A 35.0-ml sample of 1.00 m kbr and a 60.0-ml sample of 0.600 m kbr are mixed. the solution is then heated to evaporate water until the total volume is 50.0 ml. how many grams of silver nitrate are required to precipitate out silver bromide in the final solution?

Answers

Answer 1
Final answer:

To precipitate all the bromide ions present in the final solution of KBr, 12.061g of silver nitrate is needed. The calculation is based on molarity, volume and reaction stoichiometry.

Explanation:

The first step to finding the answer is to calculate the amount of KBr in each solution. The amount of solute in a solution is given by the formula: Volume (L) × Molarity (M). So for the 35.0 mL sample of 1.00 M KBr, that would be 0.035 L × 1.00 mol/L = 0.035 moles of KBr. For the 60.0 mL sample of 0.600 M KBr, the calculation is 0.060 L × 0.600 mol/L = 0.036 moles of KBr. Thus, a total of 0.035 + 0.036 = 0.071 moles KBr is present in the final solution.

The reaction between KBr and silver nitrate (AgNO3) is a one-to-one reaction: KBr + AgNO3 → AgBr + KNO3. Therefore, 0.071 moles of AgNO3 are required to precipitate all the bromide ions. The molar mass of AgNO3 is approximately 169.87 g/mol, therefore the total mass of AgNO3 needed is 0.071 moles × 169.87 g/mol = 12.061 g.

Hence, 12.061 g of silver nitrate are required to precipitate out silver bromide in the final solution.

Learn more about Reaction stoichiometry here:

https://brainly.com/question/33416260

#SPJ12

Answer 2
Final answer:

The amount of silver nitrate required is approximately 10.53 grams. This is calculated by first determining the total moles of KBr in the solution and then using the 1:1 stoichiometry of the reaction to find the equivalent moles (and thus mass) of AgNO3 required.

Explanation:

This is a stoichiometry problem that involves determining the amount of silver nitrate needed to precipitate out silver bromide in a solution. First, we need to determine the number of moles of KBr in the final solution. The original solutions have volumes of 35.0 ml and 60.0 ml and molarities of 1.00 M and 0.600 M respectively, so the number of moles of KBr is (35.0 ml x 1.00 mol/L) + (60.0 ml x 0.600 mol/L) = 0.062 mol. After evacuating some water, the volume decreases to 50.0 ml.

Now, since silver nitrate and potassium bromide react in a 1:1 ratio to form silver bromide, the moles of silver nitrate needed will be equal to the moles of KBr. Thus, we need 0.062 moles of AgNO3. The molecular weight of AgNO3 is 169.87 g/mol, so the mass of AgNO3 needed is (0.062 mol) x (169.87 g/mol) = 10.53 g. So, you will need about 10.53 grams of silver nitrate to precipitate out silver bromide in this solution.

Learn more about Stoichiometry here:

https://brainly.com/question/30215297

#SPJ2


Related Questions

The acceleration due to gravity on the surface of Mars is about one third the acceleration due to gravity on Earth’s surface. The weight of a space probe on the surface of Mars is about

Answers

Ok. I finally understood that you need to complete (fill in the blank) the last sentence: The weight of a space probe on the surface of Mars is about ______________

The answer is one third its weight on the surface of Earth.

You can find that by using the formula for the weight:

weight =  mass * acceleration due to gravity

So, given that the mass is constant and the acceleration due to gravity is one third, the weight is also one third.








Final answer:

On Mars, the acceleration due to gravity is about one-third of that on Earth, which means an object weighs significantly less on Mars compared to its weight on Earth.

Explanation:

The question pertains to the acceleration due to gravity on the surface of Mars compared to Earth. On Mars, the acceleration due to gravity is about one-third of that on Earth. Specifically, the gravitational acceleration on Mars is approximately 3.71 m/s², while on Earth, it is about 9.81 m/s². Thus, an object on Mars weighs significantly less than it does on Earth. For example, if a space probe weighs 100 pounds on Earth, on Mars, it would weigh roughly 38 pounds because the acceleration due to gravity on Mars is 0.38 that of Earth's gravity. This difference significantly impacts how objects move and respond to forces on Mars compared to Earth.

One gram-mole of methyl chloride vapor is contained in a vessel at 100 c and 10 atm. use the ideal gas equation of state to estimate the system volume

Answers

The ideal gas equation is expressed as,

     PV = nRT

where P is the pressure,
           V is the volume,
           n is the number of moles,
           R is the universal gas constant, and
           T is temperature

From this, we get the expression for V.
    
     V = nRT/P

Substituting the known values,
  
   V = (1 mol)(0.0821 L.atm/mol K)(100 C + 273.15) / 10 atm
    V = 3 L

ANSWER: 3L

The system volume of 1 gram-mole of methyl chloride vapor at 100°C and 10 atm is approximately 3.06 liters.

To estimate the system volume of 1 gram-mole of methyl chloride vapor under given conditions, we use the Ideal Gas Law equation:

PV = nRT

Here, P is the pressure in atm, V is the volume in liters, n is the number of moles, R is the universal gas constant (0.0821 L·atm/(mol·K)), and T is the temperature in Kelvin.

Given:

Pressure (P) = 10 atmNumber of moles (n) = 1 molTemperature (T) = 100 °C = 100 + 273.15 = 373.15 K

Using the equation, we solve for V:

V = (nRT)/P

Substituting the values, we get:

[tex]V = \frac{(1 \, \text{mol} \times 0.0821 \, \text{L} \cdot \text{atm} / (\text{mol} \cdot \text{K}) \times 373.15 \, \text{K})}{10 \, \text{atm}}[/tex]

[tex]V = \frac{(1 \times 0.0821 \times 373.15) \, \text{L} \cdot \text{atm} / \text{K}}{10 \, \text{atm}}[/tex]

[tex]V = \frac{30.634115 \, \text{L} \cdot \text{atm}}{10 \, \text{atm}}[/tex]

[tex]V = 3.0634115 \, \text{L}[/tex]

V ≈ 3.06 L

So, the system volume is approximately 3.06 liters.

Now consider the example of a positive charge q moving in the xy plane with velocity v⃗ =vcos(θ)i^+vsin(θ)j^ (i.e., with magnitude v at angle θ with respect to the x axis). if the local magnetic field is in the +z direction, what is the direction of the magnetic force acting on the particle?

