what factors determine the magnitude of the electric force between two particles ?
a. charge and distance
b. mass and distance
c. charge and density
d. mass and charge

Answers

Answer 1
The electric force between the two particles are calculated through the equation,
 
                          F = kQ₁Q₂ / d²

where F is the force, k is a constant called Coulomb's law constant, Q₁ and Q₂ are the charges, and d is the distance. This equation is called the Coulomb's law. 

It can be seen from the equation above that the electric forces between the objects are majorly affected by the substance's charges and distance. 

The answer to this item is therefore letter A. 
Answer 2

Answer: Charge and distance

Explanation:


Related Questions

The chief physicist in charge of the manhattan project was _____. wernher von braun j. robert oppenheimer albert einstein leslie groves

Answers

it was J. Robert Oppenheimer

J. Robert Oppenheimer

How much heat transfer (in kilocalories) is required to thaw a 0.450-kg package of frozen vegetables originally at 0ºc if their heat of fusion is the same as that of water?

Answers

Final answer:

To thaw a 0.450-kg package of frozen vegetables at 0°C, with a heat of fusion equivalent to that of water, 36 kilocalories of heat transfer are required.

Explanation:

Calculating Heat Transfer for Thawing Frozen Vegetables

The question asks about the heat transfer necessary to thaw a 0.450-kg package of frozen vegetables originally at 0°C, given that their heat of fusion is equivalent to that of water. To calculate this, one can use the formula for heat transfer during a phase change:

Q = m × L

Where:
Q is the heat transfer,
m is the mass of the substance (in kilograms), and
L is the latent heat of fusion (for water, it's approximately 334,000 J/kg or 80 kcal/kg).

Plugging in the values, we get:

Q = 0.450 kg × 80 kcal/kg = 36 kcal

This calculation determines that 36 kilocalories of energy is required to thaw the frozen vegetables.

The greatest ocean depths on the earth are found in the marianas trench near the philippines, where the depth of the bottom of the trench is about 11.0 km. calculate the pressure due to the ocean at a depth of 9.1 km, assuming seawater density is constant all the way down. (the validity of the assumption of constant density is examined in one of the integrated concept problems.)

Answers

To find the pressure with a given data for the height, you are asked to get the hydraulic pressure. Hydraulic pressure has the following formula:

P = density*acceleration due to gravity*height

Assume that the density of seawater is the same as that for pure water,density = 1000 kg/m^3.

P = 1000 kg/m3*9.81m/s2*9100m
P = 89271000 Pascals or 89.271 megapascals

In order to be considered a semi-conductor the material must
have insulator and conductor properties.
resist electron flow.
have ions that are negative and accept charges.
easily accept electron flow.

Answers

First one, for instance they become conductors or insulators depending on the temperature!

Answer:

<<<<Have insulator and conductor properties.

>>>>>is your answer

Explanation:

i just take the quiz

A tipping point in the disappearance of tropical rainforests would be

Answers

In the disappearance of tropical rainforests, a tipping point indicates the change in the patterns of regional weather. This change occurs after the clearance of the forests.This tipping point prevents them from returning.

How long will it take you to pass a truck at 60 mph with oncoming traffic?

Answers

This is impossible to calculate without knowing the speed of each vehicle. 

Answer:

4 seconds - Not practical

Explanation:

Length of the truck = 50'

Initial distance behind the truck = 30'

Finish Pass = 50' ahead of truck ,

Pass at =  60mph -- about 3.375 seconds.

- 70mph your closing speed is 130mph.  

If you were less than a 1/4 mile away when you tried the pass you will be dead.

That would be a quick pass.  You will probably want a mile beyond the oncoming traffic.

How much would you have to raise the temperature of a copper wire (originally at 20 ?c) to increase its resistance by 18 % ? the temperature coefficient of resistivity of copper is 0.0068 (?c)?1?

Answers

The equation for how temperature changes the resistance R is: 

R=R₀(1+α(T-T₀)), where R₀ is the resistance at T₀=20°C, T is the temperature for which we want to calculate the resistance and α is the temperature coefficient for resistance. 

The resistance of the copper wire increases by 18% or by 0.18, so the new value for the resistance is R=1.18*R₀.

T₀=20°C
=0.0068
R=1.18*R₀

Now we need to input that into the equation for resistance change and solve for temperature T.  

1.18R₀=R₀(1+α(T-20)), R₀ cancels out,

1.18=1+α(T-20),

1.18-1=α(T-20), we divide by α,

0.18/α=T-20, we put 20 on the left side,

26.47+20=T

T=46.47°C

So the temperature on which the resistance of copper wire will increase by 18% is T=46.47°C. 

