can find moles of a substance by dividing mass by the molecules molar mass.
Explanation:Carbon Monoxides Molar mass is 12.0111 (Carbon) + 16.0000 (Oxygen) = 28.0111g/mol. Divide grams by molar mass:
36.55g28.0111=1.305mols
The number of moles of carbon monoxide in 36.55 g can be calculated using the formula of number of moles = mass / molar mass. Applying this formula with the molar mass of carbon monoxide, you will find that there are approximately 1.305 moles of carbon monoxide in 36.55 g.
Explanation:To find the number of moles in a given mass of a substance, we can use the formula: number of moles = mass of the substance / molar mass of the substance. The molar mass of carbon monoxide (CO) is approximately 28.01 g/mol, which is the sum of the atomic masses of carbon (12.01 g/mol) and oxygen (16.00 g/mol).
Now, plug the given mass of carbon monoxide into the formula: number of moles = 36.55 g / 28.01 g/mol. Solving this calculation, you will find that there is approximately 1.305 moles of carbon monoxide in 36.55 g.
Learn more about Mole Calculation here:https://brainly.com/question/35158407
#SPJ12
PLEASE HELP ME ILL GIVE YOU A LOT OF POINTS
The volume of water in a graduated cylinder is 8.0 cm^3. The volume changes to 10.5 cm^3. when a 6.50 g sample of a substance is lowered into the cylinder. What is the density of the substance?
The density of the substance is found by dividing its mass by its volume. The volume of the substance is determined by the change in the water level in a graduated cylinder when the substance is added. The calculated density of the substance is 2.6 g/cm³.
Explanation:The density of a substance can be calculated by using the formula: Density = Mass / Volume. In this case, the volume of the substance can be determined by the change in water level in the graduated cylinder when the substance is added. The initial volume is 8.0 cm³, and the final volume is 10.5 cm³. So, the volume of the substance is the difference between the two volumes, which is 2.5 cm³.
The mass of the substance is given as 6.50 g. Now, we can substitute the mass and volume into the formula to find the density: Density = 6.50 g / 2.5 cm³ = 2.6 g/cm³. So, the density of the substance is 2.6 g/cm^3.
Learn more about Density here:https://brainly.com/question/29775886
#SPJ11
Tartaric acid is the white, powdery substance that coats sour candies such as sour patch kids. combustion analysis of a 12.01-g sample of tartaric acid-which contains only carbon, hydrogen, and oxygen-produced 14.08 g co2 and 4.32 g h2o. empirical formula
First we calculate the mass of carbon, hydrogen and oxygen.
Mass of Carbon;
Molar mass of CO₂ is 44.009g/mol and molar mass of C = 12.011 g/mol
Mass of Carbon in 14.08g CO2₂ = 12.011/44.009 x 14.08 = 3.84
Mass Hydrogen;
Molar mass H₂O is 18.0015g/mol and molar mass of H is 1.008and H₂ = 2.016
Mass Hydrogen in 4.32g of H₂O = 2.016/18.0015 x 4.32 = 0.48
Mass of Oxygen
= total mas of tartaric acid – (mass of carbon + mass of hydrogen) = 12.01 -
(3.84+0.48) = 7.69
Now divide carbon, hydrogen and oxygen through
their respective atomic masses:
C = 3.84/12.011 = 0.32
H = 0.48/1.008 = 0.48
O = 7.69/15.999 = 0.48
Now divide by smallest:
C = 0.32/0.32 = 1
H = 0.48/0.32 = 1.5
O = 0.48/0.32 = 1.5
multiply by 2 to get whole integers:
C = 1 x 2 = 2
H= 1.5 x 2 = 3
O= 1.5 x 2 = 3
Thus, the Empirical formula of tartaric acid =
C₂H₃O₃
The empirical formula for tartaric acid is C₂H₃O₃.
First, let's summarize the problem: A 12.01-g sample of tartaric acid produces 14.08 g of CO₂ and 4.32 g of H₂O upon combustion.
1. Calculate the moles of carbon in CO₂.
Mass of CO₂ produced: 14.08 g.
Molar mass of CO₂: 44.01 g/mol.
Moles of CO₂: 14.08 g / 44.01 g/mol = 0.320 mol CO₂.
Moles of C in CO₂: 0.320 mol × 1 mol C / 1 mol CO₂ = 0.320 mol C.
2. Calculate the moles of hydrogen in H₂O.
Mass of H₂O produced: 4.32 g.
Molar mass of H₂O: 18.02 g/mol.
Moles of H₂O: 4.32 g / 18.02 g/mol = 0.240 mol H₂O.
Moles of H in H₂O: 0.240 mol × 2 mol H / 1 mol H₂O = 0.480 mol H.
