Each of the three plates has a mass of 10 kg. if the coefficients of static and kinetic friction at each surface of contact are μs = 0.3 and μk = 0.2 , respectively, determine the acceleration of each plate when the three horizontal forces are applied.

Answers

Answer 1
Even though you forgot to include the diagram of the problem, I found a similar problem as shown in the top of the picture. The diagrams at the bottom are force diagrams of each plate.

For plate D, the forces acting on it are the horizontal force 18 N, and the opposite frictional force which is equal to uk*W = 0.2(10 kg)(9.81 m/s²) = 19.62 N.
F = ma
19.62 N - 18 N = 10 kg(a)
a = 0.162 m/s²

For plate C, the forces acting on it are: horizontal 100 N, and the two opposite frictional forces from the top and bottom plates D and B.
F = ma
100 N - 2(19.62 N) = (10 kg)(a)
a = 6.076 m/s²

For plate B, because A is not moving, we use us instead of uk.
F = ma
0.3(10 kg)(9.81 m/s²) - 15 N = (10 kg)(a)
a = 2.943 m/s²
Each Of The Three Plates Has A Mass Of 10 Kg. If The Coefficients Of Static And Kinetic Friction At Each
Answer 2

Final answer:

To calculate the acceleration of each plate, first find the force of kinetic friction using the mass of the plates and coefficients of friction. The acceleration can then be found by applying Newton's second law, considering the net force on each plate after friction is taken into account.

Explanation:

To determine the acceleration of each plate when three horizontal forces are applied, we first need to understand the role of static and kinetic friction. Given each plate has a mass of 10 kg, we can calculate the normal force (N) exerted by each plate, which is necessary for finding frictional forces. The normal force is equal to the weight of the plate, calculated as N = mg, where m is the mass and g is the acceleration due to gravity (9.8 m/s2). Thus, for a 10 kg plate, N = 10 kg × 9.8 m/s2 = 98 N.

The maximum static friction force that must be overcome to start moving the plate is calculated using Fₛ(max) = μsN, where μs is the coefficient of static friction (0.3). Therefore, Fₛ(max) = 0.3 × 98 N = 29.4 N. Once motion begins, the kinetic friction force applies, calculated using Fₘ = μkN, where μk is the coefficient of kinetic friction (0.2). Therefore, Fₘ = 0.2 × 98 N = 19.6 N. To find the acceleration of each plate, we apply Newton's second law of motion (F = ma), subtracting the kinetic friction force from the applied force, and solving for a.

Without specific values for the applied forces in the question, we've laid out the framework to calculate the acceleration. It's important to subtract the kinetic friction force from the applied force to find the net force before applying Newton's second law.


Related Questions

A thief plans to steal a gold sphere with a radius of 28.5 cm from a museum. if the gold has a density of 19.3 g/cm3, what is the mass of the sphere in pounds? [the volume of a sphere is v=(4/3)Ïr3.]

Answers

Radius of gold sphere radius r=28.5
The volume of the sphere is =4/3*3.14*r*r*r.
=1.01*10^5 cm^3.
The density of gold is 19.3 g/cm^3.
The relation between the density, volume, and mass
Density=Mass/Volume.
1.95*10^6 g=Mass
1.95*10^6 g *0.0022 pounds
4.29*10^3 pounds.
Hence mass of the sphere is 4.29*10^3 pounds.

"if the left-hand mass is 2.3 kg ,what should the right-hand mass be so that it accelerates downslope at 0.64 m/s2?"

Answers

Final answer:

In order to maintain equilibrium and have a downslope acceleration of 0.64 m/s² with a 2.3 kg mass, the right-hand mass should be approximately 0.15 kg.

Explanation:

In physics, the question is referring to the concept of equilibrium through the force of gravity. When a downtrend pushes left-hand mass with a certain acceleration, it implies that any other force (potentially from another mass on the opposite direction) counteracts. This counteraction or the right-hand mass is what we are now to calculate.

Assuming there is no friction, the force acting on the left-hand mass (F1) can be calculated using Newton's second law of motion, F = ma where m is the mass and a is the acceleration, yielding F1 = 2.3 kg * 0.64 m/s² = 1.472 N

For equilibrium to be maintained, the force due to the right-hand mass (F2) must equal F1. Therefore, if g is the acceleration due to gravity (9.81 m/s²), the right-hand mass (m2) can be found using the formula m2 = F1 / g, simplifying to m2 = 1.472 N / 9.81 m/s² = 0.15 kg.

Learn more about Equilibrium through Force of Gravity here:

https://brainly.com/question/32135519

#SPJ12

Bernoulli equation deals with the law of conservation of

Answers

Bernoulli's principle can be borrowed from the principle of conservation of energy. 

Hope this helped.

Final answer:

Bernoulli's equation is a form of the conservation of energy principle in fluid flow. It states that the sum of pressure, kinetic energy, and potential energy is constant at any two points in an incompressible, frictionless fluid.

Explanation:

Bernoulli's equation is a form of the conservation of energy principle in fluid flow. It states that the sum of pressure, kinetic energy, and potential energy is constant at any two points in an incompressible, frictionless fluid.

For example, if a fluid flows through a pipe with varying diameters, according to Bernoulli's equation, the pressure decreases as the fluid velocity increases.