To increase the resistance of the copper wire by 18%, the temperature will be increase to 46.47 °C

Data obtained from the question Original temperature (T₁) = 20 °C Original resistance (R₁) = RNew resistance (R₂) = 18% increase = 1.18RCoefficient of resistivity (α) = 0.0068 °C¯¹New temperature (T₂) =?

How to determine the new temperature

α = R₂ – R₁ / R₁(T₂ – T₁)

0.0068 = 1.18R – R / R(T₂ – 20)

0.0068 = 0.18R / R(T₂ – 20)

0.0068 = 0.18 / (T₂ – 20)

Cross multiply

0.0068 (T₂ – 20) = 0.18

Divide both side by 0.0068

T₂ – 20 = 0.18 / 0.0068

T₂ – 20 = 26.47

Collect like terms

T₂ = 26.47 + 20

T₂ = 46.47 °C

Learn more about linear expansion:

https://brainly.com/question/23207743

What should you do if your boat capsizes answers?

Answers

Many of the boating fatalities take place after capsize, but a modest list of things to do before and after a capsize can minimize boat accidents and boat accident injuries. 

Initially there is an significant list of thing to do before you even step on the boat:

1. Take the boat safety and water safely courses
2. Make certain that yourself and everyone else on the boat is wearing a well-fitting and safe life jacket.
3. Go over the place of the safety items with everyone on the boat as well as the location of the horn of the boat and the flare of the boat.
4. Paint bright color the hull of the boat in order to be seen easily from the air.

After a capsize, there are significant steps to make

1. Stay calm
2. Execute a head count and check everybody for injuries or immediate dangers.
3. Ensure that everyone has floatation device that coolers and other items that can be used. 
4. Stay in the capsized boat unless dangerous.
5. Try to right the boat if someone has a knowledge on how to do so.
6. Use signal devices such as flares, bright colored life jacket, whistles, flashlights and mirror.
7. Try to reboard or climb onto it in order to get as much of your body out of the cold water as possible because treading water will ground to lose body heat sooner. 
8. Do not waste energy and only signal when needed. Try to keep warm and stay strong
Final answer:

If your boat capsizes, stay calm, hold on to the boat, signal for help, and wait for rescuers. Make sure to wear a life jacket when boating to increase your chances of survival.

Explanation:

If your boat capsizes, follow these steps:

Stay calm: It's important to stay calm and avoid panicking in this situation. Panicking can make it harder to make rational decisions.Hold on to the boat: Try to grab onto the boat and hold on to it. This will help keep you afloat and make it easier for rescuers to find you.Signal for help: Use any available signaling devices, such as whistles, flares, or flashing lights, to attract the attention of rescuers.Wait for help: Stay with the boat and wait for help to arrive. It may take some time, but rescuers will eventually find you.

Remember, it's important to always wear a life jacket when boating to increase your chances of survival in the event of a capsizing.

Learn more about Boat Capsizing here:

https://brainly.com/question/3915586

#SPJ6

F the radius of a sphere is increasing at the constant rate of 2 cm/min, find the rate of change of its surface area when the radius is 100 cm

Answers

The surface area of a sphere of radius r is
A(r) = 4πr²

The rate of change of the surface area with respect to time is
[tex] \frac{dA}{dt} = \frac{dA}{dr} \frac{dr}{dt} [/tex]

The radius increases at the constant rate of 2 cm/min, therefore
[tex] \frac{dA}{dt} = 2 \frac{dA}{dr}=2*(8 \pi r) =16 \pi r [/tex]

When r = 100 cm, the rate of change of the surface area is
16π(100) cm²/min
= 1600π cm²/min
= 5026.5 cm²/min

Answer: 1600π or 5026.5 cm²/min


The finding that attention can spread within an object, thereby, enhancing detection at other places within the object is referred to as _____.

a. ?spatial drift

b. ?spreading activation

c. ?same-object advantage

d. ?object location invariance

Answers

The finding that attention can spread within an object, thereby, enhancing detection at other places within the object is referred to as same-object advantage effect (SOA). The effect is that the performance of observers who are judging two targets is better (faster and/or more accurately) when they are from the same object than when they are from different objects.

Final answer:

The phenomenon where attention can enhance detection within other parts of the same object is known as the same-object advantage (option c), based on multisensory integration patterns where multisensory enhancement is more likely when stimuli are related spatially and temporally.