3. Calculate the mass of carbon and hydrogen in the original sample.
Mass of C: 0.320 mol × 12.01 g/mol = 3.84 g.
Mass of H: 0.480 mol × 1.008 g/mol = 0.48 g.
4. Determine the mass and moles of oxygen in the original sample.
Mass of O: Total mass - (mass of C + mass of H) = 12.01 g - (3.84 g + 0.48 g) = 7.69 g.
Moles of O: 7.69 g / 16.00 g/mol = 0.481 mol O.
5. Determine the empirical formula by finding the simplest whole number ratio.
Ratio of atoms: C = 0.320 mol, H = 0.480 mol, O = 0.481 mol.
Simplest ratio: Divide by the smallest number of moles (0.320).
C: 0.320 / 0.320 = 1, H: 0.480 / 0.320 = 1.5, O: 0.481 / 0.320 = 1.5.
Multiply by 2 to get whole numbers: C₂H₃O₃. This is the empirical formula.
Thus, the empirical formula of tartaric acid is C₂H₃O₃.
Complete question:
Tartaric acid is the white, powdery substance that coats sour candies such as sour patch kids. combustion analysis of a 12.01-g sample of tartaric acid-which contains only carbon, hydrogen, and oxygen-produced 14.08 g co2 and 4.32 g h2o. Find the empirical formula for tartaric acid.
the elements that contain electrons in an F sublevel near the highest occupied energy level are referred to as?
A. Alkali metals
B. Alkali earth metals
C. transition metals
D. inner transmission levels
inner transition metals is your answer
The elements that contain electrons in an F sublevel near the highest occupied energy level are referred to as inner transition elements. Thus option D is correct.
What are orbitals?Orbitals are energy levels or regions in an atom where, there is a possibility of finding electrons. Electrons are filled in various orbitals from lower energy levels to higher energy levels.
There are 4 different orbitals namely s, p , d and f. Based on the energy level they can 1s, 2s, 2p, 3p and so on. The elements in periodic table are classified into 4 different blocks based on the orbitals of valence electrons.
If the valence electrons are filled in s orbital they are s-block elements containing metals and if they are filled in p orbital are p-block elements containing non metals.
Elements whose valence electrons fall in d-orbital are called d-block elements or transition metals and those having valence electrons in f orbital are f-block elements and they are called as inner transition elements.
To find more on inner transition metals, refer here:
https://brainly.com/question/2188503
#SPJ6
What does pure substance mean in chemistry?
What is the molar mass of iron (III) oxide (Fe2O3)
159.7 is the correct answer.
You carefully weigh out 11.00 g of caco3 powder and add it to 44.55 g of hcl solution. you notice bubbles as a reaction takes place. you then weigh the resulting solution and find that it has a mass of 51.04 g . the relevant equation is caco3(s)+2hcl(aq)âh2o(l)+co2(g)+cacl2(aq) assuming no other reactions take place, what mass of co2 was produced in this reaction?
The mass of CO2 produced in the reaction is 17.596 g
Explanation:The balanced equation for the reaction is:
CaCO3(s) + 2HCl(aq) → H2O(l) + CO2(g) + CaCl2(aq)
To find the mass of CO2 produced, we need to determine the mass of CaCO3 that reacted.
Given that the initial mass of CaCO3 is 11.00 g and the final mass of the solution is 51.04 g, the mass of CaCO3 that reacted is:
Final mass - Initial mass = 51.04 g - 11.00 g = 40.04 g
Since the molar mass of CaCO3 is 100.09 g/mol, we can calculate the moles of CaCO3 that reacted:
Moles = Mass / Molar mass = 40.04 g / 100.09 g/mol = 0.3998 mol
From the balanced equation, we can see that 1 mole of CaCO3 produces 1 mole of CO2. Therefore, the mass of CO2 produced is:
Mass = Moles × Molar mass = 0.3998 mol × 44.01 g/mol = 17.596 g
So, 17.596 g of CO2 was produced in this reaction.
Learn more about Mass of CO2 produced in reaction here:https://brainly.com/question/31973683
#SPJ3
Calculate the mass percentages of carbon hydrogen and oxygen in sucrose
Final answer:
The mass percentages of carbon, hydrogen, and oxygen in sucrose (C12H22O11) are approximately 42.11%, 6.48%, and 51.41%, respectively, calculated by determining the molar mass of sucrose and using the molar masses of the individual elements.
Explanation:
To calculate the mass percentages of carbon (C), hydrogen (H), and oxygen (O) in sucrose (C12H22O11), we first need to determine the molar mass of sucrose by summing the molar masses of its constituent elements. The molar masses are 12.01 g/mol for carbon, 1.008 g/mol for hydrogen, and 16.00 g/mol for oxygen.