This concept is important in the study of fluid mechanics and is used to analyze and predict the behavior of fluids in various applications.

The average distance between the variable scores and the mean in a set of data is the __________. A. range B. standard deviation C. mean D. median

Answers

The average distance between the variable scores and the mean in a set of data is the standard deviation.

Answer: B. standard deviation

Explanation:

In statistics , Standard deviation is a term which is used to to represent the measure of dispersion of data from the mean-value.

It is used to determine how closely the data values are with the mean of the entire data.

It is the average distance from each data value to the mean.

Hence, the average distance between the variable scores and the mean in a set of data is the standard deviation.

A student at a window on the second floor of a dorm sees her physics professor walking on the sidewalk beside the building. she drops a water balloon from 18.0 meters above the ground when the professor is 1.00 meter from the point directly beneath the window. if the professor is 1.70 meters tall and walks at a rate of 0.450 m/s, does the balloon hit her? if not, how close does it come? (10 pts)

Answers

Refer to the diagram shown below.

In order for the balloon to strike the professor's head, th balloon should drop by 18 - 1.7 = 16.3 m in the time at the professor takes to walk 1 m.
The time for the professor to walk 1 m is
t = (1 m)/(0.45 m/s) = 2.2222 s

The initial vertical velocity of the balloon is zero.
The vertical drop of the balloon in 2.2222 s is
h = (1/2)*(9.8 m/s²)*(2.2222 s)² = 24.197 m

Because 24.97 > 16.3, the balloon lands in front of the professor, and does not hit the professor.

The time for the balloon to hit the ground is
(1/2)*(9.8)*t² = 18
t = 1.9166 s

The time difference is 2.2222 - 1.9166 = 0.3056 s
Within this time interval, the professor travels 0.45*0.3056 = 0.175 m
Therefore the balloon falls 0.175 m in front of the professor.

Answer: 
The balloon misses the professor, and falls 0.175 m in front of the professor.
Final answer:

According to the calculations, the water balloon does not hit the professor. It comes closest to her when it is approximately 0.316 meters away.

Explanation:

In order to determine if the water balloon hits the professor, we need to calculate the time it takes for the balloon to reach the ground. The time can be found using the equation:



t = \sqrt{\frac{2h}{g}}



Where t is the time, h is the height (18.0 meters), and g is the acceleration due to gravity (9.8 m/s^2). Plugging in the values, we find that it takes approximately 1.52 seconds for the balloon to reach the ground.



We also need to calculate the horizontal distance the professor walks in that time. The distance can be found using the equation:



d = vt



Where d is the distance, v is the velocity (0.450 m/s), and t is the time (1.52 seconds). Plugging in the values, we find that the professor walks approximately 0.684 meters during that time.



Therefore, since the professor is 1.00 meter from the point directly beneath the window, the balloon does not hit her. It comes closest to her when it is 0.316 meters away from her.

Estimate by what factor a person can jump farther on the moon as compared to the earth if the takeoff speed and angle are the same. the acceleration due to gravity on the moon is one-sixth what it is on earth.

Answers

By six times, a person should jump farther on the moon as compared to the earth if the takeoff speed and angle are the same.

The height of the earth can be computed using the third equation of motion. The third equation of motion, referred to as one of the kinematic equations, relates the final velocity, initial velocity, acceleration, and displacement of an object.

The height of the earth is given as:

[tex]v^2-u^2= 2gH_e\\v^2 = 2\times9.8\timesH_e\\H_e = v^2/2g[/tex]

The height of the moon is given as:

[tex]v^2-u^2 = 2(g/6)H_m\\v^2 = g/3H_m\\H_m = 3v^2/g[/tex]

The ratio of both heights is given as:

[tex]H_m/H_e = 3v^2/g/(v^2/2g)\\H_m/H_e = 6\\H_m = 6H_e[/tex]

Hence, by six times, a person should jump farther on the moon as compared to the Earth if the takeoff speed and angle are the same.

To learn more about Speed, here:

https://brainly.com/question/28224010

#SPJ12

Final answer:

A person can jump about six times further on the Moon compared to Earth given the same initial angle and speed. This is because the acceleration due to gravity on the moon is one-sixth that of Earth, resulting in a weaker gravitational pull.

Explanation:

The topic in question involves the concept of gravitational forces and its influence on the jump length of a person on Earth versus the Moon. The acceleration due to gravity on the Moon is about one-sixth that of Earth, meaning the gravitational force is much weaker. Therefore, if a person jumps with the same speed and angle on the moon as on Earth, they would be able to jump approximately six times farther due to the weaker gravitational pull.

For better understanding, consider this example. If a person jumps and covers a certain distance on Earth in a given time, the same person would be airborne six times as long on the Moon if they jumped with the same velocity. This is due to the inverse relationship between the time of flight (airborne time) and acceleration due to gravity (g). Since g for the Moon is one-sixth that of Earth, a person can jump about six times further.

Learn more about Gravity on the Moon here:

https://brainly.com/question/23765204

#SPJ11

The MSDS for chloroform indicates that it is a clear liquid that has a pleasant smell and substantial vapor pressure. People should avoid inhaling its vapors, and it is sensitive to light.

Answers

True.