Explanation:

The finding that attention can spread within an object, thereby, enhancing detection at other places within the object is referred to as same-object advantage (option c). This concept implies a form of multisensory integration where sensory processing is enhanced for different parts of a single object when compared to processing parts of different objects. This pattern is based on the principle that multisensory enhancement occurs when the sources of stimulation are spatially and temporally related to one another, contributing to the ability to detect stimuli more efficiently when they occur within the same object.

When atoms lose more than one electron, the ionization energy to remove the second electron is always more than the ionization energy to remove the first. similarly, the ionization energy to remove the third electron is more than the second and so on. however, the increases in ionization energy upon the removal of subsequent electrons is not necessarily uniform?

Answers

The increase in the ionization energy upon the removal of the subsequent electrons are not necessarily uniform because the affinity of the electrons to the atom in every subshell is different causing to a difference in energy needed to remove these electrons. Each and every subshell in an atom is attached or attracted to the nucleus at different degrees or amounts. As a result, the energy that is required to remove the electrons in every subshell would be different although it increases, it would not be uniform.

A spring has an unstretched length of 10 cm . It exerts a restoring force F when stretched to a length of 11 cm .

Answers

Given:
L = 10 cm, original length

Because the stretched length is 11 cm, the extension is
d = 11 - 10 = 1 cm

Let the spring constant be k N/cm
Then the restoring force is
F = (k N/cm)*(1 cm)
   = k N

Answer:
The restoring force is equal to the spring constant, measured in Newtons per centimeter.

(a). The restoring force in the spring will be [tex]3F[/tex]  if it is stretched to a length of [tex]\boxed{13\,{\text{cm}}}[/tex] .

(b). The restoring force in the spring will be [tex]2F[/tex]  if it is compressed to a length of [tex]\boxed{8\,{\text{cm}}}[/tex] .

Further Explanation:

When we compress or stretch a spring from its natural length, there is a restoring force developed in the spring due to the compression and stretching of the spring.

The restoring force experienced by the spring due to stretching is expressed as:

[tex]F=k\cdot\Delta x[/tex]                                                           …… (1)

Here, [tex]F[/tex]  is the restoring force developed in the spring, [tex]k[/tex]  is the spring constant of the spring and [tex]\Delta x[/tex]  is the length through which the spring is stretched.

The spring experiences a restoring force of  [tex]F[/tex] when it is stretched to a length of [tex]11\,{\text{cm}}[/tex]  from its natural length [tex]10\,{\text{cm}}[/tex] .

[tex]\begin{aligned}\Delta x&={x_f} - {x_i}\\&=0.10 - 0.11\\&=0.01\,{\text{m}}\\\end{aligned}[/tex]

Substitute the values of force and change in length in equation (1).

[tex]\begin{aligned}F&=k\cdot0.01\hfill\\k&=\frac{F}{{0.01}}\hfill\\\end{aligned}[/tex]

Part (a):

When the spring experiences a restoring force of [tex]3F[/tex] , then the stretched length of the spring should be:

[tex]3F=k.\Delta x[/tex]

Substitute [tex]\frac{F}{{0.01}}[/tex]  for [tex]k[/tex]  in above expression.

[tex]\begin{aligned}3F&=\frac{F}{{0.01}}\cdot\Delta x' \\\Delta x'&=3\times0.01\,{\text{m}}\\&=3\,{\text{cm}}\\\end{aligned}[/tex]

So, the stretched length of the spring becomes:

[tex]\begin{aligned}L&={x_o}+\Delta x' \\&=10\,{\text{cm}}+3\,{\text{cm}}\\&=13\,{\text{cm}}\\\end{aligned}[/tex]

Thus, the restoring force in the spring will be [tex]3F[/tex]  if it is stretched to a length of [tex]\boxed{13\,{\text{cm}}}[/tex] .

Part (b):

The restoring force of magnitude [tex]2F[/tex]  is experienced by the spring on compression. The change in length due to compression will be:

[tex]2F=k\cdot\Delta x''[/tex]

Substitute [tex]\frac{F}{{0.01}}[/tex]  for  [tex]k[/tex] in above expression.

[tex]\begin{aligned}2F&=\frac{F}{{0.01}}\cdot\Delta x''\\\Delta x''&=2\times0.01\,{\text{m}}\\&=2\,{\text{cm}}\\\end{aligned}[/tex]

So, the compressed length of the spring becomes:

[tex]\begin{aligned}L'&={x_o}-\Delta x''\\&=10\,{\text{cm}}-{\text{2}}\,{\text{cm}}\\&=8\,{\text{cm}}\\\end{aligned}[/tex]

Thus, the restoring force in the spring will be [tex]2F[/tex]  if it is compressed to a length of [tex]\boxed{8\,{\text{cm}}}[/tex] .