Answers

Answer:

F⃗ mag  =

−cosθj^ + sinθi^

Explanation:

use cross product

Final answer:

The magnetic force acting on a positive charge moving in the xy plane with a velocity vector can be determined using the right-hand rule and the cross-product formula.

Explanation:

The direction of the magnetic force acting on a positive charge moving in the xy plane with velocity v⃗ =vcos(θ)i^+vsin(θ)j^, when the local magnetic field is in the +z direction, can be determined using the right-hand rule. First, join the tails of the velocity vector and the magnetic field vector. Then, curl your right fingers from the velocity vector to the magnetic field vector. The direction in which your right thumb points is the direction of the force. In this case, the magnetic force would be directed into the page.

If the velocity and magnetic field are parallel to each other, there is no orientation of the hand that will result in a force direction. Therefore, the force on the charge is zero.

If the velocity vector is given as v = (2.0î – 3.0ĵ + 1.0k) × 10^2 m/s, the force can be calculated using the cross-product formula.

Why would gamma radiation be used in diagnostic imaging rather than alpha or beta radiation?

Answers

Gamma radiation is a very short wavelength electromagnetic emission, and can pass through soft tissue easily. Alpha and beta particles possess less energy and cannot easily pass through tissue. 
An x-ray is a 'negative' of body structure; gamma rays pass freely through soft tissue and expose the film, but gamma rays don't pass through bony structures well, leaving the film underexposed.

Describe an alternate method for determining the molar concentration of your unknown sample of copper (ii) sulfate solution, using the standard data

Answers

Final answer:

The molar concentration of an unknown copper (ii) sulfate solution can be determined by reacting it with excess zinc, calculating the moles of copper obtained and hence the moles of copper sulfate, and subsequently the molar concentration.

Explanation:

An alternate method for determining the molar concentration of an unknown sample of copper (ii) sulfate solution involves a series of calculative steps. Firstly, we must know the stoichiometric factor between the copper (ii) sulfate and a known substance. In this case, we can use the reaction of copper sulfate with excess zinc metal as a reference in a standard data.

Here's how to calculate: Upon reaction of a known mass of copper sulfate with excess zinc metal, a certain mass of copper metal is obtained. Using this equation:CuSO4 (aq) + Zn (s).

Step 1: Calculate the number of moles of copper obtained from the mass using the molar mass of copper. Step 2: This number of moles is the same as the moles of copper sulfate in your sample because of the 1:1 stoichiometry in the reaction. Step 3: Determine the molar concentration (M) of the solution by using the formula M = moles of solute / volume of solution (in liters). If the volume of the solution is unknown, you can use other identifying tests, such as a titration.

Learn more about Molar Concentration here:

https://brainly.com/question/33445374

#SPJ12

Final answer:

To determine the molar concentration of copper (II) sulfate solution, an alternate method can be used. This method involves finding the mass of CuSO4, converting it to moles using Avogadro's number, and then dividing the moles by the volume of the solution to calculate the molar concentration.

Explanation:

An alternate method for determining the molar concentration of the unknown copper (II) sulfate solution can be done using the standard data. One way to do this is by finding the mass of CuSO4 and using Avogadro's number to convert it to moles. Then, divide the moles of CuSO4 by the volume of the solution in liters to calculate the molar concentration.

Learn more about Determining molar concentration of copper (II) sulfate solution here:

https://brainly.com/question/33320357

#SPJ11

sodium an alkali metal and chlorine a halogen are both in period 3 of the periodic table which element has a higher ionization energy

Answers

Answer  

Chlorine has higher ionization energy

Explanation

Ionization energy is defined as the minimum amount of energy required to remove the most loosely bound electron, the valence electron, of an isolated neutral gaseous atom, molecule or ion. It is quantitatively expressed in symbols as

X + energy → X+ + e−

Where X is any atom, molecule or ion capable of being ionized, X+ is that atom or molecule with an electron removed, and e− is the removed electron. This is generally an endothermic process.

The ionization energy of Sodium (alkali metal) is 496KJ/mol whereas Chlorine's first ionization energy is 1251.1 KJ/mol.  

Alkali metals (IA group) have small ionization energies, especially when compared to halogens.  Because as we move across the period from left to right, in general, the ionization energy increases. The atoms become smaller which causes the nucleus to have greater attraction for the valence electrons. Therefore, the electrons are more difficult to remove.


[tex]\boxed{{\text{Chlorine}}}[/tex] has higher ionization energy than sodium.

Further Explanation:

Ionization energy:

It is the amount of energy that is required to remove the most loosely bound valence electrons from the isolated neutral gaseous atom. It is denoted by IE. The value of IE is related to the ease of removing the outermost valence electrons. If these electrons are removed so easily, small ionization energy is required and vice-versa. It is inversely proportional to the size of the atom.

Ionization energy trends in the periodic table:

1. Along the period, IE increases due to the decrease in the atomic size of the succeeding members. This results in the strong attraction of electrons and hence are difficult to remove.

2. Down the group, IE decreases due to the increase in the atomic size of the succeeding members. This results in the lesser attraction of electrons and hence are easy to remove.

Sodium and chlorine are present in period 3 of the periodic table. Sodium lies to the left region of the period while chlorine lies to the right.

The atomic number of sodium atom [tex]\left({{\text{Na}}}\right)[/tex] that lies in left region of the period 3 is 11 and its electronic configuration is [tex]{\mathbf{1}}{{\mathbf{s}}^{\mathbf{2}}}{\mathbf{2}}{{\mathbf{s}}^{\mathbf{2}}}{\mathbf{2}}{{\mathbf{p}}^{\mathbf{6}}}{\mathbf{3}}{{\mathbf{s}}^{\mathbf{1}}}[/tex] . The atomic number of chlorine is 17 and its electronic configuration is [tex]{\mathbf{1}}{{\mathbf{s}}^{\mathbf{2}}}{\mathbf{2}}{{\mathbf{s}}^{\mathbf{2}}}{\mathbf{2}}{{\mathbf{p}}^{\mathbf{6}}}{\mathbf{3}}{{\mathbf{s}}^{\mathbf{2}}}{\mathbf{3}}{{\mathbf{p}}^{\mathbf{5}}}[/tex] . Sodium has only one electron in its outermost valence shell that can be removed easily in order to achieve the nearest stable noble gas configuration of He, resulting in its low ionization energy. Chlorine is one electron short of noble gas so it can gain an electron easily, but its removal requires a large amount of energy. So the ionization energy of chlorine is higher than that of sodium.