According to MSDS for Chloroform, it is a clear, colorless liquid. it does have a pleasant and sweet smell and taste sweet as well as having a "burning" taste. It has a vapor pressure of 21.1 kPa ( @ 20 degrees Celsius ). It is sensitive to light and should be stored in light-resistant containers and should not be inhaled.

Brainlest answer is always appreciated !

If the total charge on a rod of length 0.4 m is 2.6 nc, what is the magnitude of the electric field at a location 3 cm from the midpoint of the rod?

Answers

Let the rod be on the x-axes with endpoints -L/2 and L/2 and uniform charge density lambda (2.6nC/0.4m = 7.25 nC/m). 

The point then lies on the y-axes at d = 0.03 m. 

from symmetry, the field at that point will be ascending along the y-axes. 


A charge element at position x on the rod has distance sqrt(x^2 + d^2) to the point. 

Also, from the geometry, the component in the y-direction is d/sqrt(x^2+d^2) times the field strength. 


All in all, the infinitesimal field strength from the charge between x and x+dx is: 


dE = k lambda dx * 1/(x^2+d^2) * d/sqrt(x^2+d^2) 


Therefore, upon integration, 


E = k lambda d INTEGRAL{dx / (x^2 + d^2)^(3/2) } where x goes from -L/2 to L/2. 


This gives:


E = k lambda L / (d sqrt((L/2)^2 + d^2) ) 


But lambda L = Q, the total charge on the rod, so 


E = k Q / ( d * sqrt((L/2)^2 + d^2) )

Final answer:

To calculate the electric field magnitude at a distance from a charged rod, determine the charge per unit length and use the electric field formula.

Explanation:

Electric Field and Charged Rod:

To find the magnitude of the electric field at a distance from a charged rod, you can use the formula for the electric field of a long, charged rod. Given the total charge on the rod and its length, you can calculate the charge per unit length. Then, apply the formula to find the electric field at the specified location.

Let the rod be on the x-axes with endpoints -L/2 and L/2 and uniform charge density lambda (2.6nC/0.4m = 7.25 nC/m).

The point then lies on the y-axes at d = 0.03 m.

from symmetry, the field at that point will be ascending along the y-axes.

A charge element at position x on the rod has distance sqrt(x^2 + d^2) to the point.

Also, from the geometry, the component in the y-direction is d/sqrt(x^2+d^2) times the field strength.

All in all, the infinitesimal field strength from the charge between x and x+dx is:

dE = k lambda dx * 1/(x^2+d^2) * d/sqrt(x^2+d^2)

Therefore, upon integration,

E = k lambda d INTEGRAL{dx / (x^2 + d^2)^(3/2) } where x goes from -L/2 to L/2.

This gives:

E = k lambda L / (d sqrt((L/2)^2 + d^2) )

But lambda L = Q, the total charge on the rod, so

E = k Q / ( d * sqrt((L/2)^2 + d^2) )

How much energy does the electron have initially in the n=4 excited state?what is the change in energy if the electron from part a now drops to the ground state?

Answers

what it looks to be that you found in A was the "initial"...b/c the question asks: 
"how much energy does the electron have 'initially' in the n=4 excited state?" 

"final" would be where it 'finally' ends up at, ie. its last stop...as for this question...the 'ground state' as in its lowest energy level. 

The answer comes to: −1.36×10^−19 J


You use the same equation for the second part as for part a. 
just have to subract the 2 as in the only diff for part 2 is that you use 1squared rather than 4squared & subract "final -initial" & you should get -2.05*10^-18 as your answer. 

Answer:

Energy  the electron have initially [tex]E_4=-0.85 \rm ev[/tex],

The change in energy if the electron from part a now drops to the ground state is [tex]12.75\rm ev[/tex]

Explanation:

Given information:

Electron have initially in the n=4 excited state,

We know,

Energy of an electron is given by,

[tex]E_n=-13.6\rm ev\times\frac{z^2}{n^2}[/tex]

On substituting n=4 for excited state energy,

[tex]E=-13.6\rm ev\times\frac{1^2}{4^2}=-0.85\rm ev[/tex]

Change in energy from excited state to ground state,

For ground state n=1,

[tex]E=-13.6\rm ev\times z^2\times( \frac{1}{(n_2)^2}-\frac{1}{(n_1)^2})[/tex]

On substituting [tex]n_1=1[/tex],[tex]n_2=4[/tex],

[tex]\Delta E=E_4-E_1=-13.6\rm ev\times 1^2\times( \frac{1}{(4)^2}-\frac{1}{(1)^2})=12.75ev[/tex]

Hence, energy  the electron have initially [tex]E_4=-0.85 \rm ev[/tex],

NOTE:- [tex]1\rm ev=-1.602\times 10^{-19}joule[/tex]

Energy  the electron have initially [tex]E_4=-0.85 \rm ev[/tex],

The change in energy if the electron from part a now drops to the ground state is [tex]12.75\rm ev[/tex]

For more details refer the link:

https://brainly.com/question/13818669?referrer=searchResults

Mayan kings and many school sports teams are named for the puma, cougar, or mountain lion felis concolor, the best jumper among animals. it can jump to a height of 13.7 ft when leaving the ground at an angle of 42.7°. with what speed, in si units, does it leave the ground to make this leap? m/s

Answers

Let v = the speed with which the animal leaves the ground.