Learn More:

1. How far must you compress a spring with twice the spring constant to store the same amount of energy? Https://brainly.com/question/2114706

2. Max and Maya are riding on a merry-go-round that rotates at a constant speed https://brainly.com/question/8444623

3. It's been a great day of new, frictionless snow. Julie starts at the top of the 60 https://brainly.com/question/3943029

Answer Details:

Grade: High School

Subject: Physics

Chapter: Work and energy

Keywords:

Spring, unstretched length, compressed, stretched, restoring force, 3F, 11 cm, F=kx, natural length of spring.

Cora, an electrician, wraps a copper wire with a thick plastic coating. What is she most likely trying to do?
keep the electric potential of the wire balanced
decrease the wire’s resistance
increase the voltage produced by the wire
keep a current from passing out of the wire

p.s. if you're good at physics pm me, could use some help on a quiz.

Answers

The correct answer among the choices given is the last option. Cora wrapping the copper wire with a thick plastic coating keeps a current from passing out a wire. The plastic wire here serves as an insulator. An insulator is a material that prevents electricity or current to flow out the circuit. In order to lessen the loss of energy.

HOPE THIS HELPS!

Insulators are often defined as materials that do not allow electricity to flow through them. She wants to stop the flow of current out from the wire.

What is an insulator?

Insulators are commonly employed in physics. Insulators are often defined as materials that do not allow electricity to flow through them.

Insulators are also referred to as poor electrical conductors. We may discover various instances of these insulators in our daily lives. Insulators include materials such as paper, glass, rubber, and plastic.

From the following observation, we come to the result that she wants to make a insulator.

Hence the option d is correct .

To learn more about the insulator refer to the link;

https://brainly.com/question/24909989

What is the first thing to check when a refrigerator stops working?
a. check the food temperature. if it is 35°f or colder, move the food into a working refrigerator
b. check the refrigerator thermometer. if it is below 51°f, move food into working refrigerator.
c. check the food temperature. if it is 41°f or colder, move the food into a working refrigerator
d. check the food temperature. if it is 32°f or colder, move the food into a working refrigerator?

Answers



b. check the refrigerator thermometer. if it is below 51°f, move food into working refrigerator.

Answer:

correct answer is option C (check the food temperature to decide if it is safe. If the thermometer measures under 41 degrees Fahrenheit, then you move it to a working refrigerator)

Explanation:

In a refrigerator there is a thermometer which is  designed for the refrigerator and it should read 40 degrees Fahrenheit or lower inside the refrigerator. If a refrigerator stops working the first thing which should be checked is the food temperature to decide if it is safe. Because if temperature of food is above 40 degree Farenheit for more than 2 hours it should not be used. If the thermometer measures under 41 degrees Fahrenheit, then you move it to a working refrigerator.

What is the name of the imaginary line that lies 23 degrees south of the equator and marks the southern boundary of the area known as the tropics?

Answers

It is called the Tropic of Capricorn.

________ describes the total sediment load transported by a stream.

Answers

That is called the capacity.

The term that describes the total sediment load transported by a stream is "stream sediment transport."

What is stream sediment transport?

Stream sediment transport refers to the overall amount of sediment, including sand, silt, and clay particles, that is carried by a stream as it flows. Stream sediment transport is influenced by factors such as the stream's velocity, gradient, and the size and shape of the sediment particles.

It plays a crucial role in shaping stream channels, depositing sediments in floodplains, and influencing the overall geomorphology of a stream system.

Learn more about stream sediment on:

https://brainly.com/question/15513785

#SPJ6

A 132 g piece of nickel is heated to 100.0 °c in a boiling water bath and then dropped into a beaker containing 877 g of water (density = 1.00 g/cm3) at 5.0 °c. what was the final temperature of the nickel and water after thermal equilibrium was reached

Answers

The answer is attached.

The final temperature of nickel and water having a mass of 132g and 877g and after thermal equilibrium was reached is 6.5 °C.

What is temperature?

The density is the mass of a material substance per unit volume. d = M/V, where d is density, M is mass, and V is volume, is the formula for density. Grams per cubic centimeter are a typical unit of measurement for density.

