Final answer:
Forensic scientists determine the time of death by observing the sequence of physiological changes post-clinical death, examining taphonomic processes and environmental influences, and assessing body temperature changes. Rigor mortis and trauma timing also provide valuable information.
Explanation:
Forensic scientists employ a variety of methods to determine the time of death. After clinical death, where the heart stops, and circulation and breathing cease, biological death sets in within 4-6 minutes as brain cells begin to die. This is followed by other cellular deaths such as in the kidneys or eyes. The key stages of changes to look for in order from first to last include: cessation of heart beat, skin color changes and tightening, cell death (starting with the brain cells), muscle relaxation, and finally, the emptying of the bladder and bowels.
First: The heart stops (clinical death).
Second: Cells start to die, particularly in the brain 3-7 minutes after the heart stops.
Third: Muscles relax and bladder/bowels empty.
Fourth: Rigor mortis sets in several hours after death and peaks at 12-18 hours.
Fifth: Rigor mortis disappears 48 hours following death.
Rigor mortis, the stiffening of muscles after death due to loss of ATP, occurs several hours post-death and follows a well-documented timeline reaching peak rigidity at 12-18 hours and dissipating after 48 hours. Forensic anthropologists analyze human remains and assess taphonomic processes, like root growth through bones, to approximate how long remains have been exposed to the elements. Environmental conditions significantly affect these processes and thus the determination of time since death.
Modeling the changes in body temperature post-death also provides clues to the time of death, factoring in environmental conditions, such as insulation and temperature. This modeling takes into account whether the deceased was hypothermic or hyperthermic before death which affects body temperature at death.
In cases of trauma, determining the timing of injury is crucial and it is categorized into antemortem, perimortem, and postmortem injuries. This helps medical examiners and pathologists understand the circumstances surrounding the death and the history of the decedent's body.
During which part of the cell cycle is the duplicated genetic material within the nuclear us of a parent cell Seperator to create two daughter cells
Mitosis
Mitosis is the part of the cell cycle in which the duplicated genetic material (chromosomes) within the parent’s cell nucleus is separated to produce two daughter cells that are genetically identical to the parent. Mitosis is important to life because it is involved in the production of new cells for growth and to replace damaged cells. Mitosis occurs in five stages which are; interphase, prophase, metaphase, anaphase and telophase (cytokinesis).
Answer: Mitosis
Explanation:
which statement best distinguishes plant and animal as they relate to amino acids?
A) plans can synthesize all twelve amino acids. humans must eat plans or animals to obtain some of these amino acids
B) plans can synthesize all twelve amino acids. humans must eat plans to obtain all of these amino acids
C) plans can only synthesize ten amino acids. humans synthesize the other ten amino acids
D) plans and humans both synthesize all twelve amino acids. humans must supplement a few of these by eating plans.
Ans.
There are twenty amino acids that take part in protein synthesis. These amino acids act as precursor for all protein molecules and are known as essential amino acids. Plants can synthesize all twenty amino acids from simple precursors, while animals can make only twelve amino acids. Animals obtain remaining eight amino acids by eating plants.
Thus, the correct answer is 'option) D.'
Answer:
The correct answer is the first option - Plants can synthesize all twenty amino acids. Humans must eat plants or animals to obtain twenty of these amino acids. We cannot just create these amino acids on our own the way plants can - we get them from the food we eat, which includes both animals and plants, not just one of them. This is the main difference between animals and plants when it comes to amino acids.
In the scientific investigation, the term " quantitative data" refers to numbers that are usually followed by
In the scientific investigation, the term " quantitative data" refers to numbers that are usually followed by units and/or direction
How do cells obtain materials they need and get rid of waste products???
cellular attraction between anodes and isotopes in the nutrient stew equation
Cells acquire needed materials through the active import of nutrients and molecules, breaking them down and building them back up into new structures. Wastes are processed and then eliminated through a system of diffusion in single-celled organisms or the circulatory system in multicellular organisms. Both the import of needed materials and the export of waste require a significant expenditure of energy.
Explanation:Cellular Material Processing:
Cells obtain the materials they need and get rid of waste products through various processes. They actively import nutrients and other molecules, metabolize (break down) them, and synthesize them into new molecules. This constant use of energy is required for both the synthesis and breakdown of molecules. For instance, large proteins that makeup muscles are actively built from smaller molecules.