The molar mass of sucrose is calculated as follows:
Carbon: 12 atoms × 12.01 g/mol = 144.12 g/molHydrogen: 22 atoms × 1.008 g/mol = 22.176 g/molOxygen: 11 atoms × 16.00 g/mol = 176.00 g/molTotal molar mass = 144.12 g/mol + 22.176 g/mol + 176.00 g/mol = 342.296 g/mol
Next, we calculate the mass percentage for each element:
Carbon: (144.12 g/mol / 342.296 g/mol) × 100% = 42.11%Hydrogen: (22.176 g/mol / 342.296 g/mol) × 100% = 6.48%Oxygen: (176.00 g/mol / 342.296 g/mol) × 100% = 51.41%Therefore, the mass percentages in sucrose are approximately 42.11% carbon, 6.48% hydrogen, and 51.41% oxygen.
Explain how a skateboard resting on the ground contains energy. If the skateboard were moving , would it have more energy than it did at rest? Explain.
A handbook gives the density of calcium as 1.54 g/cm3. based on lab measurements, what is the percentage error of a density calculation of 1.25 g/cm3? 37. what is the percentage error of a length measurement of 0.229 cm if the correct value is 0.225 cm?
Percentage error is a measure of the accuracy of a measurement or calculation, expressed as a percentage relative to the true or accepted value.
Percentage error = ( Experimental value − True value / True value ) × 100 %
a) Percentage Error of Density Calculation:
Experimental Density = 1.25 g/cm³
True Density = 1.54 g/cm³
Percentage Error= ∣ 1.25−1.54 / 1.54 ∣ × 100 %
≈ 18.83 %
b) Percentage Error of Length Measurement:
Given:
Experimental Length = 0.229 cm
True Length = 0.225 cm
Percentage Error= ∣ 0.229 − 0.225 cm / 0.225 cm ∣ × 100 %
= 1.78 %
Therefore, The percentage error in density is 18.83 % and percentage error in length measurement is 1.78 %
Learn more about Error, refer to the link:
https://brainly.com/question/32973245
#SPJ12
Describe how functional groups affect an organic molecule's' chemical reactivity
Gaseous vapor observed when handling dry ice (solid co_2 2 ) physical or chemical
Handling dry ice (solid CO₂) and observing gaseous vapor is a physical change called sublimation, where the substance directly transitions from the solid state to the gaseous state without passing through the liquid phase.
Explanation:The observation of gaseous vapor when handling dry ice (solid CO₂) is a physical change. This is because when dry ice is handled, it bypasses the liquid phase and directly transitions from the solid state to the gaseous state through a process called sublimation. Sublimation is a physical change where a substance converts from a solid to a gas without going through the liquid phase. This is similar to how snow and ice can sublime into water vapor without melting into liquid water.
Learn more about Sublimation here:https://brainly.com/question/35992063
#SPJ12
What effect does a solute have on the freezing and boiling points of the solution?
A dissolved solute raises the boiling point of a solvent.
Which of the following is NOT made up of atoms
Answer:
i think the answer choices is
A-Heat
B-A Gas
C-A cell
D-A solid
Explanation:
A certain ore is 32.6% nickel by mass. How many kilograms of this ore would you need to dig up to have 75.0 g of nickel?
To obtain 75.0 grams of nickel from an ore that is 32.6% nickel by mass, one would need to mine approximately 0.230 kilograms of the ore.
The student is asking about the quantity of a nickel ore that would need to be processed to obtain a specific amount of pure nickel. If the ore is 32.6% nickel by mass, one needs to perform a simple calculation by setting up a proportion:
32.6 g ore contains 1 g nickel,
The calculation is as follows:
Multiply the desired quantity of nickel (75.0 g) by 100.
Divide this product by the percentage of nickel in the ore (32.6%).
This gives the mass of the ore required to be:
(75.0 g nickel) × (100/32.6) / 100% = 230 g ore (approximately, using significant figures)
To convert this to kilograms, we know that 1 kg = 1000 g, so:
230 g = 0.230 kg
Therefore, one would need 0.230 kilograms of this nickel ore to extract 75.0 grams of nickel.
What are families of elements with similar chemical properties called?
The families of elements with similar chemical properties are called groups in the periodic table.
Explanation:The families of elements with similar chemical properties are called groups in the periodic table. Elements in the same group have the same number of valence electrons and therefore exhibit similar chemical behaviors. For example, the alkali metals in Group 1 and the halogens in Group 17 both have similar reactivity due to their respective valence electron configurations.
Learn more about Elements with similar chemical properties here:https://brainly.com/question/35865624
#SPJ12
An atom containing 47 protons, 47 electrons, and 60 neutrons has a mass number of
Final answer:
An atom containing 47 protons, 47 electrons, and 60 neutrons has a mass number of 107, calculated by summing the number of protons and neutrons.