As an illustration, the density of Earth is 5.51 grams per cubic centimeter, whereas the density of water is 1 gram per cubic centimeter.

Given:

A 132 g piece of nickel is heated to 100.0 °C,

The quantity of water = 877 g,

The temperature of water = 5 °C,

Calculate the final temperature as shown below,

[tex]m_1c_1\Delta t_1 = m_2c_2\Delta t_2[/tex]

0.132 × 444(100 - t) = 0.877 × 4186 (t - 5)

Here, t is the final temperature of nickel and water,

58.608 (100 - t) = 3671.12 (t - 5)

100 - t = 62.64 (t - 5)

100 - t = 62.64t - 313.19

t = 413.19 /

t = 6.49 or 6.5 °C

Thus, the final temperature is 6.5 °C.

To know more about Density:

https://brainly.com/question/6329108

#SPJ5

The largest driving force for pulling fluid from the interstitial spaces back into the capillaries is

Answers

The main driving force for pulling fluid from the interstitial spaces back into the capillaries is blood colloid osmotic pressure. The oncotic pressure or as called as colloid osmotic pressure is a classification of osmotic pressure transport to bear by proteins notably albumin in a blood vessel's plasma which is blood or liquid that typically inclines to pull water into the circulatory system.

Osmotic pressure, specifically the blood colloidal osmotic pressure, is the main force that moves fluid from interstitial spaces back into the capillaries, driven by protein concentration gradients.

The largest driving force for pulling fluid from the interstitial spaces back into the capillaries is the osmotic pressure, often specifically referred to as blood colloidal osmotic pressure (BCOP). This pressure exists due to the concentration of colloidal proteins such as albumin in the blood. These proteins create a higher solute concentration within the capillaries relative to interstitial spaces, resulting in water being attracted back into the bloodstream due to the solute-to-water concentration gradients established across the semipermeable capillary walls. Fluid re-enters the capillary where the capillary hydrostatic pressure is lower than the BCOP, typically at the venule end of the capillary.

A boy kicks a football with an initial velocity of 28.0 m/s at an angle of 30.0o above the horizontal. what is the highest elevation reached by the football in its trajectory?

Answers

As the boy kicks the football with an angle, due to the effect of the gravitational force, the ball would follow a projectile path which is parabolic in nature. From this idea, we can derive equations pertaining to the maximum height that the ball would reach. At the maximum height of the ball, the velocity of the ball would be equal to zero. From the equations for projectile motion, we would obtain the equation as follows:

Maximum height = v0^2 sin^2 (theta) / 2g 
Maximum height = (28.0 m / s )^2 sin^2 (30.0) / 2(9.8 m / s^2)
Maximum height = 10 m

The maximum height that the ball would reach would be 10 m.
 
Final answer:

The highest elevation reached by the football in its trajectory is approximately 20.7 meters.

Explanation:

To determine the highest elevation reached by the football, we can use the kinematic equations for projectile motion. The initial velocity of the ball can be broken down into its horizontal and vertical components using trigonometry.

The horizontal component of the initial velocity is 28.0 m/s * cos(30.0°) and the vertical component is 28.0 m/s * sin(30.0°). Since there is no vertical acceleration at the highest point of the trajectory, the vertical component of the velocity is zero. We can use this information to find the time it takes for the ball to reach its highest elevation.

Using the equation vf = vi + at, where vf is the final velocity (zero), vi is the initial velocity (vertical component), a is the acceleration (acceleration due to gravity: -9.8 m/s^2), and t is the time, we can solve for t. Plugging in the values, we get:

0 = 28.0 m/s * sin(30.0°) - 9.8 m/s^2 * t

Simplifying and solving for t, we find that t = 2.86 seconds.

Now, we can use the equation hf = hi + vit + (1/2)at^2, where hf is the final height (highest elevation), hi is the initial height (0 m since the ball starts on the ground), vi is the initial velocity (vertical component), a is the acceleration (acceleration due to gravity), and t is the time. Plugging in the values, we get:

hf = 0 + 28.0 m/s * sin(30.0°) * 2.86 seconds + (1/2)(-9.8 m/s^2)(2.86 seconds)^2

Simplifying, we find that the highest elevation reached by the football is approximately 20.7 meters.