Learn more:

1. Rank the elements according to first ionization energy: https://brainly.com/question/1550767

2. Write the chemical equation for the first ionization energy of lithium: https://brainly.com/question/5880605

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Periodic classification of elements

Keywords: ionization energy, sodium, atomic number, electron, neutral, isolated, gaseous atom, IE, chlorine, group, period, higher.

replacing standard incandescent lightbulbs with energy-efficient compact fluorescent lightbulbs can save a lot of energy. Calculate the amount if energy saved over 10 h when one 60 W incandescent lightbulb is replaced with an equivalent 18 W compact fluorescent lightbulb

Answers

The difference between the wattage is 60-18=42W. The saving in energy over 10 hrs is 10×42=420 watt-hours=0.42kWh

By replacing one 60W incandescent lightbulb with an 18W compact fluorescent lightbulb, you would save 420 watt-hours of energy over 10 hours.

To calculate the amount of energy saved over 10 hours when one 60W incandescent lightbulb is replaced with an 18W compact fluorescent lightbulb, we need to find the energy consumed by each type of bulb and then calculate the difference.

Energy consumed by a bulb can be calculated using the formula:

Energy (in watt-hours) = Power (in watts) × Time (in hours)

Let's calculate the energy consumed by each bulb:

For the 60W incandescent lightbulb:

Energy consumed = 60W × 10 hours = 600 watt-hours

For the 18W compact fluorescent lightbulb:

Energy consumed = 18W × 10 hours = 180 watt-hours

Now, let's calculate the energy saved:

Energy saved = Energy consumed by incandescent bulb - Energy consumed by compact fluorescent bulb

Energy saved = 600 watt-hours - 180 watt-hours

Energy saved = 420 watt-hours

So, by replacing one 60W incandescent lightbulb with an 18W compact fluorescent lightbulb, you would save 420 watt-hours of energy over 10 hours.

To know more about fluorescent lightbulb here

https://brainly.com/question/29597647

#SPJ2

Notice that "po4" appears in two different places in this chemical equation. po 3−4 is a polyatomic ion called phosphate . what number should be placed in front of na3po4 to give the same total number of phosphate ions on each side of the equation? ?na3po4+mgcl2→mg3(po4)2+nacl

Answers

Answer: "2" should be placed infront of [tex]Na_3PO_4[/tex] to have the same number of phosphate ions on each side.

Explanation: For a given reaction in the question,

The phosphate ions on product side are 2, so there should be 2 phosphate atoms on the reactant side as well.

And the number of Magnesium atoms on product side is 3, there should be 3 magnesium atoms on the reactant side as well.

To balance out Phosphate and magnesium atoms, 6 sodium and chlorine atoms each are formed on reactant side, so to balance these atoms, 6 atoms of each should be present on product side.

Now, the balanced Chemical equation becomes:

[tex]2Na_3PO_4+3MgCl_2\rightarrow Mg_3(PO_4)_2+6NaCl[/tex]

By placing the coefficient '2' in front of Na3PO4 in the given chemical equation, we can ensure that the same number of phosphate ions are present on both sides of the equation.

In the given chemical equation, we see PO4 appearing twice: once in Na3PO4 and again in Mg3(PO4)2 on the other side of the equation. It's crucial to balance this equation so that the same number of phosphate ions are present on both sides. Each Mg3(PO4)2 molecule contains two phosphate ions (PO4 units), which means if we have one Mg3(PO4)2 on the right side of the equation, we need two PO4 units on the left side as well.

To achieve this, place the coefficient '2' in front of Na3PO4, which dictates that we have two Na3PO4 molecules (each containing one PO4 unit) allowing us to have two phosphate ions on the left. Hence, the balanced chemical equation will look like: 2Na3PO4 + MgCl2 → Mg3(PO4)2 + NaCl.

Learn more about Chemical Equation Balancing here:

https://brainly.com/question/29233369

#SPJ6

The pH of a vinegar solution is 4.15. What is the H+ concentration of the solution

Answers

The pH of a vinegar solution is 4.15. To find the H+ concentration of the solution use the following equation -log(H+)=pH. Insert the pH into the equation to get, -log(H+) = 4.15 Rearrange the equation to get, 10^(-4.15) = H+ Finally, you can solve for H+. The hydrogen ion concentration of the vinegar solution is .0000708 M.

The [tex]{{\text{H}}^+}[/tex] concentration of vinegar solution is [tex]\boxed{{\text{0}}{\text{.0000708 M}}}[/tex]

Further Explanation:

An acid is a substance that has the ability to donate [tex]{{\mathbf{H}}^{\mathbf{+}}}[/tex]ions or can accept electrons from the electron-rich species. The general dissociation reaction of acid is as follows:

[tex]{\text{HA}}\to{{\text{H}}^+}+{{\text{A}}^-}[/tex]

Here, HA is an acid.

The acidic strength of an acid can be determined by pH value. The negative logarithm of hydronium ion concentration is defined as pH of the solution. Lower the pH value of an acid, the stronger will be the acid. Acidic solutions are likely to have pH less than 7. Basic or alkaline solutions have pH more than 7. Neutral solutions have pH equal to 7.

Vinegar contains acetic acid [tex]\left({{\text{C}}{{\text{H}}_3}{\text{COOH}}}\right)[/tex], water and some traces of other chemicals and flavors.

The formula to calculate pH is as follows:

[tex]{\text{pH}}=-{\text{log}}\left[{{{\text{H}}^+}}\right][/tex]                                   …… (1)

Here,

[tex]\left[{{{\text{H}}^+}}\right][/tex] is hydrogen ion concentration.

On rearranging equation (1), we get:

[tex]\left[{{{\text{H}}^+}}\right]={10^{-{\text{pH}}}}[/tex]                                           …… (2)

The pH of vinegar is 4.15.

Substitute 4.15 for pH in equation (2)

[tex]\begin{gathered}\left[{{{\text{H}}^+}}\right]={10^{-4.15}}\\=0.0000707946\\\approx0.0000708\;{\text{M}}\\\end{gathered}[/tex]

So the concentration of [tex]{{\mathbf{H}}^{\mathbf{+}}}[/tex] ion in vinegar is 0.0000708 M.