Because the angle is 42.7°. the vertical launch velocity is
v sin(42.7°) = 0.6782v ft/s

Ignore air resistance, and g = 32.2 ft/s².

At maximum height, the vertical velocity is zero.
Because the maximum height is 13.7 ft, therefore
(0.6782v ft/s)² - 2*(32.2 ft/s²)*(13.7 ft) = 0
0.46v² = 882.28
v = 43.795 ft/s

Note that
1 ft/s = 0.3048 m/s
Therefore
v = 43.795*0.3048 = 13.349 m/s

Answer: 13.5 m/s  (nearest tenth)
Final answer:

The puma, cougar, or mountain lion leaves the ground to make a leap with a speed of approximately 8.32 m/s.

Explanation:

To find the speed at which the animal leaves the ground, we can use the kinematic equation for projectile motion:

[tex]\[v = \sqrt{2gh},\][/tex]

where [tex]\(v\)[/tex] is the speed, [tex]\(g\)[/tex] is the acceleration due to gravity (approximately [tex]\(9.81 \, \text{m/s}^2\))[/tex], and [tex]\(h\)[/tex] is the vertical height.

Given that the height  [tex]\(h\)[/tex] is 13.7 ft, we first convert it to meters:

[tex]\[h = 13.7 \, \text{ft} \times 0.3048 \, \text{m/ft} = 4.1756 \, \text{m}.\][/tex]

Substituting [tex]\(h\)[/tex] into the equation, we have:

[tex]\[v = \sqrt{2 \times 9.81 \, \text{m/s}^2 \times 4.1756 \, \text{m}} \approx 8.32 \, \text{m/s}.\][/tex]

A crate pushed along the floor with velocity v⃗ i slides a distance d after the pushing force is removed. if the mass of the crate is doubled but the initial velocity is not changed, what distance does the crate slide before stopping?

Answers

If the mass of the crate is doubled but the initial velocity is not changed, the crate slides distance d before stopping.

[tex]\texttt{ }[/tex]

Further explanation

Let's recall the formula of Kinetic Energy as follows:

[tex]\large {\boxed {E_k = \frac{1}{2}mv^2 }[/tex]

Ek = Kinetic Energy ( Newton )

m = Object's Mass ( kg )

v = Speed of Object ( m/s )

Let us now tackle the problem !

[tex]\texttt{ }[/tex]

Given:

initial height = h₁ = 26 m

final height = h₂ = 16 m

initial speed = v₁ = 0 m/s

coefficient of friction = μ

gravitational acceleration = g

distance = d

Asked:

final speed = v₂ = ?

Solution:

We will use Work and Energy formula to solve this problem as follows:

[tex]W = \Delta Ek[/tex]

[tex]-f d = Ek_{final} - Ek_{initial}[/tex]

[tex]-\mu N d = \frac{1}{2}m (v_f)^2 - \frac{1}{2} m (v_i)^2[/tex]

[tex]-\mu mg d = \frac{1}{2}m (v_f)^2 - \frac{1}{2} m (v_i)^2[/tex]

[tex]-\mu mg d = \frac{1}{2}m (0)^2 - \frac{1}{2} m (v_i)^2[/tex]

[tex]-\mu mg d = \frac{1}{2} m (v_i)^2[/tex]

[tex]\mu g d = \frac{1}{2} (v_i)^2[/tex]

[tex]d = \frac{1}{2} (v_i)^2 \div ( \mu g )[/tex]

[tex]\boxed {d = \frac { (v_i)^2 } { 2 \mu g } }[/tex]

[tex]\texttt{ }[/tex]

From information above we can conclude that the distance is independent to the mass of the crate.

If the mass of the crate is doubled but the initial velocity is not changed, the crate slides the same distance d before stopping.

[tex]\texttt{ }[/tex]

Learn moreImpacts of Gravity : https://brainly.com/question/5330244Effect of Earth’s Gravity on Objects : https://brainly.com/question/8844454The Acceleration Due To Gravity : https://brainly.com/question/4189441Newton's Law of Motion: https://brainly.com/question/10431582Example of Newton's Law: https://brainly.com/question/498822

[tex]\texttt{ }[/tex]

Answer details

Grade: High School

Subject: Physics

Chapter: Dynamics

If the mass of the crate is doubled while maintaining the same initial velocity, the stopping distance will be halved. This is due to the doubled frictional force from the increased mass. Therefore, the crate will slide a distance of d/2 before coming to a stop.

Initial situation: Crate pushed with initial velocity v_i slides distance (d) after force is removed.Kinetic energy: [tex]\( K = \frac{1}{2} m v_i^2 \).[/tex]Friction stops crate: Work done by friction equals kinetic energy.- Frictional force proportional to normal force; if mass doubles, frictional force doubles.- Work done by friction over distance [tex]\( d \): \( W = \mu m g d \)[/tex] where [tex]\( \mu \)[/tex] is the coefficient of friction and g is acceleration due to gravity.- When mass doubles, frictional force becomes [tex]\( 2 \mu m g \)[/tex], work done becomes [tex]\( 2 \mu m g d \)[/tex]- To stop crate with doubled mass: [tex]\( \mu (2m) g d' = m v_i^2 \)[/tex]- Solving for new stopping distance [tex]\( d' \): \( d' = \frac{d}{2} \)[/tex]

Thus, the crate will slide half the distance before stopping if the mass is doubled but the initial velocity is unchanged.