Potassium hydroxide (KOH) and hydrochloric acid (HCl) react in a beaker. They form potassium chloride (KCl) and water (H2O). What type of reaction is this? synthesis reaction
double replacement reaction
single replacement reaction
decomposition reaction

Answers

Its the second option

Answer: double replacement reaction

Explanation:

1. Synthesis reaction is a chemical reaction in which two reactants are combining to form one product.

Example: [tex]Li_2O+CO_2\rightarrow Li_2CO_3[/tex]  

2. Double displacement reaction is one in which exchange of ions take place. Neutralization is a special type of double displacement where acid reacts with base to form salt and water.

Example: [tex]KOH(aq)+HCl(aq)\rightarrow KCl(aq)+H_2O(l)[/tex]

3. Single replacement reaction is a chemical reaction in which more reactive element displaces the less reactive element from its salt solution.

Example: [tex]Zn+2HCl\rightarrow ZnCl_2+H_2[/tex]

4. Decomposition is a type of chemical reaction in which one reactant gives two or more than two products.

Example: [tex]Li_2CO_3\rightarrow Li_2O+CO_2[/tex]

A jet plane is flying at a constant altitude. at time t1=0 it has components of velocity vx= 94 m/s , vy= 110 m/s . at time t2= 33.5 s the components are vx= 175 m/s , vy= 45 m/s . part a for this time interval calculate the average acceleration. give your answer as a pair of components separated by a comma. for example, if you think the x component is 3 and the y component is 4, then you should enter 3,4. express your answer using two significant figures.

Answers

The average acceleration components of the jet plane for the given time interval are approximately 2.4, -1.9 m/s², calculated using the change in velocity components divided by the time interval.

To calculate the average acceleration of a jet plane flying at a constant altitude with given velocity components at two different times, we use the formula for average acceleration: a = (v_f - v_i) / Δt, where a is the average acceleration, v_f is the final velocity, v_i is the initial velocity, and Δt is the change in time.

Given the initial velocity components at t1=0 are v_x1 = 94 m/s and v_y1 = 110 m/s, and the final velocity components at t2=33.5 s are v_x2 = 175 m/s and v_y2 = 45 m/s, we can calculate the average acceleration components as follows:

Average acceleration in the x-direction: a_x = (v_x2 - v_x1) / Δt = (175 m/s - 94 m/s) / 33.5 s = 2.42 m/s²Average acceleration in the y-direction: a_y = (v_y2 - v_y1) / Δt = (45 m/s - 110 m/s) / 33.5 s = -1.94 m/s²

Therefore, the average acceleration components for the time interval are approximately 2.4, -1.9 m/s².

Energy that is associated with the position or composition of an object is called

Answers

That is potential energy.
Final answer:

Potential energy is the type of energy associated with the position or composition of an object. It's the stored energy that can be fully recovered.

Explanation:

The energy that is associated with the position or composition of an object is called potential energy. This is a type of energy that is stored and can be completely recoverable. Energy comes in different forms and potential energy is one type due to an object's relative position, composition or condition. An object could possess this energy because of its place within a system. For instance, water at the top of a waterfall has potential energy due to its position; when it flows downwards, it has kinetic energy that can be used to produce electricity in a hydroelectric plant. Similarly, a battery has potential energy because the chemicals within it can produce electricity that can perform work.

Learn more about Potential Energy here:

https://brainly.com/question/24284560

#SPJ3

My trip to work is 120 miles. if i go 8 mph faster than my usual speed, i'll get to work 30 minutes earlier. how long does my trip take, in hours, if i go my usual speed?

Answers

Let x be the time it takes for the trip to be completed given that the speed is y.

When the time is 30 minutes (equal to 0.5 hour) shorter than x, the speed is 8 mph more than the original speed. 

The equations that would best represent the given conditions are:
      (1)             120 = (x)(y)
      (2)              120 = (x - 0.5)(y + 8)

Simplifying,
                       y = 120/x
Substitute:
                    120 = (x - 0.5)(120/x + 8)

The value of x from the equation is 3. Thus, if I go with the usual speed, the time it will take me to finish the trip is approximately 3 hours. 

Answer: Hello!

The total distance is 120 miles, and you know that if you go 8 mi/h faster than usual you get there 30(or 0.5 hours) minutes early.

So if v is your usual speed, and t is your usual time, we have the next equations:

1) v*t = 120mi

2) (v + 8mi/h)*(t - 0.5h) = 120 mi

In equation (1) we can write v as a function of t; this is v = 120mi/t, and replace it in the second equation.