Learn more:

1. The reason for the acidity of water https://brainly.com/question/1550328

2. Reason for the acidic and basic nature of amino acid. https://brainly.com/question/5050077

Answer details:

Grade: High School

Subject: Chemistry

Chapter: Acid, base and salts.

Keywords: pH, neutral, acidic, basic, alkaline, 4.15, vinegar, acetic acid, water, chemicals, negative logarithm, H+, 0.0000708 M, pH more than 7, pH less than 7, pH equal to 7.

The molecule hydrogen fluoride (HF) contains a polar bond H - F, where fluorine is more electronegitivexpensive than Hydrogen. Which is the appropriate representation of the H - F bond?

Answers

Hydrogen's one electron will see that fluoride has seven electrons on its valence shell and will want to fill that eight slot to create the more stable compound Hydrogen fluoride. The flouride atom will have eight electrons orbiting its valence shell while hydrogen will have two electrons.

Write the balanced molecular and net ionic equations for the reaction between aluminum metal and silver nitrate. identify the oxidation and reduction half-reactions.

Answers

The balanced molecular equation is [tex]\boxed{{\text{Al}}\left(s\right)+3{\text{AgN}}{{\text{O}}_3}\left({aq}\right)\to {\text{Al}}{{\left({{\text{N}}{{\text{O}}_{\text{3}}}}\right)}_3}\left({aq}\right)+3{\text{Ag}}\left(s\right)}[/tex]

The balanced net ionic equation is [tex]\boxed{{\text{Al}}\left( s\right)+3{\text{A}}{{\text{g}}^+}\left({aq}\right)\to{\text{A}}{{\text{l}}^{3+}}\left({aq}\right)+3{\text{Ag}}\left(s\right)}[/tex]

The reduction half-cell reaction is [tex]\boxed{{\text{Ag}}+{e^-}\to{\text{Ag}}}[/tex]

The oxidation half-cell reaction is [tex]\boxed{{\text{Al}}\to{\text{A}}{{\text{l}}^{3+}}+3{e^-}}[/tex]

Further Explanation:

The three types of equations that are used to represent the chemical reaction are as follows:

1. Molecular equation

2. Total ionic equation

3. Net ionic equation

The reactants and products remain in undissociated form in the molecular equation. In the case of total ionic equation, all the ions that are dissociated and present in the reaction mixture are represented while in the case of overall or net ionic equation only the useful ions that participate in the reaction are represented.

The steps to write the molecular equation and net ionic reaction are as follows:

Step 1: Write the molecular equation for the reaction with the phases in the bracket.

In the reaction,1 mole of Al reacts with 3 moles of [tex]{\text{AgN}}{{\text{O}}_3}[/tex] to form 1 mole of [tex]{\text{Al}}{\left( {{\text{N}}{{\text{O}}_3}} \right)_3}[/tex] and 3 moles of Ag. The balanced molecular equation of the reaction is as follows:

 [tex]{\text{Al}}\left(s\right)+3{\text{AgN}}{{\text{O}}_3}\left( {aq}\right)\to{\text{Al}}{\left( {{\text{N}}{{\text{O}}_{\text{3}}}}\right)_3}\left({aq}\right)+3{\text{Ag}}\left(s\right)[/tex]

Step2: Dissociate all the compounds with the aqueous phase to write the total ionic equation. The compounds with solid and liquid phases remain same. The total ionic equation is as follows:

 [tex]{\text{Al}}\left(s\right)+3{\text{A}}{{\text{g}}^+}\left({aq}\right)+{\text{NO}}_3^-\left( {aq}\right)\to{\text{A}}{{\text{l}}^{3+}}\left({aq}\right)+{\text{NO}}_3^-\left({aq}\right)+3{\text{Ag}}\left(s\right)[/tex]

Step3. The common ions on both sides of the reaction get cancelled out to get the net ionic equation.

[tex]{\text{Al}}\left(s\right)+3{\text{A}}{{\text{g}}^+}\left({aq}\right)+\boxed{{\text{NO}}_3^-\left({aq}\right)}\to{\text{A}}{{\text{l}}^{3+}}\left({aq}\right)+\boxed{{\text{NO}}_3^ - \left({aq}\right)}+3{\text{Ag}}\left(s\right)[/tex]

Therefore, the net ionic equation is as follows:

[tex]{\text{Al}}\left(s\right)+3{\text{A}}{{\text{g}}^+}\left({aq}\right)\to{\text{A}}{{\text{l}}^{3 + }}\left({aq}\right)+3{\text{Ag}}\left(s\right)[/tex]

Redox reaction:

It is a type of chemical reaction in which the oxidation states of atoms are changed. In this reaction, both reduction and oxidation are carried out at the same time. Such reactions are characterized by the transfer of electrons between the species involved in the reaction.

The process of gain of electrons or the decrease in the oxidation state of the atom is called reduction while that of loss of electrons or the increase in the oxidation number is known as oxidation. In redox reactions, one species lose electrons and the other species gain electrons. The species that lose electrons and itself gets oxidized is called as a reductant or reducing agent. The species that gains electrons and gets reduced is known as an oxidant or oxidizing agent. The presence of a redox pair or redox couple is a must for the redox reaction.

The general representation of a redox reaction is,

[tex]{\text{X}}+{\text{Y}}\to{{\text{X}}^+}+{{\text{Y}}^-}[/tex]

The oxidation half-reaction can be written as:

[tex]{\text{X}}\to{{\text{X}}^+}+{e^-}[/tex]

The reduction half-reaction can be written as:

[tex]{\text{Y}}+{e^-}\to{{\text{Y}}^-}[/tex]

Here, X is getting oxidized and its oxidation state changes from  to +1 whereas B is getting reduced and its oxidation state changes from 0 to -1. Hence, X acts as the reducing agent whereas Y is an oxidizing agent.