Complex carbohydrates are broken down into simple sugars that the cell uses for energy. Similarly, cells ingest and break down bacteria and viruses. The cells must export waste and toxins to stay healthy, which is done through a complex network of blood vessels that supply the cells with oxygen and nutrients, and remove carbon dioxide and waste products.
Simple, single-celled organisms rely on diffusion for the removal of waste products and the intake of nutrients. In contrast, multicellular organisms like humans have evolved to have circulatory systems carrying nutrients and waste products to and from cells.
Learn more about Cellular Processing here:https://brainly.com/question/35158032
#SPJ3
Brenda ran a 5 km race. During the race, she began to breathe heavily, and some of her muscles began to burn. Which of these explains why Brenda felt a burning in her muscles during the race? Choose the correct answer.
The cells did not have enough oxygen, so they used fermentation as a source of energy.
The cells did not have enough glucose, so they used fermentation as a source of energy.
The cells had too much glucose, so they used aerobic respiration as a source of energy.
The cells had too much carbon dioxide, so they used aerobic respiration as a source of energy.
The cells had too much carbon dioxide, so they used aerobic respiration as a source of energy.
The burning sensation Brenda felt in her muscles during the race was due to the accumulation of lactic acid, produced as a result of anaerobic respiration, which her cells resorted to due to insufficient oxygen.
Explanation:The correct answer to this question is: The cells did not have enough oxygen, so they used fermentation as a source of energy. When Brenda was running the race, her body required a lot of energy, which it usually gets from aerobic respiration. In aerobic respiration, oxygen is used to break down glucose, releasing the energy stored in it. However, during intense physical activity like running a 5km race, the body might not be able to supply enough oxygen to the muscles quickly enough. When this happens, the muscles switch to anaerobic respiration, which does not require oxygen. The by-product of this process is lactic acid, which can cause a sensation of burning in the muscles.
Learn more about Anaerobic Respiration here:https://brainly.com/question/18024346
#SPJ2
How can the actions of one species help or harm other species?
The food chain would get all messed up
The model below represents a phase of meiosis. What stage of meiosis does the picture below represent?
1Points
A drawing of a phase of meiosis with individual chromatids and the cell membrane starting to divide.
A
anaphase I
B
prophase I
C
telophase I
D
telophase II
Answer:
The correct answer is option C, that is, telophase I.
Explanation:
In telophase, I, the migration of the homologous chromosomes takes place towards the two poles as a consequence of the activity of the spindle. Thus, a haploid set of chromosomes comes towards each of the poles, and each exhibiting two chromatids. The reformation of nuclear envelope takes place around each of the chromosome set, the disappearance of spindle takes place, and is followed by cytokinesis.
The illustrated stage of meiosis is telophase I. In this stage, the chromosomes have moved towards the cell ends and the cell membrane is starting to divide. This leads to two non-identical daughter cells with half the chromosomes.
Explanation:The model you're describing represents the telophase I stage of meiosis. In telophase I, the chromosomes complete their move towards the opposite ends of the cell and the cell membrane starts to divide, preparing for cytokinesis (cell division). Individual chromatids are visible because the sister chromatids of each chromosome are still joined together, each one looking like a 'double chromosome'.
This division of the cell membrane is characteristic of telophase I and it signifies the near completion of the first meiotic division. The process results in two daughter cells that are not identical to the parent cell as it reduces the number of chromosomes by half.
Learn more about Telophase I here:https://brainly.com/question/33442936
#SPJ6
The cell membrane plays an essential role in the life of a cell how does the cell membrane help maintain the health of cells?
Read the information for transcription using this link, then answer the questions provided. Explain the process of transcription.
the correct answer is-
Transcription is the first step of gene expression, in which a particular segment of DNA is copied into RNA (mRNA) by the enzyme RNA polymerase. Both RNA and DNA are nucleic acids, which use base pairs of nucleotides as a complementary language. The two can be converted back and forth from DNA to RNA by the action of the correct enzymes.
Which of the following is characteristic of the product of the p53 gene?
A) It causes cell death via apoptosis.
B) It speeds up the cell cycle.
C) It allows cells to pass on mutations due to DNA damage.
D) It slows down the rate of DNA replication by interfering with the binding of DNA polymerase.
E) It is an activator for other genes.
the correct answer is E) It is an activator for other genes.