A(n) ____ stores data as a trail of tiny pits or dark spots on its surface. select one:

a. hard disk

b. magnetic storage device

c. optical storage device

d. solid state storage device

Answers

That's an 'optical' storage device, like a CD or DVD.

Alice and tom dive from an overhang into the lake below. tom simply drops straight down from the edge, but alice takes a running start and jumps with an initial horizontal velocity of 25 m/s. neither person experiences any significant air resistance. compare the time it takes each of them to reach the lake below. alice and tom dive from an overhang into the lake below. tom simply drops straight down from the edge, but alice takes a running start and jumps with an initial horizontal velocity of 25 m/s. neither person experiences any significant air resistance. compare the time it takes each of them to reach the lake below. tom reaches the surface of the lake first. alice reaches the surface of the lake first. alice and tom will reach the surface of the lake at the same time.

Answers

Alice and Tom reach the lake simultaneously due to gravity's independence from their initial horizontal velocities. The correct answer is (E).

Let us consider the concept of horizontal motion and vertical motion of a projectile (in this case, Alice and Tom) are independent of each other when there is no air resistance.

This means that the horizontal velocity does not affect the vertical motion.

Both Alice and Tom are subject to the same gravitational acceleration, and since they are both falling vertically, they will reach the surface of the lake at the same time.

So, the correct answer is (E). Alice and Tom will reach the surface of the lake at the same time.

To learn more on Speed click:

https://brainly.com/question/28224010

#SPJ12

Alice and tom dive from an overhang into the lake below. tom simply drops straight down from the edge, but alice takes a running start and jumps with an initial horizontal velocity of 25 m/s. neither person experiences any significant air resistance. compare the time it takes each of them to reach the lake below.

(A) alice and tom dive from an overhang into the lake below.

(B) tom simply drops straight down from the edge, but alice takes a running start and jumps with an initial horizontal velocity of 25 m/s.

(c) neither person experiences any significant air resistance. compare the time it takes each of them to reach the lake below. tom reaches the surface of the lake first.

(D) alice reaches the surface of the lake first.
(E) alice and tom will reach the surface of the lake at the same time.

Both Alice and Tom will reach the surface of the lake at the same time because their times to hit the water depend only on the vertical distance and gravitational acceleration.

Alice and Tom both dive from the same overhang into a lake below.

Although Alice takes a running start and has an initial horizontal velocity of 25 m/s, the time it takes both of them to reach the lake is the same. This is because the vertical motion for both divers is under uniform acceleration due to gravity, which is not affected by their horizontal velocities.The time it takes to reach the surface is dictated by the height of the overhang and gravity alone.

Both Alice and Tom experience the same vertical acceleration and fall the same vertical distance, hence, they will both reach the surface of the lake at the same time.

Determine the vertical motion of each diver, which is independent of horizontal motion.Use the kinematic equation for vertical motion: h = 1/2 * g * t².Since both Alice and Tom start from the same height and are only influenced by gravity (9.8 m/s²), their times to hit the water are the same.

In 1967, new zealander burt munro set the world record for an indian motorcycle, on the bonneville salt flats in utah, with a maximum speed of 82.1 m/s. the one-way course was 8.045 km long. if it took burt 4.00 s to reach a velocity of 26.82 m/sec, how long (in seconds) did it take burt to reach his maximum speed? how far (in meters) did he travel during his acceleration? look at the equations in the last section. find acceleration first, then the time to accelerate to 82.1 m/s, then the x displacement during the time elapsed.

Answers

Draw a velocity-time diagram as shown below.

Because a velocity of 26.82 m/s is attained in 4.00 s from rest, the average acceleration is
a = 26.82/4 = 6.705 m/s²
The time required to reach maximum velocity of 82.1 m/s is
t₁ = (82.1 m/s)/(6.705 m/s²) = 12.2446 s

The distance traveled during the acceleration phase is
s₁ = (1/2)at₁²
    = (1/2)*(6.705 m/s²)*(12.2446 s)²
    = 502.64 m

Answer:
The time required to reach maximum speed is 12.245 s
The distance traveled during the acceleration phase is 502.6 m

A place kicker must kick a football from a point 36.0 m (about 40 yards) from the goal. half the crowd hopes the ball will clear the crossbar, which is 3.05 m high. when kicked, the ball leaves the ground with a speed of 23.4 m/s at an angle of 50.0° to the horizontal. (a) by how much does the ball clear or fall short of clearing the crossbar

Answers

The ball clears by 11.79 meters Let's first determine the horizontal and vertical velocities of the ball. h = cos(50.0)*23.4 m/s = 0.642788 * 23.4 m/s = 15.04 m/s v = sin(50.0)*23.4 m/s = 0.766044 * 23.4 m/s = 17.93 m/s Now determine how many seconds it will take for the ball to get to the goal. t = 36.0 m / 15.04 m/s = 2.394 s The height the ball will be at time T is h = vT - 1/2 A T^2 where h = height of ball v = initial vertical velocity T = time A = acceleration due to gravity So plugging into the formula the known values h = vT - 1/2 A T^2 h = 17.93 m/s * 2.394 s - 1/2 9.8 m/s^2 (2.394 s)^2 h = 42.92 m - 4.9 m/s^2 * 5.731 s^2 h = 42.92 m - 28.0819 m h = 14.84 m Since 14.84 m is well above the crossbar's height of 3.05 m, the ball clears. It clears by 14.84 - 3.05 = 11.79 m

If a microwave oven produces electromagnetic waves with a frequency of 2.70 ghz, what is their wavelength?