Ag in silver nitrate forms solid silver during the reaction so it is getting reduced. The reduction half-cell reaction is as follows:

[tex]{\text{Ag}}+{e^-}\to{\text{Ag}}[/tex]

Aluminium gets converted to [tex]{\text{A}}{{\text{l}}^{3+}}[/tex] by oxidizing itself. The oxidation half-cell reaction is as follows:

[tex]{\text{Al}}\to{\text{A}}{{\text{l}}^{3+}}+3{e^-}[/tex]

Learn more:

1. Balanced chemical equation: https://brainly.com/question/1405182

2. Oxidation and reduction reaction: https://brainly.com/question/2973661

Answer details:

Grade: High School

Subject: Chemistry

Chapter: Chemical reaction and equation

Keywords: net ionic equation, Ag, Al, NO3-, Al3+, e-, Ag+, redox, oxidizing, reducing, oxidation half-cell reaction, reduction half-cell reaction, molecular equation, AgNO3, Al(NO3)3.

how does the structure of covalent bonds affects their structure.

Answers

Covalent bond is a type of chemical bond which is formed as a result of sharing of electron pairs among the elements that are involved. The structure of the covalent bond is affected by the electronegativity of the elements involved. The molecules joined by covalent bond range in size from very small to very large polymers. There are different types of structures for covalent substances, these include: macromolecular substances, molecular substances and giant covalent structures. Strong bonds hold individual molecules together but there are negligible forces of attraction among them.

How many carbons are in the planar double-bond system of 3-methylcyclopentene?

Answers

There are a total of four (4) carbon that are in the planar double-bond system of 3-methylcyclopentene. The 3-methylcyclopentene can be found in spices and herbs, it is also a constituent of the flowers of Jasminum sambac (Arabian jasmine). It is also belongs to the family of Aliphatic Homomonocyclic Compounds.
There are a total of four (4) carbon that are in the planar double-bond system of 3-methylcyclopentene.

Of the five carbons in the cyclopentene, 1 carbon is attached with CH3 group while the other 4 are attached with H atoms which are in the same plane as of double bond. The carbon of the cycle attached with CH3 group are not in same plane as the rest of the carbon  of cyclopentene.

Complete combustion of 7.40 g of a hydrocarbon produced 22.4 g of CO2 and 11.5 g of H2O. What is the empirical formula for the hydrocarbon?

Show work please?

Answers

C2H5 First, you need to figure out the relative ratios of moles of carbon and hydrogen. You do this by first looking up the atomic weight of carbon, hydrogen, and oxygen. Then you use those atomic weights to calculate the molar masses of H2O and CO2. Carbon = 12.0107 Hydrogen = 1.00794 Oxygen = 15.999 Molar mass of H2O = 2 * 1.00794 + 15.999 = 18.01488 Molar mass of CO2 = 12.0107 + 2 * 15.999 = 44.0087 Now using the calculated molar masses, determine how many moles of each product was generated. You do this by dividing the given mass by the molar mass. moles H2O = 11.5 g / 18.01488 g/mole = 0.638361 moles moles CO2 = 22.4 g / 44.0087 g/mole = 0.50899 moles The number of moles of carbon is the same as the number of moles of CO2 since there's just 1 carbon atom per CO2 molecule. Since there's 2 hydrogen atoms per molecule of H2O, you need to multiply the number of moles of H2O by 2 to get the number of moles of hydrogen. moles C = 0.50899 moles H = 0.638361 * 2 = 1.276722 We can double check our math by multiplying the calculated number of moles of carbon and hydrogen by their respective atomic weights and see if we get the original mass of the hydrocarbon. total mass = 0.50899 * 12.0107 + 1.276722 * 1.00794 = 7.400185 7.400185 is more than close enough to 7.40 given rounding errors, so the double check worked. Now to find the empirical formula we need to find a ratio of small integers that comes close to the ratio of moles of carbon and hydrogen. 0.50899 / 1.276722 = 0.398669 0.398669 is extremely close to 4/10, so let's reduce that ratio by dividing both top and bottom by 2 giving 2/5. Since the number of moles of carbon was on top, that ratio implies that the empirical formula for this unknown hydrocarbon is C2H5

Why does naphthalene have a higher melting point than biphenyl?

Answers

polar compounds have higher melting and boiling points than nonpolar compounds due to strong intermolecular forces such as hydrogen bonds and dipole-dipole interactions.

Hope this helps

How many milliliters of 0.150 m h2so4 are required to react with 2.05 g of sodium hydrogen cabronate?

Answers

25 milliters are required

Bismuth oxide reacts with carbon to form bismuth metal: bi2o3(s) + 3c(s) → 2bi(s) + 3co(g) when 689 g of bi2o3 reacts with excess carbon, (a) how many moles of bi form? 2.957 mol bi (b) how many grams of co form? g co

Answers

Using the answer from the first part, we know that 2.957 moles of bismuth have formed. Moreover, the molar ratio between bismuth and carbon monoxide is:

2 : 3

Using the method of ratios,

2 : 3
2.957 : CO

CO = (3 * 2.957) / 2
CO = 4.4355

4.436 moles of carbon monoxide will be formed

CO mass = 4,435. 18 = 79,839 grams

Stokiometry in Chemistry learns about chemical reactions mainly emphasizing quantitative, such as calculation of volume, mass, number, which is related to the number of ions, molecules, elements etc.

In chemical calculations, the reaction can be determined, the number of substances that can be expressed in units of mass, volume, mole, or determine a chemical formula, for example the substance level or molecular formula of hydrate.

In stockiometry therein includes

relative atomic mass (Ar) and relative molecular mass (Mr)

Mr. AxBy = (x.Ar A + y. Ar B)

Reactions that occur:

Bi₂O₃ (s) + 3C (s) → 2Bi (s) + 3CO (g)

We specify mole Bi₂O₃

Mr Bi₂O₃ = 2. ar bi + 3. Ar O

Mr Bi₂O₃ = 2. 209 + 3. 16

Mr. Bi₂O₃= 466

mole Bi₂O₃ = gram / Mr

mole = 689/466

mole 1.4785

A. Comparison of Bi reaction coefficients: Bi₂O₃ = 1: 2, then Bi moles = 2. 1,4785 = 2, 957

Comparison of Bi reaction coefficients:  Bi₂O₃  = 1: 2,

B. While the number of moles CO = 3 x 1.4785 = 4,435

Mr. CO = 12 + 16 = 18

mass CO = mole. Mr

CO mass = 4,435. 18 = 79,839 grams

Learn more

how many moles of water you can produce

https://brainly.com/question/1405182

Excess reactant

brainly.com/question/6857557

The percentage yield

brainly.com/question/12044319

Limiting reactant

brainly.com/question/5798341

Considering light at the two ends of the visible light spectrum, violet light has a _____ wavelength and a _____ photon energy than red light.