The p53 gene product primarily functions to control cell cycle progression and promote cell death via apoptosis when necessary. It doesn't speed up the cell cycle or allow cells to pass on mutations due to DNA damage. Rather, it activates other genes involved in cell cycle control and apoptosis.
Explanation:The p53 gene is a crucial component in the cell's biological machinery, and it is sometimes referred to as the 'guardian of the genome' because of its critical role in controlling cell cycle progression and promoting apoptosis in response to DNA damage. Let's consider the characteristics you've mentioned.
A) It causes cell death via apoptosis. This is true. If the p53 protein detects DNA damage that cannot be repaired, it activates the cell's apoptotic machinery, leading to programmed cell death and preventing the propagation of mutations. B) It speeds up the cell cycle. This is not accurate. In fact, p53 slows down the cell cycle to allow for DNA repair. C) It allows cells to pass on mutations due to DNA damage. This is not true, the p53 gene's main function is to prevent such occurrences. D) It slows down the rate of DNA replication by interfering with the binding of DNA polymerase. This statement is partially correct. p53 can slow down the cell cycle, but not by directly interfering with DNA polymerase. E) It is an activator for other genes. This is true. The p53 gene functions as a transcription factor, activating the expression of various other genes involved in cell cycle control and apoptosis.
Therefore, options A and E most accurately characterize the product of the p53 gene.
Learn more about p53 gene here:https://brainly.com/question/31604966
#SPJ3
Someone help me with this
This is was a worldwide scientific project that deciphered the DNA code of all the human Chromosomes of the body
Please help, I think it is C?
Which tool enhances weather forecasts by enabling monitoring, which is necessary for predicting global weather and environmental events?
A) map
B) satellite
C) weather balloon
D) automated weather station
Correct Answer:
B -- Satellite
Explanation:
I just took the test : )
<Jayla>
Answer:
B. Satellite
Explanation:
Edge quiz / unit test
Hopes this helps and brainliest plz <3
Green plants: are nonliving can make their own food do not reproduce need oxygen for photosynthesis
Answer:
can make their own food
Explanation:
We know that green plants are living organisms just like all other living organisms who are able to synthesize their own food through the process of photosynthesis. Just like all other living organisms they can reproduce their offspring both through sexual and asexual means.
If we look at equation of photosynthesis we can clearly see that they need Carbon di oxide and water, in the presence of sunlight and chlorophyll to synthesize sugars as food source.
carbon dioxide + water —> glucose + oxygen + water.Therefore all the options are wrong except one i.e Green plants can make their own food through photosynthesis.
Hope it helps!
This is the chemical reaction that occurs during photosynthesis; identify which of these is a product in this chemical reaction. A) water Eliminate B) oxygen C) hydrogen D) carbon dioxide
Halloo~~
In order to answer your question, you have to look at the equation of photosynthesis, which is one of the basics of biology.
Carbon Dioxide + water = glucose + oxygen
Written as a scientific equation, it would be
[tex]6CO_{2} + 6H_{2}O = C_{6}H_{12}O _{6} + 6O_{2}[/tex]
Therefore, the products of the photosynthesis chemical reaction would be Glucose and Oxygen. Eliminate A, C, D, and the answer should be B
Answer:
B- Oxygen
Explanation:
Oxygen is O2 and is located on the right-hand side of the arrow, indicating that it is a product and gets made in the reaction.
How does the current, or sixth, mass extinction differ from the past five mass extinction events?
A.
The sixth mass extinction is believed to be caused by human-related factors.
B.
The sixth mass extinction is believed to be caused by natural forces.
C.
The sixth mass extinction is believed to affect relatively fewer species.
D.
The sixth mass extinction is believed to affect relatively fewer areas.
A. the sixth mass extinction is believed to be caused by human-related factors.
A. The sixth mass extinction is believed to be caused by human-related factors.
Why the current, or sixth, mass extinction is believed to be different from the past five mass extinction events?The current, or sixth, mass extinction is believed to be different from the past five mass extinction events because it is primarily caused by human-related factors, such as habitat destruction, overhunting, climate change, pollution, and the introduction of invasive species.
In contrast, the previous mass extinction events were primarily caused by natural forces, such as volcanic eruptions, asteroid impacts, and changes in climate.