Answers

Ok this one is pretty straight forward :) This is what we know:

1. 2.7GHz is how many vibrations in 1 second. (2.7 x10^9 Hz)
2. Light always has a constant speed 2.9 x10^8 meters per second.

Therefore to find out the length of one of those vibrations you just divide        2.9 x10^8 by 2.7 x10^9
which looks like this in your calculator:
290000000 / 2700000000
= 0.107m
= 10cm

You are in a hot air balloon, 100 m above the flat Texas plains. You look out toward the horizon.
How far out can you see-that is, how far is your horizon? The Earth's radius is about 6400 km.
Express your answer using one significant figure.

Answers

Actually we could create a triangle in this case. The hypotenuse is the radius of Earth plus the height above the earth, while the two sides are the radius of Earth and the scope of vision.

 

That is:

(6,400,000 m + 100 m)^2 = (6,400,000 m)^2 + b^2

b^2 = 1,280,010,000

b = 35,777.23 m

 

You can see 35,777.23 m far.

When you take off in a jet aircraft, there is a sensation of being pushed back into the seat. explain why you move backward in the seat—is there really a force backward on you? (the same reasoning explains whiplash injuries, in which the head is apparently thrown backward.)?

Answers

Answer:

Newton's third law of motion

Explanation:

As per Newton's third law of motion, every action has its equal and opposite reaction.

When a jet aircraft takes off it exerts a force and gains upward acceleration, the same force is applied on your body as it is moving along the jet hence this force tries to push you back into the seat.

For instance, while rowing a boat you try to apply force on water with paddles in backward direction, the same amount of force is reverted by water thus moving the boat in forward direction.

Hence Newton's third law of motion explains the phenomena.

Answer:

Newton's third law of motion

Explanation:

As per Newton's third law of motion, When two bodies interact they apply force to one another that are equal in magnitude and opposite  in direction.

During the take off a jet aircraft it exerts a force and gain upward acceleration, the same amount of force is applied on our body because we are in contact with jet due to third law we pushed back into the seat..

[tex]F_1=-F_2[/tex]

For more details please refer link:

https://brainly.in/question/26139428?referrer=searchResults

If the work put into a lever is 25.0 joules and the work done by the lever is 20.0 joules, what is the efficiency of the lever? 100% because energy must be conserved. 80.0% 45.0% 5.0%

Answers

80% , hope this helps 

Answer: The efficiency of the lever is 80%.

Explanation:

An efficiency is the measure of how much wok or energy is conserved in a given process. It is defined as the ratio of output work and input work. If the energy is totally conserved in a process, the the percentage efficiency will be 100%.

Mathematically,

[tex]\%\text{ efficiency}=\frac{W_{out}}{W_{in}}\times 100[/tex]

Where,

[tex]W_{out}[/tex] = Work done by the lever = 20 J

[tex]W_{in}[/tex] = Work put in the lever = 25 J

Putting values in above equation, we get:

[tex]\%\text{ efficiency}=\frac{20}{25}\times 100\\\\\%\text{ efficiency}=80\%[/tex]

Hence, the efficiency of the lever is 80%.

If a 1.50 kg mass revolves at the end of a string 0.50 m long, and its tangential speed is 6.0 m/s, calculate the centripetal force.

Answers

You should get about 110 for an answer

Answer:

[tex]108\ N[/tex]

Explanation:

Mass of object, [tex]m=1.50\ kg.[/tex]

Length of string, [tex]r=0.50\ m.[/tex]

Tangential speed, [tex]v_t=6.0\ m/s.[/tex]

Now, centripetal force F of a object moving in given radius r and mass m moving with velocity v.

Here , object moves along the ends of string. Therefore, radius is equal to length of string.

[tex]F=\dfrac{m \times v_t^2}{r}.[/tex]

Putting values of m,v and r in above equation.

We get, [tex]F=\dfrac{1.50\times (6.0)^2}{0.50} \ N=108 \ N.[/tex]

Hence, this is the required solution.

A football player carrying the ball runs straight ahead at the line of scrimmage and directly into a wall of defensive linemen. The ball carrier has an initial speed of 7.68 m/s and is stopped in a time interval of 0.202 s. Find the magnitude and direction of his average acceleration.

Answers

Final answer:

The magnitude of the average acceleration the football player experiences is 38.02 m/s², and the direction of the acceleration is backward, towards the line of scrimmage.

Explanation:

To calculate the magnitude and direction of the average acceleration experienced by the football player, we use the following kinematic equation:

a = (v_f - v_i) / t

Where:

v_f is the final velocityv_i is the initial velocityt is the time taken to stop

Given:

v_i = 7.68 m/s (Initial speed of the player)v_f = 0 m/s (The player comes to a stop)t = 0.202 s (Time interval)

Now we can plug these values into our equation to find a:

a = (0 - 7.68 m/s) / 0.202 s

a = -7.68 m/s / 0.202 s

a = -38.02 m/s2

The negative sign indicates that the acceleration is in the opposite direction of the player's initial motion. Since the player was moving forward and came to a stop, the acceleration is directed backward, towards the line of scrimmage.