Answers

Violet light has a shorter wavelength and greater amount of photon energy than red light. A short wavelength correlates to a higher energy. Of the wavelengths humans can see, violet waves have the shortest wavelength and therefore also have the most energy.

Final answer:

Violet light has a shorter wavelength and higher photon energy compared to red light, with violet having the shortest wavelengths and red the longest within the visible spectrum.

Explanation:

Considering light at the two ends of the visible light spectrum, violet light has a shorter wavelength and a higher photon energy than red light. In the visible light spectrum, violet light has the shortest wavelengths (approximately 400 nm) and thus carries the most energy. Conversely, red light has the longest wavelengths (approximately 700 nm) and carries the least amount of energy.

Sunlight, for example, which is blackbody radiation, peaks in the visible spectrum and has more intensity in the red than in the violet, giving the sun a yellowish appearance. The high energy of violet photons is why dyes that absorb violet light fade more quickly, and when you observe faded posters, the blues and violets are the last to fade.

How many moles of o2 are required for the complete reaction of 54.7 g of c2h4 to form co2 and h2o?

Answers

The balanced chemical equation that illustrates this reaction is:
C2H4 + 3O2 --> 2CO2 + 2H2O 

From the periodic table:
mass of carbon = 12 grams
mass of hydrogen = 1 gram
Therefore:
molar mass of C2H4 = 12(2) + 4(1) = 24 + 4 = 28 grams

number of moles = mass / molar mass
number of moles of C2H4 = 54.7 / 28 = 1.95 moles

From the balanced equation above:
3 moles of oxygen are required to react with one mole of C2H4, therefore, to know the number of moles required to react with 1.95 moles of C2H4, all you have to do is cross multiplication as follows:
number of oxygen moles = (1.95*3) / 1 = 5.85 moles

5.862 moles of O₂

Further explanation

Given:

Combustion of 54.7 g of C₂H₄ to form CO₂ and H₂O.

Question:

How many moles of O₂ are required for the complete reaction of combustion of C₂H₄?

The Process:

Relative atomic mass: C = 12 and H = 1.Relative molecular mass (Mr) of C₂H₄ = 2(12) + 4(1) = 28.

Let us convert mass to mole for C₂H₄.

[tex]\boxed{ \ n = \frac{mass}{Mr} \ } \rightarrow \boxed{ \ n = \frac{54.7}{28} = 1.954 \ moles \ }[/tex]

The combustion reaction of  C₂H₄ (ethylene, also named ethene) can be expressed as follows:

[tex]\boxed{ \ C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O \ }[/tex] (the reaction is balanced)

According to chemical equation above, proportion between C₂H₄ and O₂ is 1 to 3. Therefore, we can count the number of moles of O₂.

[tex]\boxed{ \ \frac{n(O_2)}{n(C_2H_4)} = \frac{3}{1} \ }[/tex]

[tex]\boxed{ \ n(O_2) = \frac{3}{1} \times n(C_2H_4) \ }[/tex]

[tex]\boxed{ \ n(O_2) = \frac{3}{1} \times 1.954 \ moles \ }[/tex]

Thus, the number of moles of O are required for the complete reaction of the combustion of C₂H₄ is 5.862 moles.

_ _ _ _ _ _ _ _ _

Notes:

If we want to calculate the mass of O₂, then we use the number of moles of O₂ that have been obtained.

Learn moreDetermine the mass of aspirin from the number of molecules https://brainly.com/question/10567477#  How many molecules of ascorbic acid (vitamin C or C₆H₈O₆) are in a 500 mg tablet? https://brainly.com/question/6455775  Find out he molecular weight of a gas that has a density of 5.75 g/L at STP https://brainly.com/question/7497852

What types of scientific field quantities are there

Answers

212 is ok t=rightlolop;;


In Part A, you found the amount of product (1.80 mol P2O5 ) formed from the given amount of phosphorus and excess oxygen. In Part B, you found the amount of product (1.40 mol P2O5 ) formed from the given amount of oxygen and excess phosphorus. Now, determine how many moles of P2O5 are produced from the given amounts of phosphorus and oxygen.

Answers

Final answer:

The number of moles of P2O5 produced from the given amounts of phosphorus and oxygen is equal to the number of moles of phosphorus or oxygen used.

Explanation:

To determine the number of moles of P2O5 produced from the given amounts of phosphorus and oxygen, you need to compare the amounts of each reactant used in Part A and Part B. Based on the given information, it is stated that in Part A, 1.80 mol of P2O5 is formed from a given amount of phosphorus and excess oxygen. In Part B, 1.40 mol of P2O5 is formed from a given amount of oxygen and excess phosphorus. Since the stoichiometry of the reaction is a 1:1 ratio between P2O5 and phosphorus, we can conclude that 1.80 mol of phosphorus is required to produce 1.80 mol of P2O5. Similarly, 1.40 mol of oxygen is required to produce 1.40 mol of P2O5. Therefore, the number of moles of P2O5 produced from the given amounts of phosphorus and oxygen is equal to the number of moles of phosphorus or oxygen used, which is 1.80 mol and 1.40 mol respectively.

Learn more about mole calculations here:

https://brainly.com/question/33652783

#SPJ1

How many grams of oxygen are in 50.00 g of Sucrose

Answers

 if you've got 50g Sucrose, 51%, or 25.73g, of it is oxygen.

For the following reaction, what volume of NOBr can be produced from 3.8 L of Br2 (measured at the same temperature and pressure), assuming an excess of NO?
2NO(g)+Br2(g)=2NO(Br)2

Answers

Answer:

[tex]7.6LNOBr[/tex]

Explanation:

Hello,

In this case, since no temperature and pressure are known, one could develop the stoichiometric relationship for 1 mole of [tex]Br_2[/tex] per 2 moles of [tex]NOBr[/tex] in terms of volume as shown below because of the Avogadro's law (change in mole proportional to the change in volume at constant both pressure and temperature):

[tex]3.8LBr_2*\frac{2LNOBr}{1LBr_2} =7.6LNOBr[/tex]

Best regards.