Additionally, the current mass extinction event is believed to be occurring at a much faster rate than previous mass extinctions, with species going extinct at a rate that is estimated to be 100 to 1,000 times higher than the natural background extinction rate.
This has led some scientists to refer to the current mass extinction as the "Anthropocene extinction," reflecting the role of human activities in driving this event.
Option B is incorrect because, as mentioned above, the sixth mass extinction is primarily caused by human-related factors, not natural forces.
Option C and D are also incorrect because the sixth mass extinction is believed to be affecting a large number of species and a wide range of areas, with some estimates suggesting that up to one million species are currently at risk of extinction.
Learn more about mass extinction at::
https://brainly.com/question/11872946
#SPJ3
What is the name for a flat, low-lying piece of land next to the ocean?
interior plain
coastal plain
mountain range
plateau
The correct answer is option B. Coastal Plain.
The name of the flat, low-lying piece of land next to the ocean is called a coastal plain.
Hope I could help! :)
Answer:
Coastal Plain
Explanation:
Answer on Edge
Taxol is a drug that stabilizes microtubules and prevents them from depolymerizing. Consequently, cells treated with taxol fail to complete mitosis. What is the last stage of mitosis that taxol-treated cells are likely to complete?
a. Prophase
b. Metaphase
c. Telophase
d. Anaphase
The correct answer is option B.Taxol targets mitosis by stabilizing microtubules and thus hampers chromosomal segregation during cell division. It prevents the progression past metaphase, thereby inhibiting mitosis before anaphase begins. Therefore, cells treated with Taxol are likely to complete metaphase.
Taxol is a chemotherapeutic drug that targets mitosis, a critical process in cell division. Specifically, Taxol acts by stabilizing the microtubules that make up the mitotic spindle. During mitosis, microtubules have to go through cycles of assembly and disassembly for chromosomes to be properly segregated to daughter cells.
Microtubule stability is crucial during the later phases of mitosis, particularly from anaphase onwards, when the sister chromatids are pulled apart and moved to opposite poles of the cell. As Taxol prevents depolymerization of microtubules, this would most likely stop cells in the metaphase of mitosis, just before entering anaphase. Therefore, the correct answer to which phase Taxol-treated cells can complete is b. Metaphase.
Darwin made many observations of the plants and animals of the Galápagos Islands, and he applied these observations to develop his ideas about evolution. Think about the species you read about in Hawaii. Do the Hawaiian honeycreepers provide evidence to support Darwin's theory of evolution by natural selection? Why or why not?
SAMPLE Answer:
Yes because years and years later there are now descendants of the original animals that have evolved and changed to best suit the environment they're living in.
Explanation:
(keep in mind I have no clue if this is right or not, but i used this for my answer on the assignment)
Hawaiian honeycreepers provide STRONG EVIDENCE to support Darwin's theory of evolution by natural selection because different species are adapted to fit different environments.
Hawaiian honeycreepers are endemic species that inhabit the Hawaiian archipelago. In a similar manner to Darwin's finches from the Galapagos archipelago, Hawaiian honeycreeper' species evolved the shape of their beaks to more efficiently eat the nectar of different types of flowers found on each island.The shape of the beak of the Hawaiian honeycreepers fit to the flowers so different bird species can draw nectar more efficiently according to the flowers found on each island.Hawaiian honeycreepers represent an excellent example of evolution by natural selection, where different species inhabiting different islands changed (evolved) to adapt to particular environmental conditions.In conclusion, Hawaiian honeycreepers provide STRONG EVIDENCE to support Darwin's theory of evolution by natural selection because different species are adapted to fit different environments.
Learn more in:
https://brainly.com/question/1657375
Which organisms undergo both photosynthesis and cellular respiration?
A) Animals
B) Both plant and animals
C) Plants
Worth 20 points
The answer is C. Plants
Only plants undergo photosynthesis so A and B are automatically incorrect. The answer is plants.
Hope this helps you! :)
C) Plants
During photosynthesis, the plant necessitates carbon dioxide and water, both of which are discharged into the air during inhalation. And during respiration, the plant requires oxygen and glucose, which are both composed through the process of photosynthesis.
This method also produces oxygen, which is necessary for the endurance of aerobic life, such as human beings. Cellular respiration is the method by which plants and other life forms generate energy. Plants transport us both manners, thus producing food and energy.
The individual with genotype AaBbCCDdEE can make many kinds of gametes. Which of the following is the major reason?