Michael jordan's vertical leap is reported to be 47.2 inches. what is his takeoff speed? give your answer in meters per second

Answers

Michael Jordan's takeoff speed for his 47.2-inch vertical leap would be approximately 4.85 m/s, calculated using the kinematic equation for vertical motion.

To find Michael Jordan's takeoff speed, we can use the kinematic equation for vertical motion without air resistance: vf^2 = vi^2 + 2 * a * d, where vf is the final velocity (0 m/s at the peak of the jump), vi is the initial velocity (takeoff speed we want to find), a is the acceleration due to gravity (-9.81 m/s^2), and d is the vertical leap distance.

First, we convert the vertical leap from inches to meters: 47.2 inches = 1.2 meters (approximately).

Now, we can set vf to 0 m/s and solve for vi:

0 = vi^2 + 2 * (-9.81) * 1.2

vi^2 = 2 * 9.81 * 1.2

vi = sqrt(2 * 9.81 * 1.2)

vi ≈ 4.85 m/s (rounded to two decimal places)

Therefore, Michael Jordan's takeoff speed would be approximately 4.85 m/s.

If one of the satellites is at a distance of 20,000 km from you, what percent accuracy in the distance is required if we desire a 2-meter uncertainty

Answers

The percent accuracy is 10⁻⁵%. It is determined by the formula of percent accuracy.

Given information:

Distance of satellite = 20,000km

= 2 x 10⁷ m

Uncertainty = 2 meter

Uncertainty refers to a lack of exactness or precision in measurement, calculation, or prediction. It represents the degree of doubt or error associated with a particular value or result. Uncertainty is an essential concept in various fields, including science, engineering, statistics, and decision-making.

The formula to determine percent accuracy is:

[tex]\rm Percent \ accuracy= \frac{Uncertainty}{Measured d\ distance} \times 100[/tex]

Substituting the values in the formula:

[tex]\rm Percent \ accuracy = \frac{2}{2\times 10^7}\times 100 \\\rm Percent \ accuracy = \frac{1}{10^5} \\[/tex]

Simplifying:

Percent accuracy = 10⁻⁵%.

Therefore, the percent accuracy is 10⁻⁵%.

Learn more about Percent  accuracy, here:

https://brainly.com/question/33573107

#SPJ12

A basketball referee tosses the ball straight up for the starting tip-off. at what velocity (in m/s) must a basketball player leave the ground to rise 1.23 m above the floor in an attempt to get the ball?

Answers

The formular for solving this equation is 
mgh = mv^2/2
The M on both sides of the equation stand for mass and the two of them cancel each other out and the equation becomes:
gh = V^2 / 2
g = 9.8 m/s
h = 1.23 m
V ?
V is the velocity that we need to find, so we are going to make V the subject of the formular:
V = Square root of 2gh = square root of [2 * 9.8 * 1.23] = square root of [24.108]= 4.9 
Thus, the velocity = 4.90 m/s

 

The gravitational strength at the poles is greater than the gravitational strength at the equator. What will happen to an object when it moves from the poles to the equator?
A.Its mass will increase.
B. Its mass will decrease.
C. Its weight will increase.
D.Its weight will decrease

Answers

We must always take note that mass is an inherent property of an object. It never change unless there is change in size of the object. While weight is the product of mass and gravity, so it changes depending on the gravitational pull.

If the gravitational pull decreases as he moves from the poles to the equator, therefore its weight will decrease.

 

Answer:

D.Its weight will decrease

The electrolyte in a typical wet storage cell or battery is a mixture of water and

Answers

A mixture of water and s͟͟u͟͟l͟͟f͟͟u͟͟r͟͟i͟͟c͟͟ a͟͟c͟͟i͟͟d͟͟

Answer:

Sulfuric acid.

Explanation:

A battery is a device which contains one or more electrical chemical cells which are connected in a electrical circuit to power the objects like flashlight, speaker, etc.

When a battery is supply electric power then its positive terminal classified as cathode and negative as anode.

And as we know that the electrolyte in a typical wet storage battery or cell contains 67% water and 33% of sulfuric acid.

What best explains why a person can become sunburned by spending too much time at the beach

Answers

The reason as to why person has sunburn when spending too much time at the beach is because too much exposure to the sun can damage the skin because it exposes it to the sun for a long period of time, causing skin to have damage and feel pain.
Sunlight is an electromagnetic wave carrying energy that is absorbed by the skin

A brick is released with no initial speed from the roof of a building and strikes the ground in 2.50 s, encountering no appreciable air drag. (a) how tall, in meters, is the building? (b) how fast is the brick moving just before it reaches the ground? (c) sketch graphs of this falling brickâs acceleration, velocity, and vertical position as functions of time.