(v + 8)*(t - 0.5) = 120

(120/t + 8)(t - 0.5) = 120

120 + 8*t -60/t - 4 = 120

8*t -60/t - 4 = 0

now we need to obtain the value of t. Multiplying by t in both sides we have:

8*t^2 -60 - 4t = 0

Now we can use Bhaskara to obtain the two possible values for t:

[tex]t = \frac{4 +- \sqrt{16 +4*60*8} }{16} = \frac{4+-\sqrt{1936} }{16}  = \frac{4 +-44}{16}[/tex]

So we have two solutions: [tex]t = \frac{4+44}{16} = 3h[/tex] and [tex]t = \frac{4 -44}{16} = -2.5h[/tex].

The second is a negative time, so this has no sense; then we only took the first solution; when you go at your usual speed, your trip takes 3 hours.

What is the speed of a transverse wave in a rope of length 2.00 m and mass 60.0 g under a tension of 500 n?

Answers

The formula we can use in this case would be:

v = sqrt (T / (m / l))

Where,

v = is the velocity of the transverse wave = unknown (?)

T = is the tension on the rope = 500 N

m = is the mass of the rope = 60.0 g = 0.06 kg

 l = is the length of the rope = 2.00 m

Substituting the given values into the equation to search for the speed v:
v = sqrt (500 N/(0.06 kg /2 m)) 
v = sqrt (500 * 2 / 0.06) 
v = sqrt (16,666.67) 
v = 129.10 m/s

A bar magnet is placed on a table so that the north pole faces right.

Which statement describes the magnetic field lines 2 cm above the table?

They are pointing down into the table.
They are pointing right to left.
They are pointing left to right.
They are pointing up out of the table.

Answers

The correct answer is C. They are pointing right to left.


Explanation.

A magnet has two poles, a north pole and a south pole.  When dealing with magnets, we define the concept of a magnetic field. A magnetic field represents the effect of the magnet on magnetic materials and moving charges in the space around the magnet. For every magnet, the magnetic field lines always point away from the north pole of the magnet towards the south pole. Since the north pole of this magnet faces right, the magnetic field lines point towards the left.

The correct answer is C. They are pointing right to left.

Answer:

so b????????

Explanation:

In all chemical reactions, __________ and ____________ must be conserved. energy, matter atoms, heat enthalpy, energy

Answers

energy and matter atoms is the correct answers. Mass or matter can not be created nor destroyed.

Final answer:

In all chemical reactions, both matter and energy must be conserved. The law of conservation of matter states the quantity of each element remains constant, and the law of conservation of energy (the first law of thermodynamics) states that energy can be transformed but not created or destroyed. Chemical equations must be balanced to reflect these conservation laws.

Explanation:

In all chemical reactions, matter and energy must be conserved. These principles are known as the law of conservation of matter and the energy conservation law. According to these laws, the quantity of each element remains unchanged in a chemical reaction, meaning that there's the same amount of each element in the products as there was in the reactants because matter is conserved. This is reflected in a chemical equation where the same number of atoms of each element appears on each side of the equation.

In addition to matter being conserved, energy is also conserved as described by the first law of thermodynamics. Energy can be transformed from one form to another or transferred between objects, but the total energy before and after a chemical reaction remains constant. The conservation of energy is also important to understand because, despite matter and energy being interchangeable under certain circumstances in physics, in most chemical reactions, the energy changes are modest and the mass changes are negligible, so these two quantities appear to be conserved.

It is important to remember that these conservation laws are a fundamental aspect of chemical equations that need to be balanced to satisfy the law of conservation of matter. Atoms are neither created nor destroyed in chemical reactions so the reactants and products must always have the same total number of each type of atom. This aspect is critical for correctly understanding and performing chemical reactions.

Electromagnetic waves are ________ waves.

a. longitudinal

b. surface

c. primary

d. transverse

Answers

D. Transverse waves

An iron block of mass 45.87 kg is heated from 7 c to 218

c. if the specific heat of iron is 450 j-1 kg k-1 then how much energy is required

Answers

Final answer:

The amount of energy required to heat a 45.87 kg iron block from 7°C to 218°C, given a specific heat capacity of 450 J kg-1 K-1 , is 4364065.5 Joules.

Explanation:

The amount of heat energy required to change the temperature of a substance can be calculated using the formula Q = mcΔT, where:

Q is the heat energym is the mass of the substancec is the specific heat capacityΔT is the change in temperature

Given that the mass of the iron block (m) is 45.87 kg, the specific heat of iron (c) is 450 J kg-1 K-1, and the change in temperature (ΔT = T2 - T1) is (218 - 7) or 211°C, which is equivalent to 211 K in terms of heat calculations. Substituting these values into the formula, we get:

Q = 45.87 kg * 450 J kg-1 K-1 * 211 K = 4364065.5 Joules

So, it would require 4364065.5 Joules of energy to heat the iron block from 7°C to 218°C.