A) segregation of maternal and paternal alleles
B) recurrent mutations forming new alleles
C) crossing over during prophase I
D) different possible alignments of chromosomes
E) the tendency for dominant alleles to segregate together
The correct is answer is option D
Different possible alignments of chromosomes
In totality there are 5 traits with two allele each
Aa, Bb, CC, Dd, EE
The gametes formed will have allele from each gene and thus in totality each gamete will have 5 allele.
Thus different gamete can be produced such as ABCDE, ABcDe, AbCDE, AbcDe and many more.
The major reason why the individual with genotype AaBbCCDdEE can make many kinds of gametes is different possible alignments of chromosomes during meiosis. Hence the correct option is D.
The genotype AaBbCCDdEE indicates that the individual is heterozygous at multiple gene loci (Aa, Bb, Cc, Dd, EE). During meiosis, the homologous chromosomes (one from each parent) pair up and align randomly along the metaphase plate during Metaphase I.
This random alignment is known as "independent assortment." The independent assortment of chromosomes during meiosis leads to various combinations of maternal and paternal alleles being present in the gametes, resulting in the production of a wide variety of gametes with different genetic compositions.
Hence the correct option is D.
To know more about chromosomes here
https://brainly.com/question/11912112
#SPJ6
Which of the following describe the role a biochemical pump plays in active transport?
A, It helps move materials across the membrane against the concentration gradient.
B, It helps large molecules that do not normally cross the cell membrane to enter or exit cells.
C, It helps a cell accumulate a relatively high concentration of a molecule.
D, It helps move water more quickly across the membrane.
Molecules always tend to move downhill i.e, from higher concentration to lower concentration, but if a molecule has to move uphill i.e towards higher concentration then energy has to be spent.
Active transport requires energy in the form of ATP i.e. ATP must break down for the movement of molecule against its concentration gradient. (ans is A)
Which tool would a scientist uae to view tiny or organism a) computer b) compound microscope c) test tube d) triple beam balance
A scientist would use a Compund Microscope in order to view tiny organisms or cells. This device increases the magnification in order to make the thing being viewed visible to the naked eye.
Organisms interact with their environments, exchanging matter and energy. For example, plant chloroplasts convert the energy of sunlight into
A) the energy of motion.
B) carbon dioxide and water.
C) the potential energy of chemical bonds.
D) oxygen.
E) kinetic energy.
The process of photosynthesis by green plastids absorb light energy coming from the sun and then converted to chemical energy, and then install the carbon dioxide within the green plastids themselves, resulting in the process of sugar glucose and oxygen gas and a few molecules of water, and in what The following is a chemical equation that shows how photosynthesis occurs: [3] CO2 + H2O + Sun light + Chlorophyll H2O + O2 + C6H12O6 The photosynthesis is not limited to the organism itself but extends to the surrounding ecosystem as it absorbs carbon dioxide from the atmosphere to perform this process, K They produce the oxygen gas being released into the atmosphere, which creates a state of balance between these gases in the atmosphere
Final answer:
Plant chloroplasts convert sunlight into the potential energy of chemical bonds during photosynthesis, storing it in sugar molecules for later use. The correct answer is: C) the potential energy of chemical bonds.
Explanation:
Organisms interact with their environments, exchanging matter and energy. Specifically in plants, chloroplasts convert the energy of sunlight into a useable form. The correct answer to the question is C) the potential energy of chemical bonds. This is because, during photosynthesis, light energy is captured and used to energize electrons, which are then stored in the covalent bonds of sugar molecules such as glucose. The energy stored in these chemical bonds is later made available to organisms that consume these plants, providing the energy necessary for life processes like cellular respiration.
Which statements are true for chloroplasts? Select the three that apply.
a. They are the sites of reactions that convert chemical energy from food molecules to ATP.
b. Their inner membrane has infoldings called cristae.
c. Their matrix contains enzymes that function in cellular respiration.
d. They have membranous sacs called thylakoids that are surrounded by a fluid called stroma.
e. They contain the green pigment chlorophyll.
f. They are the sites of reactions that convert solar energy into chemical energy.
Answer:
The correct answers are options d, e and f.
Explanation:
Chloroplasts refer to a double-membrane bound organelles, which exhibits an internal membrane system known as the thylakoids. The thylakoids are found in a fluid known as stroma. The thylakoids are the location for undergoing light reaction and possess chlorophyll pigment.