Answers

initial velocity = 0
time = 2.50 s
acceleration = gravity, 9.8 m/s^2

use the equations for linear motion.
s = ut + (1/2)at^2
v = u + at

A. displacement given u, a and t.
s = (0)(2.50) + (1/2)(9.8)(2.50)^2
s = 0 + 4.9(6.25)
s = 30.625 m
three significant figures..
s = 30.6 m

B. final velocity given u, a and t
v = 0 + 9.8(2.50)
v = 24.5 m/s

C. graphs
s vs. t
object starts at zero and displacement increases linearly to (2.5, 30.6) and stops. slope of line is average velocity, s/t
v vs. t
object starts at zero velocity and increases linearly to (2.5, 24.5) and stops. slope of line is acceleration, v/t.
a vs. t
acceleration is gravity, it's constant horizontal line at; y = 9.8. stops at (2.5,9.8)

Answer:

Part a)

y = 30.625 m

Part b)

v = 24.5 m/s

Explanation:

Part a)

As we know that brick will hit the floor after t = 2.50 s

so here we will have

[tex]y = v_i t + \frac{1}{2}at^2[/tex]

[tex]y = 0 + \frac{1}{2}(9.8)(2.50^2)[/tex]

[tex]y = 30.625 m[/tex]

Part b)

velocity of the brick just before it will strike the ground is given as

[tex]v_f = v_i + at[/tex]

[tex]v_f = 0 + (9.8)(2.5)[/tex]

[tex]v_f = 24.5 m/s[/tex]

Part c)

The specific heat of ice is 0.5 calories/gram°C. 20 grams of ice will require _____ calories to raise the temperature 1°C. 0.5 1.0 5.0 10

Answers

0.5 x 20 = 10
The answer is 10.

Answer:

10 calories

Explanation:

The thermal energy needed to increase the temperature of a substance is given by

[tex]Q=m C \Delta T[/tex]

where

m is the mass of the substance

C is the specific heat of the substance

[tex]\Delta T[/tex] is the increase in temperature

In this problem, the mass of the ice is m=20 g, the specific heat is C=0.5 calories/gram°C, and the increase in temperature is [tex]\Delta T=1^{\circ}[/tex]. Therefore, the energy required is

[tex]Q=(20 g)(0.5 cal/g^{\circ}C)(1^{\circ}C)=10 cal[/tex]

the quality and pitch of a note depends respectively on?

Answers

the pitch of the note depends on the frequency of the sound source while the quality of the note dependa on the waveform.
Final answer:

The pitch of a note is determined by its frequency, with higher frequencies leading to higher pitches. The quality, or timbre, of a note depends on the shape of the waveform, influenced by various frequencies and phases of sound waves. These aspects combine to give each note its unique character.

Explanation:

The quality and pitch of a note depend on different aspects of sound waves. The pitch of a note is primarily determined by its fundamental frequency, which is measured in hertz (Hz). A higher frequency results in a higher pitch, making a note sound “sharper” or higher on the musical scale. For example, the piano note middle C has a frequency of 261.63 Hz. Musical intervals, like the octave, are based on the doubling of frequencies.

On the other hand, the quality or timbre of a note depends on the waveform's shape, which is influenced by the frequencies and phases of other sound waves produced alongside the fundamental frequency. This complexity allows us to distinguish between different instruments playing the same note due to the variety in waveforms. The timbre is what makes the same note played on a trumpet distinctly different from the same note played on a clarinet.

In summary, while pitch is a direct correlation to the frequency of sound, quality or timbre involves the intricate interplay of multiple frequencies and their waveform shapes, contributing to the unique character of each musical note.

Other Questions
After staining endospores will be ___ in a ____ cell 1/3m - 1 - 1/2n. m=21 n=12 How many liters of milk are in 334 gal (1 gal = 4 qt)? enter your answer in scientific notation? What role did compromise and negotiation play in the Constitutional Convention? 474: the 4 in the ones place is _____ the value of the 4 in the hundreds place. A gold mine has two elevators, one for equipment and another for the miners. The equipment elevator descends 66 feet per second. The elevator for the miners descends 1616 feet per second. One day, the equipment elevator begins to descend. After 2323 seconds, the elevator for the miners begins to descend. What is the position of each elevator relative to the surface after another 1616 seconds? At that time, which elevator is deeper? The position of the equipment elevator relative to the surface is negative 234234 feet. The position of the elevator for the miners relative to the surface is nothing feet. y (-5) = -7 can you help me solve this equation The atomic weight of boron is reported as 10.81, yet no atom of boron has the mass of 10.81 amu. explain What was the effect of the formation of the Delian League? ___ L = 240 kL ? A. 24,000B. 240,000C. 0.240D. 2.4 Write the slope-intercept form of the equation for the line Which would be expected to have a higher boiling point t-butyl alcohol or n-butyl alcohol? solve for x abx-cdx=15m Traditional medicine that focuses primarily on the treatment of illnesses with medication, rather than illness prevention and wellness, is sometimes referred to as the ___________ model. what is the value of a laptop that is 1700.00 with a decrease of 35% for 5 years Select the correct statement to describe when a sample of liquid water vaporizes into water vapor. Question 12 options: Temperature increases and molecular motion increases while shape becomes less defined. Temperature decreases and molecular motion increases while shape becomes less defined. Temperature decreases and molecular motion decreases while shape becomes more defined. Temperature increases and molecular motion decreases while shape becomes more defined. Find the approximate side length of a square game board with an area of 192 in2. The type of bonding and the numbers of covalent bonds an atom can form with other atoms are determined by __________. which statement explaining why toronto is a major port is fasle List three considerations when you choose memory. Steam Workshop Downloader