Learn more about Heat energy calculation here:

https://brainly.com/question/30320641

#SPJ12

According to the big bang theory, after the "bang," the universe remained dark until

Answers

I believe the answer is 300,000 years

According to the Big Bang theory, after the "bang," the universe remained dark until about 380,000 years later, when neutral atoms began to form.

During this period, the universe was filled with a hot, dense plasma of protons, electrons, and photons constantly interacting, which prevented light from traveling freely. This era is known as the "cosmic dark age." Around 380,000 years post-Big Bang, the universe cooled enough for protons and electrons to combine and form neutral hydrogen atoms, a process called "recombination."

This allowed photons to travel unimpeded, making the universe transparent and visible. This transition is marked by the emission of the cosmic microwave background radiation, which we can still detect today as the afterglow of the Big Bang.

Complete Question:

According to the Big Bang theory, after the "bang," the universe remained dark until about _____ later, when neutral atoms began to form.

A motorist travels for 3.0 h at 80 km/h and 2.0 h at 100 km/h. What is her average speed for the trip?

Answers

3x80=240
2x100=200
240+200/5=88 k/hr
☺☺☺☺

Answer:

The motorist average speed for the trip is 88 km/h

Explanation:

In order to know her average speed, we have to refer to the following ecuation:

<V> (average speed) = [tex]\frac{Vfinal+Vinital}{2}[/tex]

So, according to that, we know that the motorist has been having a speed of 80km/h during 3 hours, and a speed of 100 km/h during 2 hours. It means that her speed during all the travel is 5 hours.

Then, we have to affect the 5 hours to the inicial and final speed as follows:

First, at 80 km/h, she travels during 2 hours so:

3h*80km/h= 240 km

And then, at 100 km/h:

2h*100km/h= 200 km

Which leads us to:

initial speed: 240 km/ 5 h= 48 km/h

and final speed of: 200 km/ 5 h= 40 km/h

Then, the average speed is:

<V> = 48 km/h + 40 km/h = 88 km/h

Other Questions
William howard taft said, this policy has been characterized as substituting dollars for bullets. it is one that appeals alike to idealistic humanitarian sentiments, to the dictates of sound policy and strategy, and to legitimate commercial aims. The vertical distance from a fixture outlet to the trap weir should not be more than _______ inches. What role did slavery play in the Southern plantation economy and how was it regulated What forms when an artesian well begins to push out enough water that gravity causes it to flow to a lower region? It takes 8 minutes for Byron to fill the kiddie pool in the backyard using only a handheld hose. When his younger sister is impatient, Byron also uses the lawn sprinkler to add water to the pool so it is filled more quickly. If the hose and sprinkler are used together, it takes 5 minutes to fill the pool. Which equation can be used to determine r, the rate in parts per minute, at which the lawn sprinkler would fill the pool if used alone?+ 5r = 8+ 5r= 15() =r= 5r The region of the United States in which Georgia is located is thenortheastern regionsoutheastern regionnorthwestern regionsouthwestern regionsoutheastern?? Justin is redoing his bathroom floor with tiles measuring 6 in. By 13 in. The floor has an area of 8500 in.. What is the least number of tiles he will need true or false when the war broke out between britain and the colonies in april 1775, most americans were fighting for independence? 1. Vernica es la _____ de Francisco The place where the axon terminal from one nerve cell transfers an impulse to another nerve cell, is the The sum of the roots of the equation x 2 + x = 2 is: What is the slope of the graph of 2y 5x = 14? List the discontinuities for the function f(x) = cot(2x over 3) A person is riding an elevator downward at a constant speed. compare using full sentences the amount of force acting upward on the person to the amount of force acting downward on the person What does most recent date of access mean? Good readers set a purpose for reading a text before they begin reading. "The Black Cat" is a short story. What should your purpose be in reading this text?to be entertainedto learn about animalsto learn how to perform a task Why were christians persecuted in ancient rome? The molar mass of carbon dioxide is 44.0 g/mol. a mass of 150.0 grams of carbon dioxide is equivalent to how many moles?A) 3.00 molB) 3.41 molC) 29.3 molD) 106 mol What does je m' apelle Emma. Comment t' appelle-tu What is the location of point F, which partitions the directed line segment from D to E into a 5:6 ratio?-1/111/112/1515/2 Steam Workshop Downloader