The captivation of solar energy takes place by the green color pigment chlorophyll, which is eventually used to generate NADPH and ATP while undergoing light reaction. Stroma is the location for dark reactions, which produced glucose from carbon dioxide.
If color is an inherited trait in beetles, and birds are more likely to eat brown beetles than green beetles,
a. the frequency of the green allele will increase.
b. the frequencies of the brown and green alleles will not change.
c. this causes the population to evolve due to genetic drift.
d. the frequency of the brown allele will increase.
e. this causes the population to evolve due to gene flow.
Final answer:
The correct answer to why the frequency of the green allele in beetles increases if birds prey more on brown beetles is natural selection, where the survival advantage of the green beetles leads to a higher frequency of the green allele over time.
Explanation:
If color is an inherited trait in beetles, and birds are more likely to eat brown beetles than green beetles, the correct answer would be:
a. the frequency of the green allele will increase.
This scenario is an example of natural selection, where the green beetles have a survival advantage over the brown beetles. Since birds are preying more on brown beetles, the brown allele is being removed more frequently from the gene pool, while the green allele, which confers a better camouflage, increases in frequency as those beetles survive and reproduce. It is important to note that this change in allele frequency is determined by the differential survival and reproduction of the beetles, not by chance or migration, which would be indicative of genetic drift or gene flow, respectively.
Mammals share which of the following extraembryonic membranes with reptiles and birds?
A) chorion.
B) amnion.
C) allantois.
D) A and B.
E) A, B and C.
E) A,B and C
hope i helped!
During RNA processing a(n) _____ is added to the 5' end of the RNA.
a. 3' untranslated region
b. long string of adenine nucleotides
c. 5' untranslated region
d. coding segment
e. modified guanine nucleotide
Why is it incorrect to call interphase a resting phase
The answer is; Cell at interphase is not really resting. Cells in this stage are preparing for mitosis. The cells in this phase hordes up energy and proteins required for mitosis (grows in size) and begins to replicate the genetic material and organelles. The interphase is divided into G1, S , and G2 stages.
The resting stage is actually G0 stage where the cells do not replicate again.
Interphase, consisting of the G₁, S, and G₂ phases, is not a resting phase as the cell is actively involved in many processes, including DNA replication and preparations for mitosis. The Go phase, however, is where some cells are in a quiescent or resting state.
Explanation:It is incorrect to call interphase a resting phase because, during this stage, the cell is actively involved in multiple important processes that prepare it for cell division. Interphase is made up of the G₁, S, and G₂ phases. During the G₁ phase, the first stage of interphase, the cell is busy accumulating the building blocks of chromosomal DNA and the associated proteins, as well as accumulating sufficient energy reserves to complete the task of replicating each chromosome in the nucleus. The cell then moves to the S phase where DNA replication occurs. Following this is the G₂ phase, during which the cell continues to grow and makes necessary preparations for mitosis.
However, it is important to note the existence of the Go phase, a stage where the cell is in a quiescent (inactive) stage and not actively preparing to divide. Some cells enter Go temporarily due to environmental conditions, while others, like nerve and mature cardiac muscle cells, remain in Go permanently.
Learn more about Interphase here:https://brainly.com/question/30622117
#SPJ11
An organism has the genotype "Aa" for a particular trait. As a result of segregation during meiosis, what alleles will each gamete contain? two copies of "a" one "A" and one "a" two copies of "A" one "A" or one "a"
when an organism has Aa genotype for a particular trait, during segregation each gamete should contains one A and one a allele for proper segregation.
An organism with the genotype "Aa" will produce gametes with either one "A" or one "a" allele due to the segregation of alleles during meiosis, following the Law of Segregation.
Explanation:An organism with the genotype "Aa" for a particular trait will produce gametes where each gamete contains either one "A" or one "a" allele. During meiosis, the process that leads to the formation of gametes, the alleles segregate so that each gamete receives only one allele for each gene. This is in accordance with Mendel's Law of Segregation, which states that the two alleles for each characteristic segregate during gamete production. Therefore, it is not possible for a gamete to receive two copies of "A" or two copies of "a" from this organism; instead, each gamete will randomly receive one allele or the other, resulting in a 50/50 chance of obtaining either the "A" or the "a" allele.