The term sink refers to _____.

Answers

I believe the options are
 A. fossil fuels such as coal, oil, and gas
B. a location for carbon dioxide storage
C. the origination point of a gas, such as a volcano
D. the origination point of a gas, such as the atmosphere

If those are the options then the answer is B. A location of Carbon storage such as Fossil fuels, coal oil gas etc is referred to as a sink
Answer is B :) hope this was helpful


Nickel has a face-centered cubic unit cell with an edge length of 352.4 pm. Calculate the density of nickel

Answers

The face-centered cubic unit cell of nickel has an edge length of 352.4 pm. The density of nickel is 8.9 gcm⁻³.

What is density ?

The mass of a material per unit of volume is its density. Density is most frequently represented by the symbol, however the Latin letter D may also be used. Density is calculated mathematically by dividing mass by volume.

Because it enables us to predict which compounds will float and which will sink in a liquid, density is a crucial notion. As long as an object's density is lower than the liquid's density, it will often float.

Four atoms altogether make up a face-centered cubic unit cell. As a result, a face-centered cubic unit cell has a density of 4 x M / A3 x Na. There are two types of density, absolute and relative density.

Thus, The density of nickel is 8.9 gcm⁻³.

To learn more about density, follow the link;

https://brainly.com/question/6107689

#SPJ2

Final answer:

Nickel does not crystallize in a simple cubic structure because the calculated density for a simple cubic arrangement is much lower than the actual density of nickel. The actual density of nickel (8.90 g/cm³) indicates that nickel has a denser crystal structure, specifically a face-centered cubic lattice, which contains more atoms per unit cell.

Explanation:

No, nickel does not crystallize in a simple cubic structure. If nickel were to crystallize in a simple cubic structure, we would calculate its density based on the volume occupied by one atom in the unit cell. To find the volume of the unit cell, we would cube the edge length of the unit cell, which is given as 0.3524 nm (convert to cm: 3.524 x 10−8 cm). The volume of the unit cell would then be (3.524 x 10−9 cm)3 = 4.376 x 10−23 cm3.

Knowing that there is one atom per unit cell in a simple cubic structure and using the molar mass of nickel (58.6934 g/mol) along with Avogadro's number (6.022 x 1023 atoms/mol), we can determine the mass of one atom of nickel. The mass of one mole of nickel atoms divided by Avogadro's number gives the mass of a single atom to be 9.746 x 10−23 g. Therefore, the density of nickel in a simple cubic structure would be the mass of one atom divided by the volume of the unit cell, equating to 2.23 g/cm3.

However, the actual density of Ni is 8.90 g/cm3, which is significantly higher than what we would expect for a simple cubic structure. This implies that nickel crystallizes in a denser structure, such as a face-centered cubic (fcc) lattice, where more atoms are present per unit cell compared to a simple cubic structure. In an fcc lattice, there are effectively 4 atoms per unit cell.

Which carboxylic acid has the lowest boiling point?

Answers

methanoic acid :33333

According to the forces of attraction, the carboxylic acid with  lowest boiling point is methanoic acid.

What are forces of attraction?

Forces of attraction is a force by which atoms in a molecule  combine. it is basically an attractive force in nature.  It can act between an ion  and an atom as well.It varies for different  states  of matter that is solids, liquids and gases.

The forces of attraction are maximum in solids as  the molecules present in solid are tightly held while it is minimum in gases  as the molecules are far apart . The forces of attraction in liquids is intermediate of solids and gases.

The physical properties such as melting point, boiling point, density  are all dependent on forces of attraction which exists in the substances.

Learn more about forces of attraction,here:

https://brainly.com/question/2122941

#SPJ6

How many calcium ions are in 0.3 mol of cacl2?

Answers

One mole of CaCl2 contains 1 mole of calcium.
Therefore, 0.3 moles of CaCl2 will contain 0.3 moles of calcium.

1 mole of calcium contains Avogadro's number of ions, therefore, 0.3 moles will contain:
number of ions = 0.3 * 6.02 * 10^23 = 1.806 * 10^23 ions
1.8 x 10^23 calcium ions Each mole of CaCl2 will produce 1 mole of calcium ions. So just multiply the number of moles of CaCl2 by avogadro's number. Therefore 0.3 * 6.0221409 x 10^23 = 1.806642 x 10^23 So there will be 1.8 x 10^23 calcium ions in 0.3 moles of CaCl2.

After reviewing your answers to questions 2 and 4 above, would you define boiling point and melting point as a periodic table family trend (vertical groups), period trend (horizontal rows), or neither? Explain your answer

Answers

Neither, boiling and melting point per element varies from element to element on the periodic table. Family trends and period trends determine what kind of element each aspect is. 

Ne(g) effuses at a rate that is ______ times that of xe(g) under the same conditions.

Answers

Ne (g) effuses at a rate that is [tex]\boxed{{\text{2}}{\text{.6}}}[/tex] times that of Xe (g) under the same conditions.

Further Explanation:

Graham’s law of effusion:

Effusion is the process by which molecules of gas travel through a small hole from high pressure to the low pressure. According to Graham’s law, the effusion rate of a gas is inversely proportional to the square root of the molar mass of gas.

The expression for Graham’s law is as follows:

[tex]\boxed{{\text{R}}\propto\dfrac{1}{{\sqrt {{\mu }} }}}[/tex]

Here,

R is the rate of effusion of gas.

[tex]{{\mu }}[/tex] is the molar mass of gas.

Higher the molar mass of the gas, smaller will be the rate of effusion and vice-versa.

The rate of effusion of Ne is expressed as follows:

[tex]{{\text{R}}_{{\text{Ne}}}} \propto \dfrac{1}{{\sqrt {{{{\mu }}_{{\text{Ne}}}}} }}[/tex]

                                                 ......(1)

Here,

[tex]{{\text{R}}_{{\text{Ne}}}}[/tex] is the rate of effusion of Ne.

[tex]{{{\mu }}_{{\text{Ne}}}}[/tex] is the molar mass of Ne.

The rate of effusion of Xe is expressed as follows:

[tex]{{\text{R}}_{{\text{Xe}}}}\propto\dfrac{1}{{\sqrt{{{{\mu }}_{{\text{Xe}}}}}}}[/tex]

                                     ......(2)

Here,

[tex]{{\text{R}}_{{\text{Xe}}}}[/tex] is the rate of effusion of Xe.