Explanation:
The mass number of an atom is defined as the sum of the number of protons and the number of neutrons within the atom's nucleus. Given an atom with 47 protons, 47 electrons, and 60 neutrons, we can calculate its mass number by adding the number of protons and the number of neutrons:
Mass number = Number of protons + Number of neutrons = 47 + 60 = 107.
Therefore, the atom with 47 protons, 47 electrons, and 60 neutrons has a mass number of 107.
Which quantity of heat is equal to 200. joules?
(1) 20.0 kJ (3) 0.200 kJ
Under certain conditions, neon (Ne) gas diffuses at a rate of 4.5 centimeters per second. Under the same conditions, an unknown gas diffuses at a rate of 10.1 centimeters per second. What is the approximate molar mass of the unknown gas?
Answer: 4 g/mol
Explanation:
To calculate the rate of diffusion of gas, we use Graham's Law.
This law states that the rate of diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows:
[tex]\text{Rate of diffusion}\propto \frac{1}{\sqrt{\text{Molar mass of the gas}}}[/tex]
Molar mass of neon = 20 g/mol
Molar mass of unknown gas = ?g/mol
For the rate of diffusion of neon to unknown gas (X), we write the expression:
[tex]\frac{Rate_{Ne}}{Rate_{X}}=\sqrt{\frac{M_{X}}{M_{Ne}}}[/tex]
[tex]\frac{4.5}{10.1}=\sqrt{\frac{M_{X}}{20}[/tex]
[tex]{M_{X}}=4g/mol[/tex]
Hence, the approximate molar mass of the unknown gas is 4 g/mol
What can the vast majority of elements in the periodic table be classified?
One useful way is by metals, nonmetals, and metalloids. (See also The Periodic Table: Families and Periods.) Most of the elements on the periodic table are classified as metals.
Four most common oxyanions of Iodine
Answer:
[tex]IO_4^-= Periodate\ ion[/tex]
[tex]IO_3^-= Iodate\ ion[/tex]
[tex]IO_2^-= Iodite\ ion[/tex]
[tex]IO^-= Hypoiodite\ ion[/tex]
Explanation:
Oxyanions:
Oxyanions are anions that have one or more oxygen atoms bonded to another elements is called oxyanions.
General formula of oxyanions are : [tex]A_xO_y^{z-}[/tex]
Where, A represents an element and O represents oxygen atom.
Four most common oxyanions of Iodine are:
[tex]IO_4^-= Periodate\ ion[/tex]
[tex]IO_3^-= Iodate\ ion[/tex]
[tex]IO_2^-= Iodite\ ion[/tex]
[tex]IO^-= Hypoiodite\ ion[/tex]
Identify the mixture of powdered charcoal and powdered sugar and suggest a technique for separating their components
To separate powdered charcoal from powdered sugar, add water to dissolve the sugar, use gravity filtration to remove charcoal, and evaporate the water to recrystallize the sugar.
The mixture described containing powdered charcoal and powdered sugar is a heterogeneous mixture. A technique to separate these components would be filtration. Since charcoal is insoluble in water and sugar is soluble, we can add water to the mixture to dissolve the sugar.
After the sugar has dissolved, we can use gravity filtration to separate the charcoal from the sugar solution. The charcoal will stay in the filter paper while the sugar solution passes through.
To recover the sugar from the solution, we could then evaporate the water, leaving behind solid sugar. It's important to break up any clumps and use hot water to ensure efficient dissolving and filtration. If the charcoal passes through the filter paper, it might be necessary to refilter or use a filter aid like Celite.
"according to the modern theory of the atom, where may an atom’s electrons be found?"
Final answer:
Electrons in an atom, according to modern quantum mechanics, can be found in an electron cloud, occupying regions of space around the nucleus with probabilistically determined densities.
Explanation:
According to the modern theory of the atom, known as quantum mechanics, an atom's electrons can be found within specific regions of space around the nucleus, often referred to as the electron cloud.
Unlike the earlier Bohr model which suggested electrons travel in discrete orbits, quantum mechanics proposes that electrons exist in probabilistic distributions - the regions where electrons are most likely to be found.
These distributions are characterized by four quantum numbers, much like a home address, with the first three providing an approximation of the electron's location in the atom and the fourth describing the electron's spin direction.
The electron cloud has variable densities, indicating the likelihood of finding an electron at a given location; the closer to the nucleus, the higher the density. This concept is crucial for understanding how atoms interact and react with one another, as chemical reactions are typically a result of interactions between the valence electrons of different atoms.
In summary, electrons occupy shells and subshells that define an atom's electron configuration, which in turn influences the atom's chemical behavior.
What is one goal of physical science?
Which electron configuration exhibits the ground-state electron configuration for molybdenum (element 42)?