[tex]{{{\mu }}_{{\text{Xe}}}}[/tex] is the molar mass of Xe.

On dividing equation (1) by equation (2),

[tex]\dfrac{{{{\text{R}}_{{\text{Ne}}}}}}{{{{\text{R}}_{{\text{Xe}}}}}}=\sqrt {\dfrac{{{{{\mu }}_{{\text{Xe}}}}}}{{{{{\mu }}_{{\text{Ne}}}}}}}[/tex]     ......(3)

Rearrange equation (3) to calculate  [tex]{{\text{R}}_{{\text{Ne}}}}[/tex].

[tex]{{\text{R}}_{{\text{Ne}}}}=\left( {\sqrt {\dfrac{{{{{\mu }}_{{\text{Xe}}}}}}{{{{{\mu }}_{{\text{Ne}}}}}}} } \right){{\text{R}}_{{\text{Xe}}}}[/tex]     ......(4)

The molar mass of Ne is 20.17 g/mol.

The molar mass of Xe is 131.29 g/mol.

Substitute these values in equation (4).

[tex]\begin{aligned}{{\text{R}}_{{\text{Ne}}}}&= \left({\sqrt {\frac{{{\text{131}}{\text{.29}}}}{{{\text{20}}{\text{.17}}}}} } \right){{\text{R}}_{{\text{Xe}}}}\\&= \left( {\sqrt {6.50917} } \right){{\text{R}}_{{\text{Xe}}}}\\&= 2.5513{{\text{R}}_{{\text{Xe}}}}\\&\approx 2.6{{\text{R}}_{{\text{Xe}}}}\\\end{aligned}[/tex]

Therefore the rate of effusion of Ne is 2.6 times the rate of effusion of Xe.

Learn more:

1. Which statement is true for Boyle’s law: https://brainly.com/question/1158880

2. Calculation of volume of gas: https://brainly.com/question/3636135

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Ideal gas equation

Keywords: Effusion, rate of effusion, molar mass, Ne, Xe, 2.6 times, Graham’s law, inversely proportional, square root.

Final answer:

Neon effuses faster than xenon due to its lighter molar mass, and the effusion rate for neon will be larger than that for xenon, resulting in a smaller effusion time for neon.

Explanation:

The student's question pertains to the comparison of the effusion rates of neon (Ne) and xenon (Xe) gases under the same conditions. The effusion rate of a gas is inversely proportional to the square root of its molar mass, according to Graham's law of effusion. Given that neon is lighter than xenon, it will effuse at a faster rate. Using the provided effusion time calculations, if it takes 243 seconds for xenon to effuse, then by solving for the time it would take for the same amount of neon to effuse using the ratio of the square roots of their molar masses, we determine the time for neon to be approximately 95.3 seconds.

This result is expected because the lighter a gas is, the faster it should effuse, making the effusion rate for neon larger than that for xenon, and consequently, the time for effusion is smaller for neon than xenon as presented in the example calculation.

a car travels 57.9 miles per hour for 3.2 hours estimate the number of miles driven

Answers

The car would have traveled an estimated distance of approximately 185 miles.

The formula for distance which is:

Distance = Speed  x Time

In this case, the estimated distance would be:

Distance = 57.9 miles/hour x 3.2 hours

Now, do the multiplication:

Distance ≈ 57.9 x 3.2

Distance ≈ 185.28 miles

Therefore, the umber of miles driven is 185 miles.

Other Questions
Ramzahn lives in a country where a king heads the government. Political parties do not exist, and only men may vote in elections. He likely lives in __________. The water that falls from the sky today as rain may have once been part of the ocean. How can this be? Why did native american men spend a lot of time hunting buffalo? Is this true 1/2 >0.25 In a response of at least five sentences, comment on the stage interpretation and explain your impression of lady macbeth in this scene. use specific examples from the clip to support your answer. things to consider: her facial expressions, body language, and tone of voice Evaluate the expression 3(7 + 4)2 14 7. (5 points)50361363586Do not just give me the answer, walk me through it. I am literally so shallow minded when it comes to Algebra and I am trying really hard to understand it. Last year, wesson company sold 10,000 units of its only product. if sales increase by 12% in the current year, how will unit variable cost and unit fixed cost be affected? unit variable cost unit fixed costa.remains constant remains constantb.increases decreasesc.decreases remains constantd.remains constant decreasese.remains constant increases According to time lesson, the verb must agree with the subject in a. Write an expression that represents the following expression using the variable b: "Billy's age in 8 years." b. Write an equation using the expression above if in 8 years Billy will be 21 years old. c. How old is Billy now? d. Write and solve a word problem that matches the equation: a - 6 = 10. "the sum of the squares of two consecutive odd integers is 2594. find the two integers." How did king Henry VIII cleverly get parliament to agree with his act of supremacy in 1534? What is the sum of the first eight terms of a geometric series whose first term is 3 and whose common ratio is 1/2? Before the age of 3, most children are unable to demonstrate __________ speech. How many wars were there in the usa from 2005-2017? A baby elephant is stuck in a mud hole. to help pull it out, game keepers use a rope to apply a force f with arrowa, as part a of the drawing shows. by itself, however, force f with arrowa is insufficient. therefore, two additional forces f with arrowb and f with arrowc are applied, as in part b of the drawing. each of these additional forces has the same magnitude f. the magnitude of the resultant force acting on the elephant in part b of the drawing is k times larger than that in parta. find the ratio f fa when k = 2.10. (take = 18.0.) f fa = 1.05 incorrect: your answer is incorrect. in this quotation "if you tie a horse to a stake do you expect he will grow fat if you pen an indian on a small spot of earth and compel him to stay there he will not be contented nor will he grow and prosper'' chief joseph is referring to the U.S government policy of.... Which expression is equivalent to the expression 2\3 (3- 1\2) (-1)? Question 3 options:-2 + 1\3 + 2\32 - 1\3-2 +1\3-12 + 1\3 In the formula C=prn, p stand for ____?A. PercentB. Price Per ItemC. PromotionD. Period What country would be at 13 degrees south and 17 degrees east at? Point A is located at 24 and point C is located at 36 on the number line below. Which value would represent point B, halfway between point A and point C? Steam Workshop Downloader